Arbortext® IsoDraw®

Macro Language Reference
Arbortext IsoDraw Foundation 7.1 M020
Arbortext IsoDraw CADprocess 7.1 M020
December 2009

D p1C

Copyright © 2009 Parametric Technology Corporation and/or Its Subsidiary Companies.
All Rights Reserved.

User and training guides and related documentation from Parametric Technology Corporation and its
subsidiary companies (collectively “PTC”) are subject to the copyright laws of the United States and other
countries and are provided under a license agreement that restricts copying, disclosure, and use of such
documentation. PTC hereby grants to the licensed software user the right to make copies in printed form of
this documentation if provided on software media, but only for internal/personal use and in accordance with
the license agreement under which the applicable software is licensed. Any copy made shall include the PTC
copyright notice and any other proprietary notice provided by PTC. Training materials may not be copied
without the express written consent of PTC. This documentation may not be disclosed, transferred, modified,
or reduced to any form, including electronic media, or transmitted or made publicly available by any means
without the prior written consent of PTC and no authorization is granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade
secrets and proprietary information, and is protected by the copyright laws of the United States and other
countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any
manner not provided for in the software licenses agreement except with written prior approval from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION. PTC regards software piracy as the crime it is, and we view
offenders accordingly. We do not tolerate the piracy of PTC software products, and we pursue (both civilly
and criminally) those who do so using all legal means available, including public and private surveillance
resources. As part of these efforts, PTC uses data monitoring and scouring technologies to obtain and transmit
data on users of illegal copies of our software. This data collection is not performed on users of legally
licensed software from PTC and its authorized distributors. If you are using an illegal copy of our software
and do not consent to the collection and transmission of such data (including to the United States), cease using
the illegal version, and contact PTC to obtain a legally licensed copy.

For Important Copyright, Trademark, Patent, Licensing and Data Collection Information: For
Windchill products, select About Windchill at the bottom of the product page. For InterComm products,
on the Help main page, click the link for Copyright 20xx. For other products, click Help » About on
the main menu of the product.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND

This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, use, duplication, or disclosure by the Government is subject to the restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.2277013
(OCT’88) or Commercial Computer Software-Restricted Rights at FAR 52.22719(c)(1)-(2) (JUN’87), as
applicable. 01162009

Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA

Contents

ADOUE THIS GUIAE ...t e et e e es 13
INtrOdUCHION ... e 19
Y oo 10 1/ =T o N 21
Macros and Macro LangQuagec..ueeeueiiiieei e 22
What's INIML? ..o e 22

How are Macros Created and Updated?...........ccoooiiiiiiiii e 22

Macro File StrUCUIEcooeiii e 23
Macro File StOrageooouuuiiiiiiii e 23
Creating MaCIOS.t 24
Recording MaCIOScooiiiiiiiii e 24
Debugging MaCIOS.ocuuii e 26

Editing Macro Filesioiiiii e 28

BUilt=-in IML LimMitS ..oeeeeeieeeee e e e e e eeeees 28
[T g Yo [UE=To Lol = 1] o S 29
LeXiCal SIrUCIUIE ..o e e 30
Case SENSILIVILYcevniiiiiii s 30
Statements and Lin€ Breaksovvveiiiiiiiiei e 30
Line ContiNUAtioNo.uiiiiii e 31
SPACES aNd TabS....... oo 31
COMMENTS ..ot e e e e 31
LITEIAlS . oeie i s 31
IdENEIfIEIS . et 32
[SCE3TAT o] (o - 7S 32

1Y E=To3 {0 TP SPP P 33
SUDBMACTO ..o 33
VariabIEs.o 34

DS POSE .. it 34
Operators and EXPreSSIONSiiieiieiieieii e 35
Flow Control Statements. ... 36

| OO P PP RUPPPRPN 36

WWIE et 37

B O e e 37

BrEaK ... e s 38

0 o PP 39

REIUIN s 39

Error HaNAlNGoovniiiii e 40

L0 I =14 o] g € o] o TP 40

BT O e s 42

MenU COMMANAS..........o.iiii et e e e e e e e e aaaas 45
1 L= 1Y =Y T PPN 47
=TT 48

10 07=1 o [P PPTSPPPPSPPTRN 48
Gl e et 49

IMPOIT LAYEIS ... e 51
SAVE LAYEIS. ..ot 51
[T 0T i ST 51
Pl .. 52
PrINter SEIUPDu e e 53
g T 0 U PI 55
SVttt a e s 57
L U 58
Lo 11 01/ =T 0T P 59
L | 60
L0707 o)V PPN 60
[18] o] o= (= P UUPPN 60
Delete SeleCtioNn e 60
P A . e 61
RS T= 1= o | P 61
SIECENONE ... e 61
SeleCt ODJECT ... 62
Select If / SUDSEIECT If ... 62
101 P 64
A LGN e e e 65
DISHIDULE ... 65
=] (=TT Tt P 66
EIemMent MENU ..o 67
=1 o [PP 68
Convert Selection into Elements..........cooooiiiiiiiiii e 68
Convert Selection into Bezier Partsccooooiiiiiiiiii e 68
Convert Selection into POIYIINESiviiiiiii e 69
JOIN POIYIINES ..o 69
JOIN BEZIEIS ... 69
Generate CONTOUN ... e e e e e 69
Create Compound Path ... 70
L] o101 o1 PPN 70
Group SeleCiON........uiiiiii e 70
UNGroup SeleCtioncooiiuiiiiii e 70
SHAM GrOUD ..eeeie e e 70

[Lo N 1 o 18] o T 71
= TS S P 71
Release MaskK ... 71
o T QPSPPI 72
[] o T G 72
Transformation 3D ... e 72
Set IMage TranSPArENCYcccuuuiieieiiie ettt et e e e s 72
IMPOIt SEIECHON ... 73
ODJECES MEBNU ... eaaas 75
Create ObJect_INfOo e 76
Delete ODbJECt INfO......ciiieiii e 76
Create Object_attribute..........coouiiiiiii e 77
Delete Object_attributeooooiiiiiiii 78
Create HOtSPOLS ... 78
SNOW IN ISOVIEW ... e s 78
Delete Uncompliant Attributes ... 79

Arbortext® IsoDraw® Macro Language Reference

LSS 82
Convert Text to Pathsiiiii e 82
WINAOW MEBNU ... 83
Activate WINAOW.........oouii e 84
[T 1= PPN 84
SO e 85
4o o] o TR PPN 87
Window COMMANGS.............oooniiiii e 89
LAYl WINGOW ettt e ettt e e et e e e eab e eees 91
o Lo I = = PP 92
L0 = Y USRI 92
L07] o)V I 1YY PSP PPRPRPPTRNt 93
Paste Layer ... 93
[0 o] Tor=) (=T == 93
[0 1Y = (== Y 93
ACHVALE LAYEI ... 93
Delete All EMPLy Layers........oooieiiiiiiiiiii e 94
Selected Elements to Active Layer ... 94
Selected Text to ACHIVE Layeroooeueiiiiiiiii e 94
Palette WIndow TOOIDOXceuiiiiiii e 95
Selecting EIemMENTS......cooiiiiiie e 96
Select ReCtanglecooouniiiiii e 96
Select Polygon Startc.viiiiiiie e 96
Select Polygon PoOINtSc..oiiiiiiii e 96
Select Polygon ENdooouiiiiiiii e 97
SIECE Al e 97
Transform SeleCtionc.i i 98
Scale SElECHON. .. .o 98
Shear SeleCtioN e 98
Rotate SeleCtioncoo i 99
Reflect Selection ... 99
Create Parallels............coooouiiiiii e 99
Transforming the lllustrationccoooiii i 100
Set TranSfOrM. ... i 100
Restore TransformMoooouiiiiii e 101
ADSOIULE. ... 101
Creating Elements. ... 101
Create LiNe . .oueieei e 101
Append Line Segment........coouiiiiiii e 102
Create ElliPSe i 102
Create Inner Threadoiiniiiiii e 103
Create Outer Thread........cc.ueiiniiiii e 103
Create CalloUtooenii s 103
Create Rectangle..........coooiuiiiiiii e 104
Create Polygon.........ooiii e 105
Create BezZIEr CUIVEuiiiiiiiii et 105
Append Bezier SEgMENtooiiiiiiiiii e 105

(O == LT 1= 106
Change Text Al ... 106

Set ElliPSEVAIUES ... 107

[T 1 110
A PeN ... 110
Delete PeN ... 110
St ACHVE PEN....oeeeee e 111
7= I =TT o] i o] o - 111
TOGQIE PENS ... 112

Sy S et 112
A SEYIE e 112
Delete Style. ... oo e 113
Set ACtiVE Style ..o 113

] 4= Lo [0 1V 114
2 o IR Y F=To [0 Y2 114
Delete SNadOWc..iiieie e 114
Set ACtiVE ShadOW........couiiiiii e 115

(] o 115
2o Lo €1 o T 115
Delete Grid........oouiiiii e 116

o0 4 F= £ 117
Add Format ... 117
Delete FOrmatc.ooviei e 117
Set ACtiVe FOrMaAt ..o 118

BT A2 0T o £ 118
Add VIEWPOIT. ...ee e 118
Delete VIEWPOITo 119
EXECULe VIEWPOIL. .. oo e 119
Add Layerstatuscoouuiiiiiiii e 119
Remove Layerstatus ..o 120

(0F=1 (o1 U1 R 120
Add Callout._StYle ... 120
Delete Callout._Styleoeiiniiiiieii e 121
Renumber Calloutsoouniiiii e 121

T AT Tq e o 123

(070)] 0] = 124
2o Lo B o] (o N 124
(D1 1= (3 0 0] (o] 124

3D and User Interaction Commandsccoiiiiiiiiiiiii e, 127
10T D I 07T o1 =1 [o £ 129

T V1 R 130

BD SV IBW ...t 130

3D PrOJECL. ..t e 131

T =Y o1 =Y R 132

3D ZOOMEXIENT ... 132

BD HLRMOGE ..o e e 132

T N Y o T [TR 133

3D EXPIOSION. ...t 133

BD MOV ...t 134

T N R 134

IO I I =T 0 1= (o 1 1 135

BD RSB et 135

BD SEEDIST e 136

3D HOlE reCtanglecoooeiiiieeee e 136

6 Arbortext® IsoDraw® Macro Language Reference

3D Hole polygon start ..o 136

3D Hole polygon POINES........coiiiiiieeeei e 137

3D HOIe POIYGON €NAoiiiei e 137
Further Macro Commandsooiuiiiiiiee e 139
A) (= PSP 140
N W e e 140

[T TP P PP PPPR PPN 140
LY o T PN 141
Debugging CommandsSooiiiiiiiiiiiii e 142
[T 018 e [0S (=Y o PPN 142

Debug Commands........c.uiiiiiiiiii e 142

DebUg RESELo 143

DEDUQG StACKcevniiiiii e 143

DEbUG LOCAISo 143

Debug GIODaAISoieiiiii e 143

UMD . e 144

LA = UL S T = 145

] [T=T o PRSPPI 145

6= T o o N 146
TOIMINALE. ... et 146
T 1 PPN 147
= o o S 149
EXEENSION. ... e 149
Increase Text Elements. ... 151
Decrease Text Elementso 151
Interacting With the USer..........ooo i 153
Y =TT Vo [PN 154
LT PP 154
Wait MOUSECHCK ...ceeiiieee e 154
MOUSEEVENT.CIICK. ... 155
MOUSEEVENE.PIPIX. ..o 155
mouseEvent.ptPiXGrid ... 155
mouseEvent.ptMM ... 155
MOUSEEVENt.PIMMGIIAoouiiiiii e 155
mouseEvent.modifiers............oo i 156

7Y Y o N 156
Functions and Data TYPesSoooiuiiiiiiiii e e 157
FUNCHONS .. e 159
Trigonometric FUNCHONS.......co.uuiiiii e 160
Other Mathematical FUNCHONS.............iiiiiiii e, 160
Random FUNCHON ... e 160
SriNG FUNCHONS ..o 161
TIME FUNCLIONS. ... e 162
NEGALION ... e 163
XIS et e 163

R UM < e 164
Call e 164
T[] o) (ST = = R Y o= TP 167
1] (Yo [T PP 168
Floating-Point NUMDErS ... e 168
410 o PR 168

ComPIEX Data TYPES .. .ceeeieieeeiiii e 169
POINT. e 170
o1) X N 170
RECIANGIE ... 170
] =07] o] RPN 170
L0311/ 4 (0o [170
(070] (0] 55 o 1= o PP 171
BRIl e 172
MOUSE EVENL... oo 172

ODBJECt DAta TYPES ciiiiii et 173

DocUMENT ODJECEo 175
ACHVEDIOC. .. 177
JOCUMENT.NAIME ...ttt eaaas 177
document.path ... 177
documeENnt.PENCOUNTooiii i e 177
document.active_Penoooiiiii 177
document.styleCoUNt.. ..o 178
document.active_Stylecoouiiiii i 178
document.shadoWCOUNTcouuiiiiii e e 178
document.active_ShadOw...........oooouiiiiiiiii e 178
document.gridCOUNToouuiiiii e 178
document.active_gridooeiiiiii e 178
document.formatCount 178
document.active_textFormat ..., 179
document.viewportCouUNtcoiiiii e 179
doCUMENE.VIEWPOIES] J..eeiieiieiiii e 179

document.viewports[].name..........coouiiiiii 179

document.Viewports[].1d oo 179

document.viewports[].Rectanglecoooeeiiiiii e, 179

document.viewports[].LayerCount.............cccoouiiiiiiieeiiiiieieeee e, 179

document.viewports[J.Layers[]c.ooeeeuiiriiieiee e 180
document.calloUtCOUNToiii i 181
document.active_calloutooooiiii 181
document.layerCOUNt ..o 181
Lo (o To10 g a1 a1 M F= =T] 181
document.selectedElements ... 181
document.firstSelectedElement ... 181
document.selectedParts ... 182
document.modified 182
AOCUMENE.GIIA ettt e 182
dOCUMENT.WINAOWiiiiiiii e e e e 184
document.Shadowo e 185
document.threado 185
document.thickthino 186
document.backgroundcooouuiiiiiii e 188
documeNt.liNEOPLIONScovi i 188
document.simpleEllipsePrintingccoo i 189
document.colorCOUNto 189
document.hatchingCouNntcooviiiiii e 189
document.patternCount ... 189
document.Objects[0bJeCt D]ccoeuuuiiiiiiiie e 190

8 Arbortext® IsoDraw® Macro Language Reference

document.lockedHIAdENccuivniniiii 190

document.lock3DiINteractionccouiiiiii i 191
Element ODJECEcou i 193
element.element_id ... 195
ElIEMENTLYPE ..o 195
€1emMENT.IOCKEAo e 195
elemMENTMASK ... 195
El1EMENT.DOX ... 195
element.firstChild ... 196
element.lastChild........ ... e 196
element.previousSIDIING ... oo 196
element.NextSIbIiNGoouiiii 196
element.parento 197
elemMEeNt.IaYer 197
element.selected 197
element.nextSelectedElement...........coooiiiiii i 197
€lemMENT.HNECAP .. .ccee e 198
element.liNEJOIN 198
element.miterLimit..... ... 198
element.oVerPrint 198
element.segmentCoUNt.........cooii i e 198
elemMENt.fill ... e 198
element.group.childCount ..o 199
element.doCUumMENt e 199
€l1emMENTINTO ... e 200
element.info.attributes]]........cooo i 200
element.info.View _CONteXt...........cooviiiiiiiii e 201
elemMENt.liNe ... 201
element.elliPSe ... oo e 202
element.innerthread....... ... 203
element.outerthread ..o 205
element.CalloUt.... ... 206
ElEMENTL.FECE. .. e 209
€leMENT.POIYGON ..ot e 210
ElEMENTMAIKET ... e 211
EleMENE.DEZIEN ... 211
elementAeXto 213
€lemMENtIMAgE ... e 214
[T O o] =Y o1 PR 217
E= YT o g = o PN 219
[AYEr.SCrEENCOION ...ttt 219
[AYEF.IOCKEA. ... e 219
[AYEIACHIVE ... 219
layer.printable ... 219
[ayer.eXportable. e 219
[AYEF.VISIDIE ...t e 220
layer.hasEIements 220
[AYEI.USECOIOT ...ttt e e et e e 220
[@yerfirstChildo 220
[@YerastChild ... e 220
[ayer.previoUuSSIDING.......coouu e 220
[Ayer.NeXtSIDIINGcooeiii e 221

10

Application Object - User Interface Preferencesccooeceveiiiiiiiiiiiiiieceeee, 223

=] o IRV €] (o] o P 225
APP.AOCCOUNL ... 226
app-documents[J.NAME ... e 226
= o] 38 01T 1o T o | 226
APP-SIYIECOUNT ...t e 226
APP-ShadOWCOUNT ... 226
=T o] o €14 To [@70 18] o | PP 226
APP.COIOTCOUNT. ... it 227
app-hatchingCount e 227
appP.PatternNCOUNT ... 227
app-formatCount ... e 227
apP-CaAllOULCOUNT ... e 227
APP-PASSWOI ..ottt 227
APP-AraWOTSCIEEN ... it 227
APP-USEANTAIASING .. ee e 228
apP.ShOWLINESLYIES........ i 228
=] o o 18] g L0111V Lo To] I T o - T 228
apP-ShOWODJECETIPS .. et 228
aPP-SNOWRUIETS ... e 229
apP-ShOWCUISOIINTO ..o 229
apPP-MAGNELFIAQS ...t 229
app.selectableFills..........oo 230
aAPP.USEISOEXIONMACciiiiieii e 230
app.allowlnternet. 230
appP.uUPdatePeriod 230
app.NUMbErOfUNAOS ... 230
=T o] 3= TU | (o 1= 1Y 230
aPP-aUtOSAVEMINULES ... 230
appP-USEENPSESIN3DTOOISceeeieiieieiii e 231
APP-PIEVIEW ...ttt ettt ettt 231
=] o R et] 1 o] 0 Y- 1 Y 232
APP-OPHONSD ... 232
=Yoo o] (o] [=Tex 15 | I L PP 233
=T o] o3 1109 T=T g 1= o o - 236
= o] o JXo [[238
=T o] AT T [)PP RS 240
APP-SNAAOW ...t 241
APPANMEAA .. 241
apP-thiCKENIN .. 242
APP-POIYGONTOOL. ... 244
APP.EIHPSELOO0I 244
app.rectangletool. 244
apP-bacKgrouNd 244
APP-INEOPLIONS ... e 245
app.simpleEIlipsePrinting ... 245
F=To] o oW 141V F= ol ol I = 0 1] (] 1 o o S 245
=] 2o | (o [246
app.standardTxtFormat.............coiiiii 246
F=] o] 0 X o] 1 [0] o FU R 246
APP-INTEraCtioNo e 246
apPP-lastMaCIrOEITOr 247
APP-CUMTENEIMACIO ...t eeeaas 247

Arbortext® IsoDraw® Macro Language Reference

Application Object - Data Exchange Preferencescccccccoiiiiiiiiiiiiiiiiccieee, 249

IMPOIE CGIM ..o e e e e et e e e e eaes 251
L34 To] 0]V N 253
EXPOIt EPS ... e 256
IMPOIT HTUSTFALON ... e e 257
EXPOIt HTUSEratorccceee e 257
EXPOrt SV G ..o 257
IMPOIT SV G .. e 259
IMPOIrt IGES ... oo 259
EXPOrt IGESo e 262
IMPOME DWG ..o 265
EXPOrE DWG ...t 267
[g o] A9) PP 267
EXPOIT DXF ... 269
DXF/DWG Import Options: app.dxf/ app.dwgcccoveveiiiiiiiiiiiiiiieieiiiiieeees 270
IMPOIT VRIML. ... et 270
IMPort WavefTONt..... ... 272
Import with ProductView Adapterscooiiiiiiiiiie e 273
EXPOrt HPGL. ... e e e 275
[d oo o S I | 275
oo o AN | = L PPN 276
EXPOIt PNG ..o 277
EXPOIt BIMP ..o 278
EXPOIt PCX .ot 279
EXPOIt CALS ...ttt 279
EXPOIT TEXE ..o 281
EXPOrt ObJECt LiSt....oouuiiiiiiiii e 281
EXPOIt XCF L.ttt 282
Export Interleaf..... ... e 283
Lo o o 0 1Y 1 N 283
oo o o [P UUPPUTPN 283
EXPOIt P ... 284
AP PPl s 284
APP.PAFMELA ... 285
APP.PAF LSO .ot 285
g oo] ALUCT LPSUPTPPPN 286
IMPOIt WIMF ..o e e e e e e e ans 286
EXPOrT WIMFE . e 286
Sub Data Types for Attribute Preferencescoooviiiiiiiii 287
=Y 1= S 288
dINES YIES] . e e 288
SSNAOWS]] i 289
B oto] (o] =] N PP PPRPRPPTN 290
AL CINGS]] orniiei e 291
B0 T= L (Y o 1] PP 291
X OIMALS] e 291
LCANIOULST] e 292
e 3o] PSPPI 295
APPENAIX ..o e 297
International NamMES e 299
IML File FOrmat NamesScoouiiiiee e 301

11

12

CGM Profile Numbers and Names

Arbortext® IsoDraw® Macro Language Reference

About This Guide

This Arbortext IsoDraw Macro Language Reference provides the information you need
to write and edit macros in IsoDraw Macro Language (IML); a proprietary, lightweight
programming language for automating tasks in Arbortext IsoDraw.

Prerequisite Knowledge

You need a basic understanding of Arbortext [soDraw macros to use IML. See About
Macros on page 21 to review these concepts. To learn more about using macros in
Arbortext IsoDraw, see Macros Menu in the Arbortext IsoDraw User's Reference.

In addition, since IML is a programming language, some experience with simple
object-oriented/event-driven programming or scripting would be helpful. However, you
can still get started writing and editing macros using IML by copying the macro code
examples in this guide and modifying them to suit your needs.

Organization of This Guide

This Arbortext IsoDraw Macro Language Reference is organized as follows:

Introduction on page 19 ® (Gives you basic information about
creating, running, debugging, and
managing macros using the Arbortext
IsoDraw Macros menu and IML. (See
About Macros on page 21.)

® (Covers the lexical structure of IML,
such as syntax and naming rules
for command statements, variables,
keywords, and comments. (See
Language Basics on page 29.)

Menu Commands on page 45 Describes macro commands that directly

access features in Arbortext IsoDraw’s

13

menus. For example, Objects Menu on page
75 covers macro commands that correspond
to options on the Objects menu.

Window Commands on page 89

Describes macro commands that directly
access features in windows you can show
or hide using Arbortext IsoDraw’s Window
menu. For example, Palette Window
Toolbox on page 95 describes macro
commands that correspond to tools in the
Palette window.

3D and User Interaction Commands on
page 127

® (Covers commands you can execute in
Arbortext IsoDraw CADprocess 3D
mode if the current drawing contains
3D CAD data. (See 3D Commands on
page 129.)

® (Contains useful commands for macro
development tasks such as debugging,
file handling, and running extensions.
(See Further Macro Commands on page
139.)

® Provides commands that enable macros
to display messages, prompt for
keyboard input, and respond to mouse
events. (See Interacting with the User
on page 153.)

Functions and Data Types on page 157

® Describes IML-supported functions that
can evaluate mathematical expressions,
interpret character strings, return or
track time, apply logical conditions, and
control program flow. (See Functions
on page 159.)

® Defines single-value data in IML
used for integers, floating point
numbers, character strings, and boolean
(true/false) values. (See Simple Data
Types on page 167.)

® Defines multi-value data in IML; data
types that have multiple properties
with values that can be returned or set
separately. (See Complex Data Types

on page .)

14

Arbortext® IsoDraw® Macro Language Reference

Object Data Types on page 173

Describes four “objects” in IML; uniquely
complex data types that have large numbers
of properties. The objects’ names are:
document, element, layer, and
application. The first three objects
return and set attributes for Arbortext
IsoDraw documents, elements, and layers.
The application object returns and sets
preferences for both user interface functions
and data exchange. “Sub data types” are
also discussed in this section, since they can
be used to access attributes of document
or application objects.

Appendix on page 297

® Lists international names for IML
object attributes. Use these names
rather than language-specific attribute
names to ensure that your macro will
run regardless of the currently selected
Arbortext [soDraw language. (See
International Names on page 299.)

® Provides a list of IML file format names
for use in the EXPORT and PROCESS
commands. (See IML File Format
Names on page 301.)

® Lists CGM profiles and their
corresponding numbers returned
and set in the app.cgm.profile
property of the Application object. (See
CGM Profile Numbers and Names on
page 303.)

Related Documentation

For more information on Arbortext IsoDraw products refer to the following documentation
found in the Arbortext IsoDraw Help Center. Help Center includes both HTML and PDF
versions of the documentation. Choose Help » Help Center to access it.

Documentation

Description

Arbortext IsoDraw Release Notes

Information about new, changed, and
deleted features in this Arbortext IsoDraw
release.

Installing Arbortext IsoDraw

Installation and licensing information for
Arbortext IsoDraw.

Drawing Basics Tutorial

Hands-on examples for learning Arbortext
IsoDraw basic functions.

Contents

15

Documentation Description

3D Mode Tutorial Hands-on examples for learning 3D CAD
data editing functions using Arbortext
IsoDraw.

Arbortext IsoDraw User's Reference Comprehensive guide to using the tools and
functions in Arbortext [soDrawproducts.

Arbortext IsoDraw Macro Language (This guide) Reference for writing macros

Reference that you can run in Arbortext [soDraw.

Arbortext IsoDraw Data Exchange Instructions for importing and exporting

Reference graphics data in various formats to and
from Arbortext IsoDraw.

Technical Support

Contact PTC Technical Support via the PTC Web site, phone, fax, or e-mail if you
encounter problems using your product or the product documentation.

For complete details, refer to Contacting Technical Support in the PTC Customer Service
Guide. This guide can be found under the Related Resources section of the PTC Web
site at:

http://www.ptc.com/support/

The PTC Web site also provides a search facility for technical documentation of
particular interest. To access this search facility, use the URL above and select Search
the Knowledge Base.

You must have a Service Contract Number (SCN) before you can receive technical
support. If you do not have an SCN, contact PTC Maintenance Department using
the instructions found in your PTC Customer Service Guide under Contacting Your
Maintenance Support Representative.

Documentation for PTC Products

You can access PTC product documentation using the following resources:
® Online Help Click Help from the user interface for online help available for the
product.

® Product CD or Download All relevant PTC product documentation is included on the
CD or in the download file for the product.

® Reference Documents Web Site Individual product manuals are available from the
Download Reference Documents link of the PTC Web site at the following URL:

http://www.ptc.com/support/

® Help Center Web Site A searchable product documentation knowledge base is
available from the Help Center link of the PTC Web site at the following URL:

http://www.ptc.com/support/

16 Arbortext® IsoDraw® Macro Language Reference

http://www.ptc.com/support/index.htm
http://www.ptc.com/support/index.htm
http://www.ptc.com/support/index.htm

You must have a Service Contract Number (SCN) before you can access the Reference
Documents or Help Center Web site. If you do not have an SCN, contact PTC Maintenance
Department using the instructions found in your PTC Customer Service Guide under
Contacting Your Maintenance Support Representative.

Global Services

PTC Global Services delivers the highest quality, most efficient and most comprehensive
deployments of the PTC Product Development System including Pro/ENGINEER,
Windchill, Arbortext and Mathcad. PTC’s Implementation and Expansion solutions
integrate the process consulting, technology implementation, education and value
management activities customers need to be successful. Customers are led through
Solution Design, Solution Development and Solution Deployment phases with the
continuous driving objective of maximizing value from their investment.

Contact your PTC sales representative for more information on Global Services.

Comments

PTC welcomes your suggestions and comments on our documentation. You can submit
your feedback to the following email address:

arbortext-documentation@ptc.com

Please include the following information in your email:

® Name

® Company

® Product

® Product Version

® Document or Online Help Topic Title

® [evel of Expertise in the Product (Beginning, Intermediate, Advanced)

® Comments (including page numbers where applicable)

Documentation Conventions

This guide uses the following notational conventions:

® Bold text represents exact text that appears in the program's user interface. This
includes items such as button text, menu selections, and dialog box elements. For
example,

Click OK to begin the operation.

® A right arrow represents successive menu selections. For example,

Choose File » Print to print the document.

® Monospaced text represents code, command names, file paths, or other text that
you would type exactly as described. For example,

At the command line, type version to display version information.

Contents 17

mailto:arbortext-documentation@ptc.com

® Ttalicized monospaced text represents variable text that you would type.
For example,
installation-dir\custom\scripts\

® Jtalicized text represents a reference to other published material. For example,

If you are new to the product, refer to the Getting Started Guide for basic interface
information.

18 Arbortext® IsoDraw® Macro Language Reference

Introduction

19

A

About Macros

Macros and Macro LanQUage........ccuuuueciiiiiiieei eeenees 22
MacCro File StrUCLUIEoooeiiiiieee e 23
MaCrO File StOrageeuveiiiiiiiiiiieiieeeeeeee e 23
Creating MaCIOSuiiiiiiee e 24
BUIlt-in IML LIMIES .. e e e e e e e eeeeas 28

This section provides basic information about Arbortext IsoDraw macros. It explains what
an macro is, the various ways you can create, run, modify, and debug macros using the
Macros menu and IML—and where and how macros are stored.

21

Macros and Macro Language

A macro is a small computer program stored in IML, the Arbortext [soDraw Macro
Language. You run macros inside Arbortext IsoDraw, typically to automate repetitive
manual actions, such as selecting menu options, setting predefined views, or performing a
series of graphical transformations.

For example: If you frequently perform tasks such as...

® [mporting a third-party graphics file into Arbortext IsoDraw for editing and saving
in native Arbortext I[soDraw ISO (. iso) file format

® Exporting an ISO file to a file in a third-party graphics format

® Batch-converting files in one graphics format to a different format

...you can create a macro that automatically configures import or export preference
settings in Arbortext IsoDraw and performs the graphics conversion.

Note

If a macro only performs 2D graphics tasks, you can run it in either Arbortext IsoDraw
Foundation or Arbortext IsoDraw CADprocess. If a macro performs 3D graphics
tasks, it will only run successfully in Arbortext IsoDraw CADprocess. (In this guide,
Arbortext IsoDraw refers to both Arbortext IsoDraw Foundation and Arbortext IsoDraw
CADprocess unless otherwise noted.)

Most drawing tasks that can be done manually through the Arbortext IsoDraw interface
can also be done using macros. Furthermore, programming logic structures in IML enable
you to do more with macros than you can using the Arbortext [soDraw interface alone.

What’s In IML?

IML consists of the following:

® (Commands that correspond to many Arbortext [soDraw menu and toolbar functions.

® Objects and other data types with properties that match attributes, preferences, and
option settings in Arbortext IsoDraw windows and dialog boxes.

® Program logic and flow constructs common to many high-level computer and scripting
languages. (These enable familiar and useful programming techniques such as
conditional looping and remote calls in Arbortext [soDraw macros.)

When you create or edit a macro in IML, use these commands, data types, and program
control features in statements that conform to the syntax rules and examples in this guide.

How are Macros Created and Updated?

You can create and update a macro two different ways:

® In Arbortext IsoDraw: record a sequence of tasks using the Record macro command
on the Macros menu. Before recording, you must specify a macro name and a macro
file to store it in. After recording, you can run the entire macro, or, choose Debug
macro from the Macros menu and execute one macro line at a time while you observe

22 Arbortext® IsoDraw® Macro Language Reference

the results. (For more information, see Recording Macros on page 24 and Debugging
Macros on page 26.)

® In a text editing program (such as Windows Notepad): Open a macro file and edit the
macro code directly. When you’re ready to test the macro, save the macro file, then
load, run, and debug it in Arbortext [soDraw. You can also use a text editor to edit
recorded macros. (In fact, recording a macro first, then editing the code in a text editor
is often easier than starting from scratch.) When you edit IML code in a macro file,
be sure to follow the IML syntax and usage examples described in this guide. (For
more information, see Editing Macro Files on page 28.

Macro File Structure

Macros are stored in ASCII text macro (* . 1 sm) files. A macro file must contain at least
one macro, and can contain more as shown in the example below.

Example

The macro file Example. ism listed below contains two macros named Examplel
and Example?2.

Note

Comment lines in a macro file begin with a hash (#) mark and are not executed.

#Listing of macro file Example.ism:
#
#The macro Examplel performs 3D mode view-setting commands
MACRO Examplel
3D VIEW DIMETRIC 2
3D HLRMODE WIREFRAME
3D SETVIEW 903
END MACRO
#
#The macro Example2 prompts for a custom Pen name
#and checks to see if the name exists
MACRO Example?2
DEFINE penName AS String

penName = Get String "Name of your new Pen?"
IF (exists (activeDoc.Pens[penName]) = false) THEN
Add Pen penName
ELSE
MESSAGE "Pen " + penName + " already exists!"
END IF
END MACRO

Macro File Storage

Arbortext IsoDraw looks for macros in all macro (* . 1 sm) files stored in the two folders
below (subfolders included):

About Macros 23

® Arbortext-IsoDraw-install-path\Program\Macros

® Arbortext-IsoDraw—-install-path\User Profiles\username\Ap-
plication Data\PTC\IsoDraw\Macros

The name of each macro found appears on the Arbortext IsoDraw Macros menu.

Updating the List of Macro Names

If you do any of the following file or editing operations while Arbortext IsoDraw is
running, choose Macros » more macros... to update the list of macro names in the
Macros menu:

® (reate a new macro file with one or more new macros in it
® (reate a new macro in an existing macro file

® Rename a macro or macro file

® Move a macro to a different macro file

® Move a macro file to a different folder

Storing Macro Files on Shared Network Server

When Arbortext [soDraw reloads macros, it will include any macros that Windows
shortcuts in the \Macros folders point to. This enables you to, for example, store macro
files for a workgroup in a shared folder on a network server.

Creating Macros

You can create an IML macro in either of the following ways:

® By recording the macro in Arbortext IsoDraw: Use options on the Macros menu to
record a set of actions, assign them a macro name, and save them in a macro file.

® FEditing a macro file in a text editor: Open a new or existing macro (* . 1sm) file in (for
example) Windows Notepad. Add IML code to it using this guide as a reference—then
save the file with an . i sm extension in the \Macros folder.

After you create a macro, it appears in the list of macro names on the Arbortext IsoDraw
Macros menu. If you create a macro using a text editor while Arbortext [soDraw is
running, select Macros » more macros... to refresh the list.

Recording Macros

Note

This topic summarizes more detailed information on macro recording found in Macros
Menu in the Arbortext IsoDraw User's Reference.

To record a macro in Arbortext IsoDraw you do the following:

® Use the Macros menu to record a set of actions.
® Assign a macro name to the recording.

® Save the macro name in a macro file.

24 Arbortext® IsoDraw® Macro Language Reference

For example:

1.
2.

Choose File » New » Empty page. Save the new ISO file as examplel.iso.
Choose Macros » Macros » Record macro.
The following dialog box appears.
Record Macro |

I arne; |e:-:am|:|le1

File: |e:-:ample.i$m _Fl

V' Show in macros menu

Cancel | Q. I

Enter examplel in the macro Name box.
Note
When you record a macro, you should choose a name that matches the macro's
function.
Enter example. ism in the macro File box.
Note
One macro file can contain multiple macros.
Select Show in macros menu if you want the macro name you entered to appear
in the Macros menu list
Click OK to save your entries and close the Record Macro dialog box.
Macro recording begins immediately after dialog box closes.
Perform the sequence of actions in Arbortext IsoDraw that you want the examplel
macro to perform, then choose Macros » Macros > Stop recording.
Note
Selecting Objects » Edit Animation pauses macro recording. No actions are
recorded while Edit Animation is selected. To resume macro recording, close the Edit
Animation or Timeline dialog box. (Closing one closes both.)
The macro is complete. The macro name examplel will now appear on the list of

macros when you open the Macros menu. If you want to view the individual steps
of the macro, select the Debug macro command, click on examplel and click
OK to confirm.

About Macros 25

The macro steps should be displayed in the dialog box as illustrated below.

Debug macro

b acra: examplel

Create Line O 0 20 0
Create Rectangle 5 2.5 15 2.5 15 (-2.5) 5 [-2.5)
Set actiwe pen "Thick™

—Wariables
| =
| =
| =]

Debugging Macros

Note
This topic summarizes more detailed information on macro debugging found in Macros
Menu in the Arbortext IsoDraw User's Reference.

To debug a macro in Arbortext IsoDraw do the following:

1. Choose Macros » Macros » Debug macro....

2. If the content of any macro file changed since you last opened the Macros menu, the
message dialog box below appears and asks if you want to reload all macro files.

Macro file{s) changed. x|

Do you want to reload all macno files?

26 Arbortext® IsoDraw® Macro Language Reference

Click Yes.

3. The Debug macro dialog box opens showing the list of available macros.

x

example?
exampled
exampled
examples

File: Iexample.ism

Cancel |

Select the macro you want to debug, such as examplel, then click OK.

4. The Debug macro dialog box shows the individual actions in the macro examplel.

b acro: examplel

Create Line O 0 20 0
Create Rectangle 5 Z.5 15 2.5 15 (-2.5) 5 [(-2.5)
Set actiwe pen "Thick™

—arables
| | |
| [~ |
| [|
Cancel | Run | Skip | T

5. Use the Skip and Next buttons to step through the macro and debug it line-by-line.

® (Click Next to execute the currently selected line (only). If it contains a drawing
action, you can see the result in the drawing window.

About Macros 27

® (lick Skip to go to the next line without executing the current line.

® [fthe currently selected line contains local or global variables, their names appear
in the drop-down lists under Variables and their values appear in the text boxes.
You can change variable values in these text boxes, but the changes are not saved

in the macro file.

Note

To change variable values permanently, you must re-record the macro and select
or enter the new values, or, you can edit the variable values in the macro file
directly. (See Editing Macro Files on page 28.)

® (lick Run to run the macro starting from the currently selected line. (The Debug
macro dialog box closes before the macro runs.)

Editing Macro Files

Arbortext IsoDraw stores macro files in ASCII text format. You can use a Windows text
editing program to edit the macros in macro files.

Note

If you use a Unix text editor, make sure to save the file with Windows-compatible CR-LF

line breaks.

When you create a new macro file, save it in the folder Arbortext-IsoDraw-
install-path\Program\Macros with the file name extension * . ism.

Built-in IML Limits

When you edit IML code in a macro file, do not exceed the built-in IML limits below. If
you do, errors might occur when you save the macro file or run the macro.

Maximum length of a single macro code |1024
line

Maximum length of string variable content |512
Maximum length of macro names 256
Maximum length of variable names 256
Maximum depth of function recursion 100
Maximum character length of single macro {32766
(excluding comments)

28

Arbortext® IsoDraw® Macro Language Reference

Language Basics

[(Toz= | IS 1 (U ox (0] Y 30
Case SENSIIVITY ... 30
Statements and Line Breakscccooooiiiiiiieeeeiieeee e 30
Line ContinUAatioN...........oovuiiie et 31
SPACES ANA TADSuuiiiiiiiiiiiiiiiti e e 31
(070] 00100 1=T 0| (R 31
I Y =] £ TRt 31
Lo L=T 0 (115 32
KBYWOIAS ...t et e e e e e e e e e e e e as 32
1= Tod o T ORI 33
VaADIES ... 34
Operators and EXPreSSIiONSuuuviiiiiiiiiiiiiiii et 35
Flow Control Statementsooooevviiii e 36

29

Lexical Structure

The lexical structure of a programming language is the set of basic rules that governs
how you write programs in that language. It is the lowest syntax level of the language
and specifies such things as how variable names are written, what characters are used for
comments, and how program statements are separated from one another.

Case Sensitivity

The names of user defined macros, subMacros, variables and keywords such as
MESSAGE, CREATE LINE, WHILE, etc. are case-insensitive. These lines are equivalent:

#example 1:

MESSAGE "hello, world"
MESSAGE "hello, world"
MESSAGE "hello, world"

igddddsdssssssssa s adi

fexample 2:
DEFINE out AS string
DEFINE OUT AS string

Only string constants are case-sensitive:

#CORRECT :
Save "C:\temp\output.com" "CGM"

#INCORRECT:
Save "C:\temp\output.com" "cgm"

Statements and Line Breaks

A statement is a collection of code that performs a task. It can be as simple as a variable
assignment or as complicated as a loop with several exit points. A simple example:
DEFINE name AS string

name = "Barney Gumble"
MESSAGE name

The Arbortext IsoDraw Macro Language uses line breaks to separate simple statements.
Code blocks like while-loops or conditional tests must be terminated with an end
statement.

IF (a > b) THEN

MESSAGE "hello world"
END IF

30 Arbortext® IsoDraw® Macro Language Reference

Line Continuation

Statements can be continued from one line to the next with the use of a backslash (\).

CREATE RECTANGLE 50.798 209.544 \
50.798 184.145 \

95.248 184.145 \

95.248 209.544

Spaces and Tabs

Every part of a statement that consists of more than one word has to be separated by a
space:
CREATE LINE

APPEND LINE SEGMENT
CREATE CALLOUT

Multiple spaces have no effect on the macro. You can take advantage of this flexible
formatting to make your code more readable (by lining up assignments, indenting, etc.):

CREATE LINE 125 678 254 223
CREATE LINE 658.225 568.554 874.974 336.889
Comments

Comments give useful information to people who read your code, but are ignored by
Arbortext [soDraw. Even if you are the only person who will ever read your code it
can be beneficial to include comments. It will make the code easier to understand when
reviewing it in the future.

When Arbortext IsoDraw encounters a hash mark (#) within the code, everything from
that hash mark to the end of the line is recognized as a comment.

#the next line draws an ellipse
create ellipse 113.34 112.99 99 23.5 27

Literals

Literals are data values that appear directly in an Arbortext IsoDraw macro. The following
are examples of literals in Arbortext IsoDraw:

100

off

23.987

(=27)

245,666
'Hello'

"good evening"
false

Language Basics 31

Identifiers

An identifier is used to name variables, macros and subMacros.

Variable Names

The first character of a variable name must be an ASCII letter (uppercase or lowercase).
After the initial character the underscore character () and the digits 0-9 are also valid.
Spaces are always invalid. Some examples of valid variable names:

george

positionX

v9
element description

Macro and SubMacro Names

Macro and subMacro names are case-insensitive. After the keywords MACRO or
SUBMACRO, letters (uppercase or lowercase), digits, special characters and spaces are
allowed in any order you choose. Some examples of valid macro or subMacro names:

geoffrey

myLines

27 Ellipses FOR your pleasure
IsoDraw 4 ever

>>> !ldo not execute! <<<

Keywords

A keyword is a word reserved by the Arbortext [soDraw Macro Language for its own
functionality. Keywords must not be used as variable names. The following lists Arbortext
IsoDraw macro keywords:

BREAK
DEFINE
ELSE
END
FOR
GLOBAL
IF
MACRO
RUN
STEP
SUBMACRO
THEN
TO
WHILE

32 Arbortext® IsoDraw® Macro Language Reference

All command names

Macro

A single macro file may contain several macros. This is useful for grouping different
macros of the same topic.

Note

Macros cannot be nested.

Syntax

MACRO macroname [PROTECTED] [NOT IN MENU]

END MACRO

PROTECTED Optional parameter to protect the macro from being deleted using

the Delete Macro dialog or being overwritten by a recording.
NOT_IN_MENU | Optional keyword that hides macro from the menu Macros. The
macro can still be started through the Run Macro dialog.

Example

MACRO Do Something
MESSAGE "I'm doing something"
END MACRO

FHAHHHH A AR AR
MACRO littleHelper NOT IN MENU

#this macro does not appear in the

#menu "macros"
END MACRO
st Es s A EE RS EREEEEEEREEEEEEE LR
MACRO necessary PROTECTED

#this macro can not be deleted using

#the menu command "Delete macro"
END MACRO
FHEHSHH AR A H AR R
MACRO bothOptions PROTECTED NOT IN MENU

#you can use both parameters in one macro
END MACRO

SubMacro

A single macro may consist of several subMacros.

Note

SubMacros can not be nested.

Language Basics 33

Syntax

SUBMACRO macroname [PROTECTED]
END SUBMACRO

PROTECTED Optional parameter to protect the subMacro from being deleted
using the Delete Macro dialog or being overwritten by a recording.

Example

SUBMACRO messenger
MESSAGE "Here’s your message"
END SUBMACRO

Variables

There are two types of variables in Arbortext [soDraw macros:

local Local variables have to be defined within a macro and can only
be accessed within that macro.

global Global variables can be accessed from all loaded macros within
Arbortext IsoDraw. They have to be defined outside a macro with
the keyword GLOBAL.

Example — Global

global gText AS string

MACRO globalsTest

gText = "Hi, I'm a global."
MESSAGE gText
END MACRO

Example — Local

MACRO localsTest
DEFINE myInt AS integer
DEFINE myFloat AS float

myInt = 21
myFloat = 2.77889

MESSAGE myInt
MESSAGE myFloat
END MACRO

Dispose

DISPOSE deletes the value and content of a previously defined variable, removes it from
the list of defined variables, and frees the memory allocated to it. After the DISPOSE
command executes, the variable can no longer be used. To use the variable again, redefine
it first using the DEFINE command.

34 Arbortext® IsoDraw® Macro Language Reference

Syntax

Dispose varname

’ varname |

The name of the previously defined variable to remove.

Example

...

DEFINE v AS string
v = el.info.attribu
s = getfilename (v)
Free allocated me
DISPOSE v

...

Reuse variable na
DEFINE v AS integer
...

tes["XFile"] .value

mory:

me:

Operators

An expression is a part

and Expressions

of an Arbortext IsoDraw macro that can be used to produce a

value. The simplest expressions are:

literals

A literal value evaluates to itself.

variables

Auvariable evaluates to the value stored in that variable.

More complex expressions can be formed using simple expressions and operators.

Comparison Oper

ators

Comparison operators compare operands. The result is always either true or false.

Operands to the comparison operators must be numeric.

The comparison operators are:

Equality (=)

If both operands are equal, this operator returns true; otherwise,
it returns false.

Inequality (<>)

If both operands are not equal, this operator returns true;
otherwise, it returns false.

Greater than (>)

If the lefthand operator is greater than the righthand operator, this
operator returns true; otherwise, it returns false.

Greater than or
equal to (>=)

If the lefthand operator is greater than or equal to the righthand
operator, this operator returns true; otherwise, it returns false.

Less than (<)

If the lefthand operator is less than the righthand operator, this
operator returns true; otherwise, it returns false.

Less than or equal
to (<9)

If the lefthand operator is less than or equal to the righthand
operator, this operator returns true; otherwise, it returns false.

Language Basics

35

Flow Control Statements

The Arbortext IsoDraw Macro Language supports basic flow control statements for
controlling the execution of a macro.

Conditional statements allow a macro to execute different pieces of code, or none at all,
depending on some condition. Loops support the repeated execution of particular code.

If

The IF statement checks the boolean result of an expression. If the expression is true
it evaluates a statement.

Syntax

IF (expression) THEN statements [ELSE statements] END IF

expression Boolean expression that evaluates to TRUE or FALSE
statements One or more Arbortext IsoDraw Macro Language statements.
Example

IF (drawLine = true) THEN
CREATE LINE 100 100 200 300
ELSE
MESSAGE "No line created!"
END IF

You can include more than one statement in an if statement:

IF (selectLine = false) THEN
CREATE LINE 100 200 300 400
CREATE ELLIPSE 100 500 200 35 45
MESSAGE "ready"

END IF

The IF statement can also be nested:

IF (expression) THEN
true statement 1
IF (expression) THEN
true statement
ELSE
false statement
END IF
true statement 2
ELSE
IF (expression) THEN
true statement
END IF
END IF

36 Arbortext® IsoDraw® Macro Language Reference

While

In a WHILE loop, if the expression evaluates as true, the statement is executed and then
the expression is reevaluated. If it is true again the body of the loop is executed and so on.
The loop exits when the expression is evaluated as false.

Syntax

WHILE (expression) statements END WHILE

expression Boolean expression that evaluates to TRUE or FALSE
statements One or more Arbortext IsoDraw Macro Language statements.
Example

Following is a simple example that prints 10 parallel vertical lines on the screen:

DEFINE i AS integer

i=1

WHILE (i <= 10)
CREATE LINE 5*i 0 5*i 50
i=1i+1

END WHILE

Like the IF statement you can also nest the WHLE statement:

WHILE (expression)
#do something several times
WHILE (expression)
#do something different
END WHILE
END WHILE

For

The FOR statement is similar to the WHILE statement, except that it adds counter
initialization and counter manipulation expressions.

Syntax

FOR counter=from-expression TO to-expression STEP step-counter statements END
FOR

counter Counter variable.

from-expression Start of valid range of counter values.

to-expression End of valid range of counter values.

step-counter Amount to increment counter for each loop.

statements One or more Arbortext IsoDraw Macro Language statements.
Example

DEFINE i AS integer

FOR 1 = 0 TO 90
CREATE ELLIPSE 300 200 100 180 i
CREATE ELLIPSE 300 200 100 90 1

Language Basics 37

END FOR

DEFINE i AS integer
DEFINE j AS integer
3=90
FOR 1 = 0 TO j STEP 5
CREATE ELLIPSE 300 200 100 180 i
CREATE ELLIPSE 300 200 100 90 1
END FOR

Although the FOR statement is similar to the WHILE statement it is often shorter and
easier to read than the equivalent WHILE loop. For example a WHILE loop that counts
from 1 to 10 and prints the numbers in a message window:

DEFINE number AS integer

number = 1

WHILE (number <= 10)
MESSAGE "The number is now " + number
number = number + 1

END WHILE

Here’s the corresponding for loop:

DEFINE number AS integer
FOR number = 1 TO 10

MESSAGE "The number is now " + number
END FOR

Break

The BREAK statement breaks the running FOR or WHILE loop and continues the macro
after the next END FOR or END WHILE.

Syntax

BREAK

Example

MACRO myOutbreak
DEFINE x AS integer
DEFINE y AS integer
DEFINE ea AS integer
x =1
WHILE (x <= 12)
y =1
WHILE (y <= 12)
ea =11 * (x - 1) +5 * vy + 20
IF (ea > 90)
BREAK
END IF
CREATE ELLIPSE 35*x 30*y 10 ea 30
y=y+t1
END WHILE
x =x +1
END WHILE
END MACRO

38 Arbortext® IsoDraw® Macro Language Reference

Run

Using the RUN statement inside a macro or subMacro executes another loaded macro
or subMacro.

Syntax

RUN name

‘ name Name of macro or subMacro.

Example

SUBMACRO routine
MESSAGE "in routine"
END SUBMACRO

FHAFH AR
MACRO main

MESSAGE "in main"

RUN routine

MESSAGE "back in main"
END MACRO

Return

Using the RETURN statement inside a subMacro returns the given value as a result to
the calling macro.

Syntax

RETURN expression

| expression Expression to return to calling macro.

Example

SUBMACRO FindPageFormat
DEFINE s AS string
DEFINE p AS Point
p.x = activeDoc.window.pageX
p.y = activeDoc.window.page¥Y
IF (p.x > p.y)
IF (p.x > p.y)

s — "landscape"
ELSE

s = "portrait"
END IF
RETURN s

END SUBMACRO

MACRO GetPageFormat
DEFINE format AS string
format = RUN FindPageFormat
MESSAGE "The page is in the " + format + " format"

Language Basics 39

END MACRO

Error Handling

Applies to Arbortext IsoDraw 7.0 FO00 and later.

As soon as an error occurs in a macro or subMacro, execution of that macro or subMacro
stops by default—even if the error is treatable. If the error was detected in a subMacro,
the subMacro stops and the error is reported to the calling macro—which stops that calling
macro. The error reporting continues to “bubble up” until all calling macros are stopped.

You can use the ON ERROR commands below to change the default error handling
behavior. For example, you can prevent a macro from stopping when an error occurs
using the command.

Example

SUBMACRO DeepError 0
MESSAGE "Starting DeepError 0"
ERROR -1
MESSAGE "Ending DeepError 0"
END SUBMACRO
SUBMACRO DeepError 1
MESSAGE "Starting DeepError 1"
RUN DeepError 0O
MESSAGE "Ending DeepError 1"
END SUBMACRO
SUBMACRO BubbleUpErrors
MESSAGE "Starting BubbleUpErrors"
RUN DeepError 1
MESSAGE "Ending BubbleUpErrors"
END SUBMACRO

On Error Goto

Applies to Arbortext IsoDraw 7.0 FO00 and later.

This command defines a local error handling routine that is called as soon as an error is
detected. The error handling routine only applies to the subMacro or macro that contains
the ON ERROR GOTO command; the routine does not extend to the calling macro.

An error handling routine is not active until the ON ERROR GOTO command line
executes.

Syntax

ON ERROR GOTO macrocall

macrocall A macro or subMacro name. It is possible to add a valid list of
parameters in brackets. Any specified variables and expressions
will be evaluated at runtime when the error handling routine starts.

40 Arbortext® IsoDraw® Macro Language Reference

Example

SUBMACRO IgnoreErrorHandler

Use an empty SubMacro as ErrorHandler
to ignore all errors.

END SUBMACRO

SUBMACRO StandardErrorHandler (string sLine)

This SubMacro simulates the standard error behaviour.
ERROR app.lastMacroError sLine

END SUBMACRO

SUBMACRO GermanErrorMessageBox (string sLine)
Example for custumized error handling
DEFINE s AS string

s = "Fehlernummer: " + app.lastMacroError
s = s + $newline + "Zeile: " + sLine
MESSAGE s

END SUBMACRO

SUBMACRO DumpErrToFile(string sOut)

Write Error Messages to own file

DEFINE nErr AS integer

nErr = app.lastMacroError

FWRITE sOut nErr +" "+ errorString(nErr, "...")
END SUBMACRO

SUBMACRO MyErrorHandler (string sLine)
DEFINE nErr AS integer
nErr = app.lastMacroError
Handle specific error situation:
IF (nErr= 400) THEN
MESSAGE "Error number 400: caught it!"
Return
END IF
Force standard error message as default:
ERROR nErr sLine
END SUBMACRO

SUBMACRO IML CheckErrorCode

DEFINE nErr AS integer

DEFINE sMsg AS string

ON ERROR GOTO MyErrorHandler (\

app.currentMacro.activelLine)

sMsg = "Please enter an error number: [400]"
nErr = GET integer sMsg

ERROR nErr
END SUBMACRO

SUBMACRO IML DumpErrorMessages
Dump some system and macro error messages to a file.
DEFINE i AS integer
DEFINE sOut AS string
sOut = "C:\err msgs.txt"
FNEW sOut 8 bit
ON ERROR GOTO DumpErrToFile(sOut)
FOR i=-1 TO -20 STEP -1
ERROR 1
END FOR

Language Basics 41

FWRITE sOut "---—----——---- "
FOR i=400 TO 420

ERROR i

END FOR
END SUBMACRO

Macro IML ErrorHandling Example

Trigger error without installed handler:
(If you delete the comment sign from the following line the macro will
not be executed beyond this line!)

ERROR -1 "Just kidding!"

Ignore the triggered errors

ON ERROR GOTO IgnoreErrorHandler
ERROR -1

ERROR 400 "Can you see me?"
MESSAGE "No, you can't!"

Pass a parameter to the error handler
(The parameter values will not be evaluated until the error occurs!)
ON ERROR GOTO GermanErrorMessageBox (\
app.currentMacro.activelLine)
MESSAGE 100/0

Installed message handler only affects the local file
Run IML CheckErrorCode

Error handler "GermanErrorMessageBox" is still
active here

ERROR "User triggered error"

A less trival example
Run IML DumpErrorMessages

Break macro execution on errors again...
ON ERROR GOTO StandardErrorHandler (\
app.currentMacro.activelLine)

ERROR -1 "Just kidding!"
END Macro

Error

Applies to Arbortext IsoDraw 7.0 F0O00 and later.

The ERROR command triggers an error.

Syntax

ERROR errornumber [linecode] ["messagetext"]

42 Arbortext® IsoDraw® Macro Language Reference

errornumber (integer) Any positive or negative integer.

® Negative value indicates system error.

® Positive value in the range (400-599) indicates an
application-specific error.

® Zero value indicates no error—and setting errornumber to
zero will not trigger an error.

linecode (optional; string) Any valid character string. If the errornumber

value is set to a postive integer in the range (400-599), the

errornumber value will appear before the linecode string in the

error message.

Note
Do not enclose the linecode string in quotation marks.
messagetext (optional) Error message text

Example

This example includes the /inecode string:

ERROR 400 linecode-string-here "This error is intentional."

x

"'-, Macro emor
- "ERROR 400 linecode-string-here "This emor is
intentional "

Example

This example does not include the /inecode string:

ERROR 400 "This error is intentional."

x

"'-, Macro emor
- “This emor is intertional "

Language Basics 43

Menu Commands

45

-

d |

File Menu

= RS 48
L 0= o 48
L0 0T S 49
SV et a e e e e e e ————— 50
IMPOIT LAYEIS.... .o e et e e e e e e e e e e e aa e e e e e eaeeeennnes 51
SAVE LAYEIS....ciiiiiiiiee e 51
{0 Yo SRR 51
PlACE. . e 52
PrINEEr SEIUPD ... e 53
0 PSRRI 55
ST Y= S 57
QUIL et e e e e e e — e e e e e e e ——aaaaeeennraees 58

With this group of commands you can directly access most of the features from the
Arbortext [soDraw File menu.

47

New

The NEW command creates a new document. After being created this new document
will be active.

Syntax

NEW ["template"]

template Optional parameter used to load a template file. Without the
parameter an empty file is created.

You can define a path to a template-file or you can just give a
file-name. In this case the template folder is searched for the
template file.

The NEW command returns a reference on the created document. The properties of that
document could be queried and set either through that reference or through the activeDoc
object. (See Document Object on page 175.)

Example

#creates a new and empty document
NEW

#tries to load a template file located
#in the standard template folder
NEW "myTemplate.iso"

#load a template from a server
NEW "\\server\isoTemplates\ci.iso

#load a template from a mac HD
NEW "Macintosh HD:My Files:abc.iso

FHAFHHH A AR AR A
DEFINE template AS string

template = "c:\templates\iso0815.iso"
NEW template

Open

The OPEN command opens a document as long as it is in a format that can be interpreted
by Arbortext IsoDraw. After being opened that document is active.

Syntax

OPEN ["path"]

48 Arbortext® IsoDraw® Macro Language Reference

path Optional parameter to define the path to the document that
should be loaded. You should always define relative paths. If the
parameter path is not given, the user can choose a file through
the standard open-file dialog. If there is only a path without a
file name in the path-parameter this path is the default path in the
open -file dialog.

Example

#open, without a path, opens the open-file dialog
OPEN

#open, with a path, but without a file-name opens
#the open-file dialog with the folder specified in the path
OPEN "D:\IsoDraw-Data"

#open a file on a Windows-PC
OPEN "C:\Documentation\IsoDraw\engine.iso"

#open a file on a Mac
OPEN "Macintosh HD:IsoDraw Illus:frontWheel.iso"

iddddssdsssssssdsdsssdssdddddadaaaaaaaa it

DEFINE path AS string

path = "\\server\Documentation\Illustrations\
"open path + "test.iso"

OPEN path + "example.iso"

Close

The CLOSE command closes the active document or all open documents.

Syntax
CLOSE ALL WINDOWS [CONFIRM YES | CONFIRM NO | AS CONFIRM]

ALL_WINDOWS |If this keyword is provided the CLOSE command closes all open
documents.

CONFIRM_YES | All unsaved documents will be saved before closing. If a
document was not saved before, a file-save dialog will appear
asking the user for a name and path. If the user cancels this dialog
the macro itself will terminate.

CONFIRM_NO All documents will be closed whether they were saved before
or not.

ASK CONFIRM | Default if no parameter is specified.

Before closing any unsaved document the user will be asked if he
would like to save that document. If the user cancels the dialog
the macro itself will be terminated.

File Menu 49

Example

CLOSE

CLOSE ALL WINDOWS CONFIRM NO

CLOSE CONFIRM YES

Save

The SAVE command saves the active document in the Arbortext IsoDraw or CGM format.

Syntax

SAVE ["path"] ["version"] [PACKED]

path

Optional parameter defines where, and under what name, the
document should be saved. If the parameter is not given the actual
path of the active document is taken. If the document was not
saved before the path will be requested through a dialog.

version

Optional parameter for saving the document as a version other
than the default ISO or CGM format (if CGM is set as the native
format). Possible version-strings:

default Actual Arbortext [soDraw version or
CGM-format if set as native in the preferences.
version_6 Arbortext [soDraw 6 format

version_5 Arbortext [soDraw 5 format

version 4 Arbortext [soDraw 4 format

version 3 Arbortext [soDraw 3 format

CGM CGM format

PACKED

Optional parameter to create an Arbortext [soDraw file containing
all the data from placed files. Only the data required for displaying
the placed file is saved. The link to the original file is broken. This
option should only be given for version 5 or higher.

Example

#save on a Mac

SAVE "Macintosh HD: My Files: xy.iso"

#save on a PC in CGM format
SAVE "c:\temp\illustration.cgm" "CGM"

#save on a server - "packed"
SAVE "\\server\documentation\illus\V10_ engine.iso" PACKED

50

Arbortext® IsoDraw® Macro Language Reference

Import Layers

The IMPORT LAYERS command imports the defined layers from the defined document.

Syntax

IMPORT LAYERS "path"” “layer name"

path Defines the source document’s location.
layer name Defines the name of the layer being imported.
Example

#importing 3 layers
IMPORT LAYERS "c:\work\engine.iso" \
"engine mount" \
"motor starter" "motor control unit"

Save Layers

The SAVE LAYERS command saves all defined layers from the current document as an
standard Arbortext IsoDraw file.

Syntax

SAVE LAYERS "path" "layer-name"

path Defines where and under what name the document will be saved.

layer-name Defines the layers to be saved. At least one layer name has to
be defined.

Example

#save some layers
SAVE LAYERS "c:\temp\layers.iso" "Main" "Illustration"

Export

The EXPORT command exports the current document in the given format.

Syntax

EXPORT "path” "exportformat" [percentage]

File Menu 51

path

Defines where, and under what name, the document should be
exported.

exportformat

File format for saved file. The table below lists the available
formats with their corresponding keys.

percentage

Optional parameter that defines scaling of the image in percent.
Since it is defined as float you can enter a number with decimal
digits.

exportformat Keys

exporformat Keys Description

Al Adobe Illustrator

BMP Bitmap

CALS Raster Continuous Acquisition and Lifecycle Support
CGM Computer Graphics Metafile

DWG File format of AutoCAD

DXF Drawing Interchange Format

EPSF Encapsulated PostScript File

HPGL Hewlett Packard Graphics Language
IGES Initial Graphics Exchange Standard
Interleaf Publishing system

JPEG Raster format

MIF Maker Interchange Format

Objects_Text

All object informations as text file

PICX

Raster format

PICT PICTure format from Apple Macintosh
PNG Portable Network Graphic

SVG Scalable Vector Graphics

SVGZ Compressed SVG

Text-Excerpt

Arbortext IsoDraw's own formats

TIFF

Tagged Image File Format

WMF

Windows Meta File

Example

#export as CGM in the original size
EXPORT "a:\plan.cgm" "CGM"

#export as TIFF scaled down 66%
EXPORT "c:\picts\results.tif" "TIFF" 66

#export as JPEG scaled down 33.33%
EXPORT "Macintosh HD:My Files:results.jpg" 33.33

Place

The PLACE command places a document on the current ilustration.

32 Arbortext® IsoDraw® Macro Language Reference

Syntax
PLACE "path" [xI yI x2 y2]

path Defines the placed file’s path. You should always define relative
paths. If the parameter path is not given, the user can choose a file
through the standard open-file dialog.

x1 yl x2 y2 (optional) Defines the size and location of the target rectangle
for the placed file using the coordinates of the rectangle’s lower
left corner and upper right corner. (x/ y/) specifies the lower left
corner; (x2 y2) specifies the upper right corner.

Note

For 3D files, the target rectangle is not relevant and will be
ignored.

Example

#no parameters
PLACE

#just the filename
PLACE "c:\screw.iso"

#the filename and the coordinates of the placement
PLACE "C:\screw.iso" 120 150 180 210

Printer Setup

Applies to Arbortext IsoDraw 7.0 F0O00 and later.
The PRINTER SETUP command changes print settings in Arbortext IsoDraw.

If you include parameters in the command line, PRINTER SETUP changes the print
settings corresponding to those parameters. If you do not include parameters in the
command line, PRINTER SETUP opens the Print Setup dialog box so the user can
change print settings manually.

If you run PRINTER SETUP with one or more documents open, print setting changes
apply to the current document only. If you run PRINTER SETUP with no documents
open, any print setting changes become the default settings in the Print Setup dialog box.

Syntax

PRINTER SETUP [OVERLAP x y] [scaling] [ORIENTATION {PORTRAIT |
LANDSCAPE}] [PAPER SIZE width height]

No parameters Displays the Print Setup dialog box.

OVERLAP x y (optional) Specifies the horizontal (x) and vertical () overlap
in millmeters. (Overlap enables printed pages to be stitched
together.) If OVERLAP values are omitted, the printer’s default
settings are used.

File Menu 53

scaling

(optional) Specifies a scale factor in percent. Any value less than
100 will scale the print down from its original size. Any value
higher than 100 will enlarge the printout.

ORIENTATION

(optional) Sets the printed output orientation to PORTRAIT or
LANDSCAPE.

Note

Currently, the ORIENTATION parameter is ignored when a
macro executes PRINTER SETUP. However, the macro recorder
will record the ORTENTATION parameter setting.

PORTRAIT | Specifies portrait orientation.
LANDSCAPE | Specifies landscape orientation.

PAPER_SIZE

(optional) Specifies the size of the paper in millimeters. If the
width value is greater than the height value, the orientation is
landscape by default. The PAPER SIZE specified must match
one of the available paper sizes. If it does not, the command will
not change the paper size.

Note

Currently, the PAPER SIZE parameter is ignored when a macro
executes PRINTER SETUP. However, the macro recorder still
records PA PER SIZE settings.

width The paper width.
height The paper height.

Example

PRINTER SETUP

54

Arbortext® IsoDraw® Macro Language Reference

— Printer

Hame: I HF Calor Lazerlet 4500 j Fropertiez |

Statuz: Ready
Type: HF Calar Lazerlet 4500

Wwihere: LPT1:
Comment;
—Paper — Orientation
Size: I Letter j £ Portrait
Source: I.-’-'-.|.4I:|:umal:i|:-ﬂllj,I Select j " Landscape
— Print orverlap — Scaling
Hornizontal: IE mm Wertical: IE mm Scale; 100 %

Metwaork... |]9 I Cancel |

PRINTER SETUP OVERLAP 0 0

PRINTER SETUP SCALING 75

PRINTER SETUP ORIENTATION LANDSCAPE

PRINTER SETUP ORIENTATION PORTRAIT SCALING 110
PRINTER SETUP SCALING 250 OVERLAP 10 20

Set 'Letter' Format:
PRINTER SETUP PAPER_SIZE 215.90 279.399

Print

Applies to Arbortext IsoDraw 7.0 F0O00 and later.

Prints the current document. If there are no parameters defined, the Print dialog will open.

Note

Currently, PRINT parameter settings are ignored when a macro executes. However, the
macro recorder still records PRINT parameter settings.

Syntax

PRINT [pageselect] [COPIES ¢[SORTED]] [OVERLAP x y] [TO_FILE ["path"]]

File Menu 55

No parameters

Displays the Print dialog box.

pageselect (optional) Prints the document pages specified by one of the
pageselect keyword phrases below:
ALL_PAGES | Prints all pages in the document.
FIT _TO_ON- |Reduces the illustration so it fits on a single page
E _PAGE when printed.
PAGE n Prints one page; page number 7.
PAGES Prints a range of pages or multiple pages in the
FROM rnl TO |document.
n2
PAGES ni Prints multiple pages. The page numbers, ni, do
not have to be sequential.
COPIES ¢ (optional) Prints the specified number of document copies, c.
SORTED (optional) Prints document copies in page
number order.
OVERLAP x y (optional) Specifies the horizontal (x) and vertical (y) overlap
in millmeters. (Overlap enables printed pages to be stitched
together.) If OVERLAP values are omitted, the printer’s default
settings are used.
TO_FILE (optional) Prints the document to a file instead of a printer.
path (optional) The location and filename of the
file to be printed to. If no path is specified, a
Save As... dialog box appears when PRINT
TO FILE executes.
Example
PRINT

Prirter: HP Color Laserlet 4500 on LFT1:

— Print R ange

Cancel

\—Ilﬁ

" Pages Erarm: I 1 TIm I E
" Print pages: Select... |
™ Frint to File LCopies: I 13:
¥ | Collate Copies
Print overlap
|Vﬂ|:|ri2|:|ntal: I 5 mm Wertical: I 5 mm

56

Arbortext® IsoDraw® Macro Language Reference

PRINT ALL PAGES
PRINT PAGE 1

PRINT PAGES FROM 3 TO 4

PRINT PAGES 2 4 6

PRINT ALL PAGES COPIES 3

PRINT PAGES FROM 1 TO 3 COPIES 10 SORTED
PRINT ALL PAGES OVERLAP 5 5

PRINT TO FILE "C:tmp\output™

Save

Saves the current document in Arbortext IsoDraw file format or CGM format (if CGM is
set as the native format).

Syntax

SAVE ["path"] ["version" [PACKED]]

No parameters

Displays the Save As dialog box.

path

(optional) The location and filename of the file to be saved. If no
path is specified, a Save As... dialog box appears when SAVE
executes.

version (optional; string) Any one of the file format specifiers below:
Default Current Arbortext IsoDraw version (or CGM if
CGM is set as the native format)
Version_71 Arbortext [soDraw 7.1 format
Version 7 Arbortext [soDraw 7 format
Version_6 Arbortext IsoDraw 6 format
Version 5 Arbortext [soDraw 5 format
Version 4 Arbortext IsoDraw 4 format
Version_3 Arbortext IsoDraw 3 format
CGM CGM format
PACKED (optional) Packs all information into one file. External files placed
in the document are included in the packed file.
Note
This keyword has been supported since Arbortext IsoDraw 5.0.
However, if you are running Arbortext IsoDraw 7.0 or later you
can only save Arbortext IsoDraw 7.0 or later files in packed
format.
Example

SAVE "C:\sarah\cluch.cgm" "CGM"
SAVE "C:\sarah\cluch4.iso" "Version 4"
SAVE "C:\sarah\cluchbp.iso" "Version 5" packed

SAVE

File Menu

57

Save as

Savein: I |7 |scDraw

| = ® ck E-

[E=lfznimation 1iso;
animation1_prep.iso
animation2.iso

Documents animation2_prep.iso

[@- bolt_example_B.iso

bolt_start.iso
callout.iso
drag_1l.iso

‘ drag_2. Liso
drag_2.is0

R example 1.iso

- extrusion.iso
ZI flange.iso

Desltop

My Computer

hotspot.iso
My Metwork File name:
Flaces
Save as type:

hatching_example.iso

macra L.iso
macro2.iso
phantom.iso
pipe.iso
placel.iso
place.iso
projektionA_E.iso
rotationssym.iso
SCrew.iso
shaft.iso
template.iso
test.iso
testanim.iso
transform.iso

IIsanw Files ("iso)

KINEN

Save I

Quit

The QUIT command quits the application.

Syntax

QUIT [CONFIRM YES | CONFIRM NO | ASK CONFIRM]

CONFIRM_YES

All unsaved documents will be saved before closing. If a
document was not saved before, a file-save dialog will appear
asking the user for a name and path. If the user cancels this dialog
the macro itself will terminate.

CONFIRM_NO
or not.

All documents will be closed whether they were saved before

ASK_CONFIRM

Default if no parameter specified.

Before closing any unsaved document the user will be asked if he
would like to have that document saved. If the user cancels this
dialog the macro itself will be terminated.

Example

#quit
QUIT CONFIRM YES

58

Arbortext® IsoDraw® Macro Language Reference

Edit Menu

L0 U R 60
1670] o) PP PPPPPR PP 60
[0 o] T (= TR 60
Delete SEIECHONeeeeeeeeeee et 60
= 1) (YRR 61
ST [T 0 | R 61
ST =Tor 1\ (o] o T YR 61
SEIECE ODJECT ... 62
Select If / SUDSEIECE I ... 62
MOV ..ottt e e e e e e e e e e et e e e e aaeeeenaaes 64
ALIGIN e e e e e e e e e e e e aae 65
(1] (101U = R 65
(o) (=T (=Y g Lo Y TR 66

With this group of commands you can directly access most of the features from the
Arbortext [soDraw Edit menu. The commands UNDO and REDO will not be recorded
through the Arbortext IsoDraw macro recorder.

See Selecting Elements on page 96 for additional commands to select elements.

59

Cut

With the CUT command you can remove selected elements. The elements are deleted and
saved in the program’s clipboard, replacing the former contents of the clipboard. The cut
elements can be retrieved from the clipboard at any time through the command paste.

Syntax

CUT

Copy

With the COPY command you can copy selected elements into the program’s clipboard,
replacing the former contents of the clipboard. You can retrieve the copied elements from
the clipboard at any time through the command paste.

Syntax

COPY

Duplicate

With the DUPLICATE command you can paste a copy of the selected elements into the
document. To a certain degree the command is a combination of the commands COPY
and PASTE SAME POSITION. However the selected elements are not saved into the
clipboard. This has the advantage that the old contents of the clipboard are retained.
Syntax

DUPLICATE

Syntax
DUPLICATE

Delete Selection

The DELETE SELECTION command deletes the current selection.

Syntax

DELETE SELECTION

60 Arbortext® IsoDraw® Macro Language Reference

Paste

The PASTE command pastes the contents of the clipboard into the middle of the screen
window. Even after you have activated another Arbortext [soDraw file, the elements are
still pasted into the middle of the screen.

Syntax
PASTE [SAME POSITION] [MAINTAIN ATTRIBUTES]

SAME_POSITION | Optional parameter defines that the elements are inserted at the
same position from where they were cut or copied. This applies
even if you have changed the screen position. Even if you have
activated another Arbortext IsoDraw file, the elements are still
pasted at the precise position where they where cut or copied from
the original document.

MAINTAIN_AT- | Optional parameter defines that the standard attributes of the
TRIBUTES elements (pens, styles, shadows, colors) in the original document
will be retained when pasting.

Example

#paste the clipboard content and retain
#the standard attributes of the elements
PASTE MAINTAIN ATTRIBUTES

Select All

The SELECT ALL command activates all the elements and groups in the current
document. Elements located on locked layers are not activated.

Syntax

SELECT ALL

Select None

The SELECT NONE command deactivates the selection in the current document.

Syntax

SELECT NONE

Edit Menu 61

Select Object

Applies to Arbortext IsoDraw 7.0 FO00 and later:
Selects objects by object ID.

Note

This command will NOT trigger any error or warning in the specified object(s) do not exist.

Syntax

SELECT OBJECT object idl [object id2... | object idn]] [TOGGLE]

object_idl (string) Specifies the object ID of the object to select. (You
must specify at least one object ID.)

object id2 ... (optional; string) Specifies additional object IDs of objects to

object_idn select. Separate object IDs with a space character.

TOGGLE Switches the specified object(s) current selection state from
selected to not selected, or vice-versa.

Example

SELECT OBJECT "AUTOID 44400"
SELECT OBJECT "SCREW L" "SCREW R" "SCREW C"
SELECT OBJECT sObj toggle

Select If /| SubSelect If

The SELECT IF command lets you select elements according to specific criteria. This is
particularly useful if you want to edit several elements with the same attributes.

The SUBSELECT IF command, like the SELECT IF command, lets you select
elements according to specific criteria. The difference between the two commands is that
SUBSELECT IF selects the specified elements from an already existing selection.

Syntax

{SELECT IF | SUBSELECT IF} operand I comparison_ operator

comparison_opera- | EXISTS or EXISTS NOT.
tor

operand 1 The parameter can be assigned with these values:

OBJECT_INFO
OBJECT NAME
OBJECT _TIP
OBJECT ATTRIBUTE

62 Arbortext® IsoDraw® Macro Language Reference

{SELECT IF | SUBSELECT IF} operand I comparison_operator “operand 2"

comparison_opera-
tor

IS or IS NOT or IS EQUAL TO or IS NOT EQUAL TO

operand_1,
operand_2

following table:

operand_2 depends on the value of operand 1 according to the

operand_1

operand_2

TYPE

"line"
"rectangle"
"polygon"
"marker"
"ellipse"
"inner_thread"
"outer thread"
"bezier"

"text"
"placed_file"
"image"

"callout"

PEN

all standard pen names
"$ISO_NOPEN"

LINESTYLE

all standard linestyle names

SHADOW

all standard shadow names
"$1SO NOSHADOW"

COLOR

all standard color names
"$ISO _NOFILL"
"$1SO_WHITE"

"$1SO BLACK"

HATCHING

any "string"

PATTERN

any "string"

{SELECT IF | SUBSELECT IF} operand I comparison_operator “operand 2"

comparison_opera-
tor

IS or IS EQUAL TO or IS NOT or IS NOT EQUAL TO

operand_1, operand 2 depends on the value of operand 1 according to the
operand_2 following table:
operand_1 operand_2
OBJECT ID any "string"
OBJECT NAME any "string"
OBJECT TIP any "string"
Edit Menu 63

OBJECT ATTRIBUTE any "string"
TEXT any "string"
TEXT POSITION any float
TEXT ALIGNMENT "CENTERED"
"LEFT"
"RIGHT"
"MEDIUM"
"MIDDLE"
"TOP"
"BOTTOM"
"BASE LINE"
FONT any "string" e.g.: "arial"
FONT SIZE any float
FONT_FACE "NORMAL"
"BOLD"
"ITALIC"
"BOLDITALIC"
LEADING any float OR
"SAUTOMATIC"
KERNING any float
CALLOUT any "string"

{SELECT IF | SUBSELECT IF} operand I comparison_operator “operand 2~

comparison_opera- |IS or IS NOT or IS EQUAL TO or IS NOT EQUAL TO or
tor CONTAINS

operand 1 Any string
operand_2 Any string
Example

SELECT IF object_info EXISTS_NOT
#both lines are identical

SUBSELECT IF type IS EQUAL TO "line"
SUBSELECT IF type IS "line"

SELECT IF OBJECT ATTRIBUTE "positioning" CONTAINS "left"

Move

The MOVE command moves the current selection. Without any parameter given the
Move dialog is opened.

64 Arbortext® IsoDraw® Macro Language Reference

Syntax

MOVE
MOVE SELECTIONxy NO_ ELEMENTS NO PATTERNS

MOVE COPY xy CONNECT NO_ ELEMENTS NO_ PATTERNS

SELECTION Move the active selection.

COPY Copy the selection.

X, Y Define the direction of the movement.
CONNECT Copy with connecting lines.
NO_ELEMENTS | Move patterns with reference to elements.
NO_PATTERNS Move only the elements

Example

#just moving the selection
MOVE SELECTION 123.22 (-11.98) NO PATTERNS

#moving and copying
MOVE COPY 77.99 22 CONNECT

Align

The ALIGN command aligns selected 2D elements in a specified direction.

Syntax

ALIGN direction

direction May be one of: LEFT, MEDIUM, RIGHT, TOP, MIDDLE or
BOTTOM

Distribute

The DISTRIBUTE command equally distributes selected 2D elements in a specified
direction.

Syntax

DISTRIBUTE direction

direction May be one of: LEFT, MEDIUM, RIGHT, TOP, MIDDLE or
BOTTOM

Example

SELECT IF Type IS EQUAL TO "text"
DISTRIBUTE LEFT

Edit Menu

Preferences

The preferences can be accessed through the application object. (See Application Object
- User Interface Preferences on page 223 and Application Object - Data Exchange

Preferences on page 249.)

66 Arbortext® IsoDraw® Macro Language Reference

‘1]" 5

Element Menu

N = 1 o [RSP 68
Convert Selection into EIemMentscooiiiieiii i 68
Convert Selection into Bezier Parts.............oouvvvueeeeiiiieeeeeeeeeeee e 68
Convert Selection into POIYIINESc.uuiiiiiii e 69
JOIN POIYIINES. ... e a e 69
B Lo] [T =T =Y = 69
(T g LT = (Y o] o1 (o U] SR 69
Create Compound Path.............oooiiii e 70
LT 0T o 1SS 70
Y =] [A SOOI 71
REIEASE MASK.......ccoiieeeeeicee e e e e e e eeaeae 71
o o7 G 72
(0] o1 (o] R 72
Transformation 3Doooeiiiiee e 72
Set Image TranSPArENCYoueiiiiiiiiiiiiei e 72
IMPOIt SEIECHON. ... e e e e e e e e e 73

With this group of you can directly access most of the features from the Arbortext
IsoDraw Element menu. See Edit Menu on page 59 and Selecting Elements on page 96
for commands to select elements.

67

Arrange

With the ARRANGE command you can reorder elements, bringing them above or below
others.

Syntax

ARRANGE direction

direction Defines direction that selected elements will be re-arranged.
Allowed values are:

top Element will be above all others.

below Element will be below all others.

up Order of arrangement will be adjusted by one
position towards the top.

down Order of arrangement will be adjusted by one
position towards the bottom.

Example

ARRANGE top

Convert Selection into Elements

With the CONVERT SELECTON INTO ELEMENTS command you can convert selected
elements into simpler types of elements based on the table below:

Elements Converts Into

Polyline Lines

Rectangle Lines

Inner Thread Ellipses (segments)

External Thread Lines and Ellipses (segments)

Polygon Lines

Dimension Already a group of basic elements

Callout Polylines, Text and Rectangle or Polyline and Ellipses
Syntax

CONVERT SELECTON INTO ELEMENTS

Convert Selection into Bezier Parts

With the CONVERT SELECTION INTO BEZIER PARTS command you can convert
selected elements into Beziers.

68 Arbortext® IsoDraw® Macro Language Reference

Syntax
CONVERT SELECTION INTO BEZIER PARTS

Convert Selection into Polylines

With the convert selection into Polylines command you can convert selected elements
into Polylines.

Syntax

CONVERT SELECTON INTO POLYLINES[NO HANDLES]

NO_HANDLES Optional parameter defines that elements with handles, such as
Beziers will not be converted.

Join Polylines

With the JOIN POLYLINES command you can join selected lines and polylines into a
single polyline.

Syntax

JOIN POLYLINES

Join Beziers

With the JOIN BEZIERS command you can join selected elements into a single Bezier.

Syntax

JOIN BEZIERS[CONVERT]

CONVERT Optional parameter defines that all elements will be converted
into Beziers and joined. Without this option only Beziers will
be joined.

Generate Contour

With the GENERATE CONTOUR command you can create a continous, closed contour
from the selected elements.

Syntax

GENERATE CONTOUR

Element Menu 69

Create Compound Path

With the CREATE COMPOUND path command you can create a connected, compound
path from the selected elements.

Syntax
CREATE COMPOUND

Groups

Group Selection

With the GROUP SELECTION command you can create a group from all selected
elements.

Syntax

GROUP SELECTION

Example

GROUP SELECTION
MACRO all lines in one group
SELECT IF type IS "line"

GROUP SELECTION
END MACRO

Ungroup Selection
The UNGROUP SELECTION command lets you ungroup the group you have selected.

Syntax

UNGROUP SELECTION[DEEP]

DEEP Optional parameter defines that the command should ungroup all
nested groups in the selection. This is similar to using the shift
key when ungrouping manually.

Start Group

The START GROUP command starts a group. After executing this command every new
element created through a macro command will be added to that group unless the group is
closed through an end group command or a new group is opened with start group.

70 Arbortext® IsoDraw® Macro Language Reference

Syntax
START GROUP

End Group

The END GROUP command closes the last grouping level that was started with start group.

Syntax

END GROUP

Example

MACRO nested groups
START GROUP
START GROUP
CREATE ELLIPSE 254.557 195.959 30 240 35.264
CREATE ELLIPSE 197.99 195.959 30 300 35.264
CREATE ELLIPSE 226.274 244.949 30 180 35.264
END GROUP
CREATE RECTANGLE 226.274 146.968 282.843 179.628 282.843\
244.949 226.274 212.288
CREATE RECTANGLE 282.843 244.949 226.274 277.608 169.705\
244 .949 226.274 212.288
CREATE RECTANGLE 169.705 244.949 169.705 179.628 226.274\
146.968 226.274 212.288
END GROUP
END MACRO

Mask At

With the mask at command you can mask the selected element with the element at the
location specified.

Syntax

MASK AT xy

X, ¥ Location of the element which will be used to mask the selected
element.

Example

MASK AT 120 340

Release Mask
With the RELEASE MASK command you can remove the selected mask.

Element Menu 71

Syntax
RELEASE MASK

Lock

With the LOCK command you can lock selected elements.

Syntax
LOCK

Unlock

With the UNLOCK command you can unlock all elements.

Syntax
UNLOCK

Transformation 3D

With the TRANSFORMATION 3D command you can switch to the 3D transformation
mode. A placed 3D element needs to be selected.

Syntax

TRANSFORMATION 3D

Set Image Transparency

With the SET IMAGE TRANSPARENCY command you can toggle the transparency
setting for raster images.

Syntax

SET IMAGE TRANSPARENCY switch

‘ switch | Allows you to change the setting. Allowed values are ON and OFF. ‘
Example

SET IMAGE TRANSPARENCY ON

72 Arbortext® IsoDraw® Macro Language Reference

Import Selection

With the IMPORT SELECTON command you can import a selected, placed element.
This will break the link to the placed file.

Syntax
IMPORT SELECTON

Element Menu

73

B 6

Objects Menu

Create ODbJECE INFO........uuuiiiiiiiiiiiiieeeee e 76
Delete ODJECT_INTOiiiiiiie s 76
Create Object attributeuuvviiiiiiiiiiiiiieeee e, 77
Delete Object_attribute............oooiiii e 78
Create HOLSPOLS.uiiiiiiiiiiiiiitte et e e e e 78
SNOW IN ISOVIBW ...ttt e s e e e s e s e e s e ennnnnes 78
Delete Uncompliant AttribUteSovvveeciii e 79

With this group of commands you can directly access most of the features from the
Arbortext IsoDraw Objects menu.

75

Create Object_info

The CREATE OBJECT _INFO command creates an object info for an element.

Syntax

CREATE OBJECT INFO element

element Element that should get an object info. For further information
seeDocument Object on page 175 and Element Object on page
193.

Example

DEFINE el AS element
el = activeDoc.firstSelectedElement
CREATE OBJECT_INFO el

Delete Object_info

The DELETE OBJECT INFO command removes object info from all selected elements

and groups.

Syntax

DELETE OBJECT INFO[DEEP] [NO ANIMATED]

DEEP

(optional) Additionally removes object info from all elements
and nested groups in the selected groups. Using DELETE
OBJECT INFO DEEP corresponds to choosing Objects > Delete
object info while holding the SHIFT key down.

NO_ANIMATED

(optional) Prevents animations attached to objects and/or groups
from being deleted when you delete their object info. This
command corresponds to choosing Objects » Delete object info
with animated objects and/or groups selected—then clicking No
when the dialog box below asks you to verify that you want to
delete animations along with the object info:

76

Arbortext® IsoDraw® Macro Language Reference

x

y Deleting the object info will delete the attached

9
\-‘) animations as well.

Do you want to delete the object info amyway?

[Use zame answer for all objects,

Mo | ez

Create Object_attribute

CREATE OBJECT ATTRIBUTE creates a new attribute for the object info of a given

element.

Syntax

CREATE OBJECT ATTRIBUTE “name” “type” element

name Name of the new attribute as string.

type Type of the new attribute. Possible data types are INTEGER,
FLOAT, STRING and LINK where the LINK is just a special
string.

element Element which should get a new attribute to its object info. The
element must already have an object info (see Create Object info
on page 76).

Example

MACRO Create Object Info

DEFINE el AS element
el = CREATE ELLIPS 100 100 100 90 90
CREATE OBJECT IONFO el

CREATE OBJECT ATTRIBUTE "Title" "string" el
el.info.attributes["Title"].value = "IsoDraw"

CREATE OBJECT_ATTRIBUTE "Stock" "integer" el
el.info.attributes["Stock"].value = 10

CREATE OBJECT ATTRIBUTE "URL" "link" el
el.info.attributes["URL"].value = "http://www.itedo.com"

END MACRO

Objects Menu

77

Delete Object_attribute

The DELETE OBJECT ATTRIBUTE command removes an object attribute.

Syntax

DELETE OBJECT ATTRIBUTE “name’ element

name Defines the name of the attribute that has to be removed.
element Defines the element.

Example

DELETE OBJECT ATTRIBUTE "Stock" el

Create Hotspots

The CREATE HOTSPOTS command generates hotspots for selected text elements.

Syntax

CREATE HOTSPOTS element n NUMBERS ONLY CONVERT SPACES

n defines the number of characters from the text element that will be
assigned as the Object Name.

numbers_only Optional parameter defines that only elements comprised entirely
of numbers will have hotspots generated.

CON- Optional parameter defines that any spaces in the object name

VERT_SPACES will be converted into an underscore () when used as the Object
Name.

This function returns an integer value. This value represents the number of hotspots
created.

Example

CREATE HOTSPOTS 64 CONVERT SPACES

Show in IsoView

Applies to Arbortext IsoDraw 7.0 FO00 and later.

Shows the current document in Arbortext IsoView. If there is no browser window open
yet, the command opens a Microsoft Internet Explorer browser window first. Optional
save confirmation parameters determine how to deal with documents which have not
been saved yet.

78 Arbortext® IsoDraw® Macro Language Reference

Syntax

SHOW IN ISOVIEW [CONFIRM YES | CONFIRM NO | ASK CONFIRM]

No parameter

Arbortext [soDraw will try to save the document if it has not been
saved yet (same behavior as ASK CONFIRM below).

CONFIRM_YES

Any document which has not been saved yet will be saved before
being viewed in Arbortext IsoView. If there is no name for the
document available yet, the Save As dialog box appears. If this
dialog box is cancelled, the macro will abort.

CONFIRM_NO

If the document has not been saved yet, this command is aborted.
In any other case the command will continue and display the
document in Arbortext IsoView.

ASK_CONFIRM

Arbortext [soDraw will try to save the document if it has not been
saved yet.

Example

This command prevents the document from being shown
in Arbortext IsoView if the document has not been saved yet:
SHOW IN ISOVIEW CONFIRM NO

Delete Uncompliant Attributes

Applies to Arbortext IsoDraw 7.0 F000 and later.

Deletes attributes from selected objects that do not comply with the currently selected

DTD.

Syntax

DELETE UNCOMPLIANT ATTRIBUTES

Returns the number of objects affected/changed.

Example

MACRO Delete All Non DTD Attributes
DEFINE count AS integer

SELECT ALL

count = DELETE UNCOMPLIANT ATTRIBUTES
MESSAGE "Changed " + count + " object(s)"

END MACRO

Objects Menu

79

Text Menu

With this group of commands you can directly access most of the features from the
Arbortext [soDraw Text menu.

81

Text

The TEXT command activates one text property and assigns it to all selected text
elements. All text elements created after the execution of this command will also have

these properties.

Syntax

TEXT attribute value

attribute value

FONT Any installed font name as a quoted string.

SIZE Any float number as a point value.

FACE One of: NORMAL, BOLD, ITALIC, BOLDITALIC.
ALIGN One of:

As a global alignment: CENTERED

As a horizontal alignment: LEFT, MEDIUM, RIGHT

As a vertical alignment: TOP, MIDDLE,
BOTTOM, BASE LINE

LEADING Any float number as a point value.
KERNING Any float number.

POSITION Any float number as a point value.
Example

TEXT FONT "arial"
TEXT SIZE 12.8
TEXT FACE BOLD
TEXT ALIGN RIGHT
TEXT LEADING 3.7
TEXT KERNING 7
TEXT POSITION 12.7

Convert Text to Paths

The CONVERT TEXT TO PATHS command will convert selected text elements in to
filled Bézier paths.

Syntax

CONVERT TEXT TO PATHS

82 Arbortext® IsoDraw® Macro Language Reference

Window Menu

ACtiVate WINAOWooeeii e e 84
[[0 [84
] 0o 1R 85
4o Yo] 1 KOS 87

With this group of commands you can directly access most of the features from the
Arbortext [soDraw Windows menu.

83

Activate Window

The ACTIVATE WINDOW command activates an already opened document.

Syntax

ACTIVATE WINDOW "file"”

file Name of a document window that should be activated. The
document has to be open.

Example

#activate a already opened document
ACTIVATE WINDOW "abc.iso"

Hide
The HIDE command closes an Arbortext IsoDraw window. (If the window is already
hidden, this command has no effect.)

Note

The Arbortext IsoDraw macro recorder does not record the HIDE and SHOW commands.

Syntax

HIDE {PALETTE | window}

PALETTE Hides the palette window (toolbox).
window Hides the specified window:

ATTRIBUT- |Hides the attribute window. Adding one
E_WINDOW |the following optional parameters after
ATTRIBUTE WINDOW shows the main
attribute window with the specified attribute
window hidden:

PENS- Hides the Pens attribute window.
_WIN-
DOW
STYLE- |Hides the Styles attribute window.
S_WIN-
DOW
SHAD- |Hides the Shadows attribute
OWS_W- | window.

INDOW

84 Arbortext® IsoDraw® Macro Language Reference

GRID- Hides the Grids attribute window.
S WIN-
DOW

FORMA- |Hides the Formats attribute
TS_WIN- | window.
DOW

VIEW- Hides the Viewports attribute
PORT- window.

S_WIN-
DOW

CALL- Hides the Callouts attribute
OUT_S- |window.

TYLE-
S WIN-
DOW

LAYER_WI-
NDOW

Hides the Layers window.

FILL_WIN-
DOW

Hides the Fills window.

OB-
JECT_WIN-
DOW

Hides the Objects window.

LIBRARY _
WINDOW

Hides the Library window.

BROWSER _
WINDOW

Hides the Browser Window.

ALL

Hides all windows listed on the Windows menu.

Example

HIDE PALETTE
HIDE ATTRIBUTE WINDOW
HIDE LAYER WINDOW

Show

The SHOW command opens an Arbortext I[soDraw window. (If the window is already

showing, this command has no effect.)

Note

The Arbortext IsoDraw macro recorder does not record the SHOW and HIDE commands.

Syntax

SHOW {PALETTE | window}

Window Menu

PALETTE

Shows the palette window (toolbox).

window

Shows the specified window.

ATTRIBUT- |Shows the attribute window. Adding one
E_WINDOW |the following optional parameters after
ATTRIBUTE WINDOW shows the specified
attribute window in the main attribute window.
PENS- Shows the Pens attribute window.
_WIN-
DOW
STYLE- |Shows the Styles attribute
S _WIN- |window.
DOW
SHAD- Shows the Shadows attribute
OWS_W- | window.
INDOW
GRID- Shows the Grids attribute window.
S WIN-
DOW
FORMA- | Shows the Formats attribute
TS_WIN- | window.
DOW
VIEW- Shows the Viewports attribute
PORT- |window.
S WIN-
DOW
CALL- |Shows the Callouts attribute
OUT_S- |window.
TYLE-
S_WIN-
DOW
LAYER_WI- |Shows the Layers window.
NDOW
FILL_WIN- |Shows the Fills window.
DOW
OB- Shows the Objects window.
JECT_WIN-
DOW
LIBRARY_ |Shows the Library window.
WINDOW
BROWSER | Shows the Browser Window.
WINDOW
ALL Shows all windows listed on the Windows

menu.

86

Arbortext® IsoDraw® Macro Language Reference

Example

SHOW PALETTE

SHOW ATTRIBUTE WINDOW
SHOW ATTRIBUTE WINDOW VIEWPORTS WINDOW

SHOW LAYER WINDOW
SHOW ALL

Zoom

The ZOOM command sets the view size of the active Arbortext IsoDraw document.

Syntax

Z0O0M size

size

View size for the active document as string or float. Possible
values are PAGE, EXTENT or any integer from 0.01 to 6400 to
specify a scale %.

Window Menu

87

Window Commands

o
E 9

Layer Window

o Lo = Y=Y RSP 92
LG | = =T PP PPPPR PP 92
(0707 o)V =)= PR 93
Paste LAYET ..o 93
(D10 o] [To= 10T I)= SRR 93
DIt LAYE ... 93
ACHVALE LAYET ... 93
Delete Al EMPLY LAYErSoeiiiiiiiieeee et 94
Selected Elements to Active Layer..........ccooiiiiiiiiiiiiie e 94
Selected Text 10 ACLIVE LaYeruveveiiiiiiiiiiiiii e, 94

With this group of commands you can directly access most of the features from the
Arbortext IsoDraw Layer menu.

91

Add Layer

The ADD LAYER command creates a new layer in the active document. This layer
automatically becomes the active layer, i.e. all elements which you now generate will be
assigned to this layer. The command will also return a reference on the layer it has just
created (see Layer Object on page 217).

Syntax

ADD LAYER "name"rghb

name Name of the layer.

r,gb Identifying color of the layer as RGB. All three color-numbers

have to defined separated by a blank to execute the macro
command correctly.

Example

#no color given
DEFINE lyr AS layer
lyr = ADD LAYER "myNewLayer"

#a new layer with an identification color
ADD LAYER "anotherLayer" 188 0 29

#a more complex example
MACRO AddLayers
DEFINE i AS integer
DEFINE k AS integer
FOR 1 = 1 TO 8
k = 32*(i-1)
ADD LAYER "Layer "+i 255-k k 0
END FOR
END MACRO

Cut Layer

The CUT LAYER command cuts the current layer and all its elements from the currently
active document and saves them in the program’s clipboard. The cut layer can be retrieved
from the clipboard at any time through the command paste layer.

Syntax

CUT LAYER

92 Arbortext® IsoDraw® Macro Language Reference

Copy Layer

With the COPY LAYER command you can copy the active layer into the program’s
clipboard. The copied layer replaces the former content of the clipboard. The copied layer
can be retrieved from the clipboard at any time through the command paste layer.

Syntax

COPY LAYER

Paste Layer

The PASTE LAYER command pastes the content of the clipboard (provided that the
content of the clipboard is a layer) into the currently active document. Even if you have
activated another Arbortext IsoDraw file.

Syntax

PASTE LAYER

Duplicate Layer

With the DUPLICATE LAYER command you can paste a copy of the selected layer into
the document. To a certain degree the command is a combination of the commands COPY
LAYER and PASTE LAYER. However the selected layer is not saved to the clipboard.
This has the advantage that the old content of the clipboard is retained.

Syntax

DUPLICATE LAYER

Delete Layer

The DELETE LAYER command deletes the currently active layer.

Syntax

DELETE LAYER

Activate Layer

The ACTIVATE LAYER command will activate an inactive layer. All elements which
you now create will be assigned to the newly activated layer.

Layer Window 93

Syntax

ACTIVATE LAYER "name"

| name | Name of the layer you wish to activate. The name is case-sensitive.

Example

ACTIVATE LAYER "Standard layer"

Delete All Empty Layers

With the DELETE ALL EMPTY LAYERS command you can automatically delete all
layers that contain no elements.

Syntax
DELETE ALL EMPTY LAYERS

Selected Elements to Active Layer

The SELECTED ELEMENTS TO ACTIVE LAYER command will move all selected
elements to the active layer.

Syntax

SELECTED ELEMENTS TO ACTIVE LAYER

Selected Text to Active Layer

The SELECTED TEXT TO ACTIVE LAYER command will move all selected text
elements to the active layer.

Syntax

SELECTED TEXT TO ACTIVE LAYER

94 Arbortext® IsoDraw® Macro Language Reference

Zall

Palette Window Toolbox

SeleCting EIEMENTES........uuuiiiiiiiiieeeee e ——— 96
Transform SeIECHON ... 98
Transforming the HUSTrationccccviiiiiiiiiiiieee e, 100
Creating ElementS 101
SELEIPSEVAIUESuvvuiiiiiiiiiiieeeeeeeeeeee ettt 107

With this group of commands you can directly access most of the features from the
Arbortext [soDraw Palette window toolbox.

95

Selecting Elements

These commands allow you to select elements with the Arbortext IsoDraw Macro
Language: See Edit Menu on page 59 or Arrange on page 68 for additional commands for
selecting elements.

Select Rectangle
The SELECT RECTANGLE command selects all elements within the given rectangle.

Syntax

SELECT RECTANGLE x/ yl x2y2 [WITH PARTIAL] [DIRECT] [ADD]
x1, yl Start point of the diagonal of the rectangle.

x2, y2 End point of the diagonal of the rectangle.

WITH_PARTIAL |Optional parameter defines that elements partially within the
rectangle will also be selected. If this parameter is not given only
elements completely inside rectangle will be selected.

DIRECT Optional parameter defines that elements within a group will
be selected even if the entire group is not within the selection
rectangle.

ADD Optional parameter add defines that this new selection will be

added to an existing selection, rather than replacing it. This is
similar to using the SHIFT key when making multiple selections
manually.

Example

SELECT RECTANGLE 12.45 22 (-10.23) 289

Select Polygon Start

The SELECT POLYGON START begins the process of creating a selection polygon.

Syntax

SELECT POLYGON START

Select Polygon Points

The SELECT POLYGON POINTScommand allows points for the selection polygon
to be specified.

Syntax
SELECT POLYGON POINTS pl [p2][...] [pn]

96 Arbortext® IsoDraw® Macro Language Reference

pl Start point for the polygon as point.

p2 ... pn Optional parameters define additional points for the polygon
selection.

Select Polygon End

The SELECT POLYGON END command end the selection polygon command.

Syntax

SELECT POLYGON END[WITH PARTIAL] [DIRECT] [ADD]

WITH_PARTIAL | Optional parameter defines if partially selected elements should
be selected.

DIRECT Optional parameter defines that elements within a group will
be selected even if the entire group is not within the selection
polygon.

ADD Optional parameter defines that this new selection will be added

to an existing selection, rather than replacing it. This is similar to
using the SHIFT key when making multiple selections manually.

Example

Select everything in the lower right
DEFINE px AS Integer

DEFINE py AS Integer

px = activeDoc.window.PageX

py = activeDoc.window.PageY

SELECT POLYGON START

SELECT POLYGON POINTS 0 0 px O

SELECT POLYGON POINTS px py

SELECT POLYGON DIRECT ADD

Select At

The SELECT AT command selects an element or just a part of an element in the current
document at the given coordinates.

Syntax

SELECT AT xy[TOGGLE | PART | DIRECT] GROUP

X,y Define the click-point.

TOGGLE Used for the multiple selection of different elements. If

one element was already selected the selection is canceled.
Corresponds to selecting with the SHIFT key.

PART Used for adding a line-segment or a bézier-segment to a selection.
Corresponds to selecting with the ALT key pressed.

Palette Window Toolbox 97

DIRECT

Corresponds to selecting with the Direct Selection arrow cursor.

GROUP

Used for electing one group of a nested group containing this
element. Corresponds to selecting with the CTRL key pressed if
the cursor is the Direct Selection arrow cursor.

Transform Selection

Scale Selection
Use the SCALE SELECTION command to scale the elements that you have selected.

Syntax

SCALE SELECTIONxym xm_y[COPY] [NO ELEMENTS] [NO PATTERNS]

X, y Corner, and therefore, in what direction you want to scale the
elements.

m_X, m_y Scaling of the x- and y-axis. These parameters will multiply the
axis. i.e. every number below one is for shrinking the selection,
one does no scaling at all and everything over one is for enlarging
the selection.

COPY (optional) Scales and copies the object instead of just scaling it.

NO_ELEMENTS | (optional) Scales patterns with reference to elements.

NO_PATTERNS (optional) Scales only the elements.

Example

SCALE SELECTION 432.2 223.33 1.5 1.5 COPY

Shear Selection

Applies to Arbortext IsoDraw 7.0 F000 and later:

Use the SHEAR SELECTION command to shear the selected elements and/or patterns.

Syntax

SHEAR SELECTION ref x ref y shear h
shear_v[COPY] [NO_ELEMENTS] [NO PATTERNS]

ref x, ref y Reference point for shearing.

shear_h (float) Shear factor in the horizontal direction.
shear v (float) Shear factor in the vertical direction.
COPY (optional) Copies selected elements before shearing.

NO_ELEMENTS

(optional) Excludes elements from shearing.

NO_PATTERNS

(optional) Excludes patterns from shearing.

98

Arbortext® IsoDraw® Macro Language Reference

Example

SHEAR SELECTION 225.2 533.45 15 30 COPY NO_ PATTERNS

Rotate Selection
The ROTATE SELECTION command rotates an object around a point.

Syntax

ROTATE SELECTIONXxy ANGLE [COPY] [NO ELEMENTS] [NO PATTERNS]
X,y Center point you want to rotate the selected object around.
ANGLE Rotation angle.

COPY Optional parameter copy is for rotating and copying the object

instead of just rotating it.
NO ELEMENTS | Optional parameter to rotate patterns with reference to elements.
NO PATTERNS Optional parameter to rotate only the elements.

Example

rotate selection 345.99 22.2
33.77 no_patterns

Reflect Selection
The REFLECT SELECTION command reflects an object around a point.

Syntax

REFLECT SELECTIONxy ANGLE[COPY] [NO ELEMENTS] [NO PATTERNS]

X,y Point where the center of reflection is to lie.

ANGLE Rotation angle.

COPY Optional parameter is for reflecting and copying the object instead

of just reflecting it.
NO_ELEMENTS | Optional parameter to relect patterns with reference to elements.
NO PATTERNS Optional parameter to reflect only the elements.

Example

REFLECT SELECTION 111 332.666 33.5

Create Parallels

The CREATE PARALLELS command will generate parallel paths at a specified distance
from the original elements.

Syntax
CREATE PARALLELS dist BOTH SIDES DELETE ORIGINAL

Palette Window Toolbox 99

DIST Distance from the original element the parallels will be drawn
in mm.

BOTH_SIDES Optional parameter to draw both sides of the parallels.

DELETE_ORIGI- |Optional parameter to delete original element after drawing the

NAL parallels.

Example

CREATE PARALLELS 10.75 BOTH SIDES DELETE ORIGINAL

Transforming the lllustration

Set Transform

The SET TRANSFORM command creates a transformation matrix. This matrix is used
for all following commands until a restore command is executed. Therefore you should
always restore the transformation matrix to normal with RESTORE TRANSFORM restore
transform after using SET TRANSFORM.

Syntax

SET TRANSFORM x y angle scale
SET TRANSFORM MATRIX 2D matrix

X,y Define the offset of the displacement.
ANGLE Defines the angle of the displacement.
SCALE Defines the scaling of the displacement.
Example

MACRO trans

DEFINE
DEFINE
DEFINE
DEFINE

i
n
X
y

AS
AS
AS
AS

integer
integer
integer
integer

SET TRANSFORM 300 200 0 0.5
FOR n

100

0 TO 75 STEP 15
SET TRANSFORM 0 O n 1

FOR i = 90 TO 360 STEP
IF (i = 90)
x =0
y = 200

END IF

IF (i = 180)
x = =200
y =0

END IF

IF (i = 270)
x =0
y = =200

90

Arbortext® IsoDraw® Macro Language Reference

END IF
IF (i = 360)
x = 200
y =0
END IF
SET TRANSFORM x y 1 1
CREATE LINE O O 100 O
RESTORE TRANSFORM
END FOR
RESTORE TRANSFORM
END FOR
RESTORE TRANSFORM
END MACRO

Restore Transform

The RESTORE TRANSFORM command removes the last transformation matrix from
the transformation chain.

Syntax
RESTORE TRANSFORM

Absolute

If the ABSOLUTE mode is set all transformation matrices are ignored. All coordinates are
interpreted as absolute coordinates until the absolute mode is turned off.

Syntax

ABSOLUTE {ON | OFF}

Creating Elements

All CREATE commands (ellipse, line, rectangle ...) return a reference on the created
element. The properties of this element object can be queried and set (see Element Object
on page 193).

Create Line

The CREATE LINE command plots a line in your Arbortext [soDraw Document.

Syntax

CREATE LINE x/ yl x2y2
x1l yl x2 y2

x1, y1 Starting point of the line.

x2, y2 End point of the line.

Palette Window Toolbox 101

Example

CREATE LINE 189 10 20.23 200.99

Append Line Segment

The APPEND LINE SEGMENT command appends a line to the last line created by the
CREATE LINE command or by an APPEND LINE command. To append a line for the
first time there has to be a line created by the CREATE LINE command,

The start point for the appended line is the end point of the line plotted by the CREATE
LINE command or. the APPEND LINE SEGMENT command.
Syntax

APPEND LINE SEGMENT xy

‘x, y IEnd point of the line segment.

Example

MACRO house of nicholas

#first create a line by a macro command
CREATE LINE 100 100 200 100

#second append line segments
APPEND LINE SEGMENT 200 200
APPEND LINE SEGMENT 100 100
APPEND LINE SEGMENT 100 200
APPEND LINE SEGMENT 200 200
APPEND LINE SEGMENT 150 250
APPEND LINE SEGMENT 100 200
APPEND LINE SEGMENT 200 100

END MACRO

Create Ellipse

The CREATE ELLIPSE command plots an ellipse.

Syntax

CREATE ELLIPSE x y radius angle value
X, ¥ Center of the ellipse.
radius Radius of the ellipse.
angle Ellipse angle.

value Ellipse value.
Example

CREATE ELLIPSE 113.34 112.99 99 23.5 27

102 Arbortext® IsoDraw® Macro Language Reference

Create Inner Thread

The CREATE INNER THREAD command creates an inner thread.

Syntax
CREATE INNER THREAD x y radius angle value [depth)
X, ¥ Center of the ellipse.
radius Radius of the ellipse.
angle Ellipse angle.
value Ellipse value.
depty Optional parameter describes the depth of the inner thread. If
the parameter is set to -1 or missing the inner thread will be
completely filled.
Example

CREATE INNER THREAD 342.947 222.495 50 240 35.264

Create Outer Thread

The CREATE OUTER THREAD command creates an outer thread.

Syntax

CREATE OUTER THREAD x y radius angle value [depth]

X, ¥ Center of the ellipse.

radius Radius of the ellipse.

angle Ellipse angle.

value Ellipse value.

depty Optional parameter describes the depth of the outer thread. If the
parameter is missing the depth of the outer thread will be set to 0.

Create Callout
The CREATE CALLOUT command inserts a callout element into the currently active

document.

Syntax

CREATE CALLOUT "style" xI yl x2 y2 [“notation’’]

style

Style is used for the callout. The given style must be defined before
using it for the command. The name of the style is case sensitive.

x1, yl

Starting point of the callout. The callout number will appear at the
coordinates of the end point. To create a callout without a line the
start and end coordinates have to be identical.

Palette Window Toolbox

103

x2, y2 End point of the callout.

notation Optional parameter is needed for callout styles with the scheme
set to NO SCHEME. In these cases the notation will be used as
the callout text. If the scheme of the callout style is not set to NO
SCHEME, the notation will be ignored.

Example

#a callout with automatic numbering
CREATE CALLOUT "Normal" 112.39 110 290.99 100

#creating an element for later modification

DEFINE ele 07 AS element
ele 07 = CREATE CALLOUT "Normal" 112.39 110 290.99 100

#a callout with a given name

#remember: the “No scheme” style must be used
CREATE CALLOUT "myStyle™ 15 127.25 15 115 "AX 22"

Create Rectangle
The CREATE RECTANGLE command plots a rectangle in active document.

Syntax

CREATE RECTANGLE p xssp yvIr xlr yep xep yul xul y[rounded] [angle]
[value]

Sp_X. Sp_y Starting point of the rectangle.

Ir x,Ir y Lower right corner of the rectangle.

ep X, ep y End point of the rectangle.

ul x,ul y Upper left corner of the rectangle.

ROUNDED Optional parameter used for defining the rounded corners of the

rectangle. Where ROUNDED is for initiating, value for the ellipse
value and angle is for the ellipse angle of the rounding.

angle Optional parameter used for defining the rounded corners of the
rectangle. Where ROUNDED is for initiating, angle is for the
ellipse angle of the rounding.

value Optional parameter used for defining the rounded corners of the
rectangle. Where ROUNDED is for initiating, value is for the
ellipse value of the rounding.

Example

#a normal rectangle
CREATE RECTANGLE 236.881 222.495 236 132.681 314 87 314 177

#a rectangle with rounded corners

CREATE RECTANGLE 236 222 236.881 132.681 314 87.772 314 177.587
ROUNDED 90 90

104 Arbortext® IsoDraw® Macro Language Reference

Create Polygon

The CREATE POLYGON command plots a polygon.

Syntax

CREATE POLYGON x y corners radius angle value

X,y Define the center of the polygon.

corners Defines how many corners (or sides) the polygon is going to have.

radius Because a polygon behaves like an ellipse while being drawn, you
also have to define a radius (see Create Ellipse on page 102).

angle Because a polygon behaves like an ellipse while being drawn,
you also have to define an angle as the ellipse angle (see Create
Ellipse on page 102).

value Because a polygon behaves like an ellipse while being drawn, you
also have to define a value as a ellipse value (see Create Ellipse
on page 102).

Example

#drawing an octagon
CREATE POLYGON 381.838 212.288 8 65 300 35.264

Create Bezier Curve
The CREATE BEZIER CURBE command draws a bezier curve.

Syntax

CREATE BEZIER CURVE pointl handlel handle2 point2

pointl x- and y-coordinates of the starting point of the bézier curve and
the starting point of the first handle.

handlel x- and y-coordinates of the endpoint of the first handle. As a result,
this also defines the length and the heading of the first handle.

handle2 x- and y-coordinates of the endpoint of the second handle. As a
result, this also defines the length and the heading of the second
handle.

point2 x- and y-coordinates of the end point of the bézier curve.

Example

CREATE BEZIER CURVE 100 100 150 100 150 200 200 200

Append Bezier Segment

The APPEND BEZIER SEGMENT command appends a bézier curve to the last bézier
curve created by the CREATE BEZIER CURVE command or by an APPEND BEZIER
SEGMENT command. To append a bézier curve for the first time there has to be a bézier
curve created by the CREATE BEZIER CURVE command.

Palette Window Toolbox

105

The start point for the appended bézier curve is the end point of the bézier curve created
by the CREATE BEZIER CURVE command or. the APPEND BEZIER SEGMENT
command.

Syntax

APPEND BEZIER SEGMENT handlel handle2 point

handlel x- and y-coordinates of the endpoint of the first handle. As a result,
this also defines the length and the heading of the first handle.

handle2 x- and y-coordinates of the endpoint of the second handle. As a
result, this also defines the length and the heading of the second
handle.

point x- and y-coordinates of the end point of the bézier curve.

Example

CREATE BEZIER CURVE 100 100 150 100 150 200 200 200
APPEND BEZIER SEGMENT 250 200 250 100 300 100
APPEND BEZIER SEGMENT 350 100 350 200 400 200
APPEND BEZIER SEGMENT 450 200 450 100 500 100

Create Text

The CREATE TEXT command creates a text element in the active document.

Syntax

CREATE TEXT xy "text"”

X,y Lower left corner of the text box.
text String defines the text that is created.
Example

CREATE TEXT 100 100 "The Arbortext IsoDraw Macro Language"

Change Text At

The CHANGE TEXT AT command changes a text element at a specific position on the
current document.

Syntax

CHANGE TEXT AT x y"text"”

X, Y Position of the text element that will be changed as float.
text New text as string.

Example

CHANGE TEXT AT 100 100 "Arbortext IsoDraw 6"

106 Arbortext® IsoDraw® Macro Language Reference

Set Ellipsevalues

The SET ELLIPSEVALUES command sets the ellipse value or angle used during the
creation of new ellipses.

Syntax

SET ELLIPSEVALUES angle

’ angle |E11ipse angle between 1 and 90 as float.
Example

SET ELLIPSEVALUES 45

Palette Window Toolbox 107

11

Attribute Window

P NS . e 110
Sy LS e e e 112
] 0= To [0 114
(] 4 o £ RN 115
o] 1 T TR 117
VIBWPOIES ..ottt e e e e e e e e e e e aaaaaaaaaas 118
(7= Fo 10| 120

With this group of commands you can directly access most of the features in the Arbortext
IsoDraw attribute window.

109

Pens

Add Pen

With the ADD PEN command you can create a new pen. The new pen will be added to the
currently active document and inherit the attributes of the currently active pen. The new
pen will be set to active.

Note

If there is no document open, the created pen will be a new standard pen available in
all new documents.

Syntax

ADD PEN "name" [width)]

name Name of the pen after creation. If there is already a pen with that
name the macro command can not be executed. You cannot use
the following characters within a pen name:

Forward slash (/)
Circumflex accent (")
Exclamation point (!)
Less than (<)

Left parenthesis “(**

Colon ()
width Optional parameter defines the width of the pen in mm.

Example

ADD PEN "highlight this"
ADD PEN "BIG" 5.0

Delete Pen

The DELETE PEN command deletes an existing pen from the currently active document.

Note
With no document open a standard pen will be deleted.

Syntax

DELETE PEN "name" "substName"

110 Arbortext® IsoDraw® Macro Language Reference

name Name of the pen that is going to be deleted. If no pen with that
name exists the command can not be executed.

substName Name of the pen that is substituted. If no pen with that name exists
the command can not be executed.

Example

DELETE PEN "BIG" "$ISO THICK"

Set Active Pen

The ACTIVE PEN command sets the active pen to the one specified.

Syntax

SET ACTIVE PEN "name"”

| name |Name of the pen that is going to be set as active.
Example

SET ACTIVE PEN "$ISO THICK"

Set Lineoptions

The SET LINEOPTIONS command lets you change the print options for particular
elements. If elements are selected when executing the command the options are changed
for these elements. If no elements are selected when executing this command the print
options for the whole active document are changed. Every element created after executing
the command will then have these options.

Syntax

SET LINEOPTIONS ends corners overprint miter limit

ends Type of line ends.

corners Type of line corners. This option is only significant for Bézier
paths with corner points.

overprint Type of overprinting you want to have. The values for this

option are 0 for no overprint, 1 for overprinting the stroke, 2 for
overprinting the fill and 3 for overprinting stroke and fill.
miter_limit Limit the miter corner for sharp angles.

Example

SET LINEOPTIONS 2 0 0 4

Attribute Window 111

Toggle Pens

Applies to Arbortext IsoDraw 7.0 F000 and later:

The TOGGLE PENS command switches the thick and thin attributes of any selected
element; for example, any thick line will be switched to a thin line and vice-versa.
(Double-clicking on a contour in the Arbortext [soDraw drawing window produces the
same result.)

Syntax

TOGGLE PENS

Example

MACRO Switch All Thick Thin
SELECT ALL
TOGGLE PENS

END MACRO

TOGGLE PENS Example Result

Styles

Add Style

The ADD STYLE command creates a new style. This new style will be added to the
currently active document. If there is already an active style the added style will inherit
the attributes of the active style. After the new style is added to the document this style
will be the new active style, used for all following elements.

Note

If there is no document open, the created style will be a new standard style available in
all new documents.

112 Arbortext® IsoDraw® Macro Language Reference

Syntax

ADD STYLE "name" pattern

name Name of the new style. If there is already a style with that name
the command can not be executed. The following characters are
forbidden within a style name:

Forward slash (/)
Circumflex accent (*)
Exclamation point (!)
Less than (<)

Left parenthesis “(“
Colon ()

pattern Optional parameter consists of 6 floats defining the different
strokes and gaps of the patterns:

strokel gapl stroke2 gap? stroke3 gap3

Example

ADD STYLE "myStyle"

#adding a style with the optional patterns
ADD STYLE "myNewStyle" 0.5 2.5 0.5 3.5 1.5 1.5

Delete Style

The DELETE STYLE command deletes an existing style out of the style list of the
currently active document.

Note
With no document open a standard style will be deleted.

Syntax

DELETE STYLE "name" "substName"

name Name of the style that is going to be deleted. If no style with that
name exists the command can not be executed.

substName Name of the style that is substituted. If no style with that name
exists the command can not be executed.

Example

DELETE STYLE "myNewStyle" "Dashed"

Set Active Style

The ACTIVE STYLE command sets the active style to the one specified.

Attribute Window 113

Syntax

SET ACTIVE STYLE "name"

’name |Name of the style that is going to be set as active.

Example

SET ACTIVE STYLE "Dashed"

Shadows

Add Shadow

With the ADD SHADOW command you can create a new shadow. The new shadow will be
added into the currently active document and inherit the attributes of the currently active
shadow. The new shadow will be set to active.

Note

If there is no document open, the created shadow will be a new standard shadow available
in all new documents.

Syntax

ADD SHADOW "name"”

name Name of the shadow after creation. If there is already a shadow
with that name the macro command can not be executed. The
following characters are not allowed within in the name:

Forward slash (/)
Circumflex accent (")
Exclamation point (!)
Less than (<)

Left parenthesis “(“
Colon ()

Example

ADD SHADOW "myShadow"

Delete Shadow

The DELETE SHADOW command deletes an existing shadow out of the shadow list
of the currently active document.

114 Arbortext® IsoDraw® Macro Language Reference

Note

With no document open a standard shadow will be deleted.

Syntax

DELETE SHADOW "name" "substName"

name Name of the shadow that is going to be deleted. If no shadow with
that name exists the command can not be executed.

substName Name of the shadow that is substituted. If no shadow with that
name exists the command can not be executed.

Example

DELETE SHADOW "myShadow" "Autom. Long"

Set Active Shadow

The SET ACTIVE SHADOW command sets the active shadow to the one specified.

Syntax

SET ACTIVE SHADOW "name"

| name | Name of the shadow that is going to be set as active.
Example

SET ACTIVE SHADOW "Autom. Long"

Grids

Add Grid

The ADD GRID command creates a new grid and adds it to the currently active document.

Note

If there is no document open, the new grid will be a new standard grid available in all
new documents.

Syntax

ADD GRID "name" [z_angle] [x_angle]

Attribute Window 115

name Name of the grid after creation. If there is already a grid with that
name the macro command can not be executed. You cannot use
the following characters within a macro name:

Forward slash (/)

Circumflex accent (*)

Exclamation point (!)

Less than (<)

Left parenthesis “(“

Colon (©)

x_angle, z_angle, Optional parameter defines the x and z axis. The angles can range

from 0° to 90° but totaled they should not exceed 90° (included).
The y-axis is not specified as it will always be vertical.

If the angle parameters are missing the plane angle of the first two
selected lines is taken to build the grid. If only one line is selected
the grid will be build as isometric-grid (30° - 30°).

Example

MACRO CreateGridArray
DEFINE a AS Integer
DEFINE b AS Integer
FOR a=10 To 70 STEP 10
FOR b=10 TO 80-a STEP 10
ADD GRID "["+a+" - "4b+ " 1" a b
END FOR
END FOR
END MACRO

Delete Grid

Thr DELETE GRID command deletes an existing grid out of the grid list of the currently
active document.

Note
With no document open a standard grid will be deleted.

Syntax

DELETE GRID "name" "substName"

name Name of the grid that is going to be deleted. If no grid with that
name exists the command can not be executed.

substName Name of the grid that is substituted. If no grid with that name
exists the command can not be executed.

Example

DELETE GRID "[10 - 20]" "Plane"

116 Arbortext® IsoDraw® Macro Language Reference

Formats

Add Format

With the ADD FORMAT command you can create a new format. The new format will be
added into the currently active document and inherit the attributes of the currently active
format. The new format will be set to active.

Note

If there is no document open, the created format will be a new standard format available
in all new documents.

Syntax

ADD FORMAT "name"”

name Name of the format after creation. If there is already a format with
that name the macro command can not be executed. You cannot
use the following characters within a format name:

Forward slash (/)
Circumflex accent (")
Exclamation point (!)
Less than (<)

Left parenthesis “(*
Colon ()

Example

ADD FORMAT "myFormat"

Delete Format

The DELETE FORMAT command deletes an existing format out of the format list of the
currently active document.

Note

With no document open a standard format will be deleted.

Syntax

DELETE FORMAT "name" "substName"

name Name of the format that is going to be deleted. If no format with
that name exists the command can not be executed.

substName Name of the format that is substituted. If no format with that name
exists the command can not be executed.

Attribute Window 117

Example

DELETE FORMAT "myFormat" "Normal"

Set Active Format

The SET ACTIVE FORMAT command sets the active format to the one specified.

Syntax

SET ACTIVE FORMAT "name"

| name | Name of the format that is going to be set as active.

Example

SET ACTIVE FORMAT "Normal"

Viewports

Add Viewport

With the ADD VIEWPORT command you can create a new viewport. The new viewport
will be added into the currently active document and inherit the attributes of the currently
active viewport. The new viewport will be set to active.

Note

If there is no document open, the created viewport will be a new standard viewport
available in all new documents.

Syntax

ADD VIEWPORT "name"”

name Name of the viewport after creation. If there is already a viewport
with that name the macro command can not be executed. You
cannot use the following characters within a viewport name:

Forward slash (/)
Circumflex accent (%)
Exclamation point (!)
Less than (<)

Left parenthesis “(“
Colon (©)

Example

ADD VIEWPORT "myViewport"

118 Arbortext® IsoDraw® Macro Language Reference

Delete Viewport

The DELETE VIEWPORT command deletes an existing viewport out of the viewport list
of the currently active document.

Note

With no document open a standard viewport will be deleted.

Syntax

DELETE VIEWPORT "name"”

name Name of the viewport that is going to be deleted. If no viewport
with that name exists the command can not be executed.

Example

DELETE VIEWPORT "myViewport"

Execute Viewport
With the EXECUTE VIEWPORT command you can jump to a given viewport.

Syntax

EXECUTE VIEWPORT "path" "name"

path Path and name of an existing Arbortext IsoDraw or CGM File.
To activate the currently active file the path parameter can be an
empty string.

name Name of an existing viewport of the file given in the path
parameter or the currently active file. The name parameter is
case sensitive.

Example

EXECUTE VIEWPORT "" "detail 1"
EXECUTE VIEWPORT "c:\datalillustration\Mz445 ttr.iso" "seat"

Add Layerstatus

With the ADD LAYERSTATUS command a layer can be added to a viewport.

Syntax

ADD LAYERSTATUS "layer name" TO "viewport name"

layer _name Name of the layer to be added.

viewport_name Name of the viewport the layer will be added to.

Attribute Window 119

Example

ADD LAYERSTATUS "My Layer" TO "My Viewport™

Remove Layerstatus

With the REMOVE LAYERSTATUS command a layer can be removed from a viewport.

Syntax

REMOVE LAYERSTATUS "layer name" FROM "viewport name"

layer name Name of the layer to be removed.
viewport name Name of the viewport the layer will be removed from.
Example

REMOVE LAYERSTATUS "My Layer" FROM "My Viewport"

Callouts

Add Callout_Style

With the ADD CALLOUT STYLE command you can create a new callout style. The new
callout style will be added into the currently active document and inherit the attributes of
the currently active callout style. The new callout style will be set to active.

Note

If there is no document open, the created callout style will be a new standard callout style
available in all new documents.

Syntax

ADD CALLOUT STYLE "name"

name Name of the callout style after creation. If there is already a callout
style with that name the macro command can not be executed. You
cannot use the following characters within a callout style name:

Forward slash (/)
Circumflex accent (%)
Exclamation point (!)
Less than (<)

Left parenthesis “(*
Colon (©)

120 Arbortext® IsoDraw® Macro Language Reference

Example

ADD CALLOUT STYLE "myCallout"

Delete Callout_Style

The DELETE CALLOUT STYLE command deletes an existing callout style out of the
callouts list of the currently active document.

Syntax

DELETE CALLOUT STYLE "name" ["substName"]

name Name of the format that is going to be deleted. If no callout style
with that name exists the command can not be executed.

substName Optional parameter defines the name of the callout style that is
substituted. If no callout style with that name exists the command
can not be executed.

Example

DELETE CALLOUT STYLE "myCallout" "Normal"

Renumber Callouts

The RENUMBER CALLOUTS command renumbers existing callouts, regardless of the
setting specified under Update for the callout style.

Syntax

RENUMBER CALLOUTS

Attribute Window

121

A‘i'l 2

Fill Window

With this group of commands you can directly access most of the features from the
Arbortext IsoDraw Fill window.

123

Colors

Add Color

With the ADD COLOR command you can create a new color. The new color will be added
to the currently open document. The new color will be set to active.

Note

If no document is open the created color will be a new standard color available in all
new documents.

Syntax

ADD COLOR "name" color

name Name of the color after creation. If there is already a color with
that name the macro command can not be executed. Furthermore,
it is forbidden to use the following characters within a color name:

Forward slash (/)
Circumflex accent (")
Exclamation point (!)
Less than (<)

Left parenthesis “(**

Colon (©)
color Optional parameter defines the color as a colorSpec.

Example

MACRO Add Color

DEFINE red AS RGBColor
red.red = 188

red.green = 0

red.blue = 29

DEFINE color red AS colorSpec
color red.type = "rgbValues"
color red.rgb = red

ADD COLOR "RED 188 0 29" color red

END MACRO

Delete Color

The DELETE COLOR command deletes an existing color out of the color list of the
currently active document.

124 Arbortext® IsoDraw® Macro Language Reference

Note

With no document open a standard color will be deleted.

Syntax

DELETE COLOR "name" "substName"

name Name of the color that is going to be deleted. If no color with that
name exists the command can not be executed.

substName Name of the color that is used as substitution. If no color with that
name exists the command can not be executed.

Example

DELETE COLOR "RED 188 0 29" "Black"

Fill Window 125

IV

3D and User Interaction
Commands

127

B3

3D Commands

3D VIBW <.ttt e e e e e e e e e e e e e nraneaeeeeaaanne 130
3D SEEVIBW ...ttt e e e e e e e e e e rraaaeaeeaaanne 130
G0 o 1= o U 131
BT I O=T o | (= R 132
0TI 4o To] o ¢ = =] | 132
3D HLRIMOE......cco ettt e e e e e e e e e e e e e e eennesaaeeeeeeananes 132
K13 1Y o T [PSSR 133
3D EXPIOSION ..ttt e e e 133
K13 1Y o = PSPPSR 134
3D AXIS ettt et e e e et r e e e e e e a b rreeeeeeaanne 134
KT I I = 0TS (o] o PR SOSEPR 135
D RESEL. ... e e e e 135
3D SEDIST ..t e e e e e e e e e e e e aaannn 136
3D HOIE reCtaNgIe.........uveiiiiiiiieieeeeeeeeee e ———— 136
3D Hole polygon Start...........ccueiiiiieeiiee e 136
3D Hole polygon POINEScoeeiiiiiiiiie e e 137
3D Hole POIYGON €Ncoiiiiiiiiii e 137

Applies to Arbortext IsoDraw CADprocess only.

The 3D commands can only be executed if the current active document is opened in 3D
mode, otherwise an error message will appear.

129

3D View

The 3D VIEW command changes the camera angle of the 3D scene.

Syntax

3D VIEW view

view Camera angle as integer. Allowed values are:
X View X
Y View Y
Z View Z
ISOMETRIC_TOP Isometric view top
ISOMETRIC_BOTTOM Isometric view bottom
DIMETRIC 1 Dimetric view 1
DIMETRIC 2 Dimetric view 2
DIMETRIC 3 Dimetric view 3
DIMETRIC 4 Dimetric view 4
TRIMETRIC Trimetric view
PERSPECTIVE Perspective view

Example

3D VIEW DIMETRIC 2

3D SetView

The 3D SETVIEW command is included for compatibility reasons only. It is not
recommended that you use this command for new development of macros as it may be
discontinued in the future. All features from this command have been incorporated into
the new command 3D VIEW.

The 3D SETVIEW command changes the camera angle of the 3D scene.

Syntax

3D SETVIEW view

130 Arbortext® IsoDraw® Macro Language Reference

view Camera angle as integer. Allowed values are:
900 View X
901 View Y
902 View Z
903 Isometric view top
904 Isometric view bottom
905 Dimetric View 1
906 Dimetric View 2
907 Dimetric View 3
908 Dimetric View 4
909 Trimetric View
910 Perspective View
Example

3D SETVIEW 903

3D Project

Il

The 3D PROJECT command converts the current 3D mode view to a 2D illustration
(similar to clicking the Convert to 2D lllustration (Camera) button on the 3D Tools
toolbar). The projection is controlled by the properties of the app . project3D object.
(See app.project3D on page 233.)

Syntax

3D PROJECT [0 |

1 | same]

0 (or no parameter)

Converts the 3D view in the active window to a 2D illustration in
a new, untitled window. After conversion, the 3D view window
remains open and active. The 2D illustration window also remains
open, but is not saved.

Converts the 3D view in the active window to a 2D illustration
in the same window and switches the active window from 3D
mode to 2D mode.

Caution

3D data is not kept after conversion to 2D, therefore, saving the
new 2D illustration with the original name could overwrite the
original 3D file and result in a loss of 3D data.

same

This parameter is being ignored for 2D projections of placed 3D
files.

3D Commands

131

Example

3D PROJECT 1

3D Center

The 3D CENTER command allows you to align all the assemblies of the drawing such
that the coordinate origin is at the center point of all assemblies.

Syntax

3D CENTER

3D ZoomExtent

The 3D ZOOMEXTENT command is included for compatibility reasons only. It is not
recommended that you use this command for new development of macros as it may be
discontinued in the future. All features from this command have been incorporated into
the command ZOOM (see Zoom on page 87).

The 3D ZOOMEXTENT command displays the entire drawing on the screen.

Syntax

3D ZOOMEXTENT

3D HLRMode

The 3D HLRMODE command is included for compatibility reasons only. It is not
recommended that you use this command for new development of macros as it may be
discontinued in the future. All features from this command have been incorporated into
the command 3D MODE.

This command toggles the view between hidden lines shown and hidden lines removed.

Syntax

3D HLRMODE mode

mode Defines whether hidden lines are shown. Allowed values are:
15 Hidden lines shown.
16 Hidden lines removed.

Example

3D HLRMODE 15

132 Arbortext® IsoDraw® Macro Language Reference

3D Mode

The 3D MODE command sets the view mode in the 3D window.

Syntax

3D MODE mode

mode View mode displayed. Allowed values are:
WIREFRAME
HLR
FACED
SHADED
Example

3D HLRMODE WIREFRAM

3D Explosion

The 3D EXPLOSION command gives you the means to automatically explode the
components of a larger assembly unit along a specific axis.

Syntax

3D EXPLOSION direction 3d-point

direction Axis and the direction you wish to explode the assemblies.
Allowed values are:
1 Direction: positive, axis: X.
2 Direction: both, axis: X.
3 Direction: negative, axis: X.
4 Direction: positive, axis.
5 Direction: both, axis: y.
6 Direction: negative, axis.
7 Direction: positive, axis.
8 Direction: both, axis: z.
9 Direction: negative, axis: free.
10 Direction: positive, axis.
11 Direction: both, axis: z.
12 Direction: negative, axis: free.
3d-point Defines the free-axis as point3 if the user has selected a free axis
for explosion

3D Commands 133

Example

#exploding along the x-axis (both directions)
3D EXPLOSION 2 0 0 O

#exploding along a free axis (positive direction)
3D EXPLOSION 10 0.005 0.997 0.077

3D Move

The 3D MOVE command moves all selected assemblies in a given direction.

Syntax
3D MOVE 3d-point

‘ 3d-point | Axis the drawing should be moved as point3.

Example

#movement along the x-axis
3D MOVE 200 0 O

3D Axis
A

The 3D AXIS command sets the 3D Select axis; the axis used for panning and rotating
selected elements in 3D mode.

Use this command to define the X, Y, or Z axis as the 3D Select axis—or to turn off the
3D Select axis. Alternatively, you can define a free axis as the 3D Select axis. The free
axis can intersect the origin and a point or any two points.

Note

A free axis is in addition to the X, Y, and Z coordinate system axes.

Syntax

3D AXIS[xyz[xIylzI] | OFF | X | Y | Z]

XYyz (optional; £1oat) Sets the 3D Select axis to a free axis that
intersects the origin and the point (x, y, z). (Separate coordinate
values with a space character.)

xyzxlylzl (optional; £1oat) Sets the 3D Select axis to a free axis that
intersects the points (x, y, z) and (x/, y1, zI). (Separate coordinate
values with a space character.)

134 Arbortext® IsoDraw® Macro Language Reference

OFF (optional) Removes the 3D Select axis if it exists.
X|Y|Z (optional) Sets the 3D Select axis to the X, Y, or Z axis. Specifying
X or Z sets both the X and Z axes as 3D Select axes.

Example

No 3D Select axis set:
3D AXIS OFF

Specifying X axis sets 3D Select axis
to both X and Z axes
3D AXIS X

3D Select axis set to free axis that
intersects the origin and (1,0,1):
3D AXIS 1 0 1

3D Select axis set to free axis that
intersects points (100,120,70) and (200,120,70)
3D AXIS 100 120 70 200 120 70

3D Transform

The 3D TRANSFORM command creates a 3D transformation on the selected assemblies.

Syntax

3D TRANSFORM 3d-matrix

‘ 3d-matrix | Defines the transformation.
Example

#stretching the drawing to double size
#along the y-axis
3D TRANSFORM 1 0 0O O 0200 0010 O0OOO

3D Reset

The 3D RESET command removes all 3D transformations from the selected assemblies.

Syntax

3D RESET

3D Commands 135

3D SetDist

The 3D SETDIST command sets the focal distance measured in millimeters (only used
in the perspective view).

Syntax

3D SETDIST value

lvalue | Focal distance in mm as float.

Example

3D SETDIST 25.5

3D Hole rectangle

The 3D HOLE RECTANGLE command creates a 3D cut or 3D transparent rectangle.

Syntax

3D HOLE RECTANGLE point point [TRANSPARENT]

point Start and end points of the rectangle as float.
TRANSPARENT | Optional parameter defines the rectangle as transparent rather than
a cut rectangle.

Example

3D HOLE RECTANGLE 0 0 200 250 TRANSPARENT

3D Hole polygon start

The 3D HOLE POLYGON START command begins the definition of a 3D cut or
transparent free shape.

Syntax

3D HOLE POLYGON START[TRANSPARENT]

TRANSPARENT | Optional parameter defines the free shape as transparent rather
than a cut free shape.

Example

MACRO Create 3D Cut
Cuts a rhombus
3D HOLE POLYGON START

136 Arbortext® IsoDraw® Macro Language Reference

3D HOLE POLYGON POINTS (-50) 0 0 50
3D HOLE POLYGON POINTS 50 0 0 (-50)
3D HOLE POLYGON END

END MACRO

3D Hole polygon points

The 3D HOLE POLYGON POINTS command defines a point in a 3D cut or transparent
free shape.

Syntax

3D HOLE POLYGON POINTS point [...]

point Points on the free path as float. Many points can be listed for a
single 3D Hole polygon points command.

Example

3D HOLE POLYGON POINTS (-50) 0 0 50

3D Hole polygon end

The 3D HOLE POLYGON END command ends the definition of a 3D cut or transparent
free shape.

Syntax

3D HOLE POLYGON END

3D Commands 137

B 14

Further Macro Commands

AT | YR 140
L NN [T 140
oo SRS 140
1Y =T o T 141
Debugging Commands..........c.ooiiiiiiiiiiii e 142
LA T A] 1= N 145
][o U RRPRPORPRPOt 145
1= 11 Vo] o T 146
TEIMINATE ... e e e e et eeeaaan 146
T || OO 147
7= | (o] o R 149
D (] g 1=1 (o] o U 149
Increase Text EIEMENTSoooiiieeie e 151
Decrease Text EIEMENTS...........oooooiiiiiieeeee e 151

139

FWrite

The FWRITE command writes a string with a new line character to the end of a text file.
If the file doesn’t exist it will be created.

Syntax

FWRITE "path"” "message"

message Text of message.

path Path where message is written.
Example

DEFINE txtOut AS string
txtOut = "D:\work\output.txt"
FWRITE txtOut "Results:"

FNew

The FNEW command creates a new text file with the name a location specified. If the
file already exists it will be overwritten.

Syntax

FNEW "path”[8 BIT]

path File path.

8 BIT Optional parameter defines that the file will be created as a 8-Bit
ASCII text file. By default the file is created as a UNICODE text
file.

Example

DEFINE txtOut AS string
txtout = "C:\Temp\test.txt"
FNEW txtout

FWRITE txtout "Hello World!"

Log

With the command LOG you can write your own messages into the log file. Within the
Arbortext IsoDraw working folder you can find a file named macro.log. All errors
and warnings which occur during the execution of a macro are written into that file by
the Arbortext IsoDraw Macro Language.

140 Arbortext® IsoDraw® Macro Language Reference

Syntax

LOG "message"

’ message Message written into the macro.log file.

Example

LOG "Demo finished"

#this also works

FOR i=0 TO 10
LOG 1

END FOR

Menu

The MENU command simulates the selection of an Arbortext IsoDrawmenu item. If a
dialog is opened by the selection it will appear and pause the macro until closed by the user.

Syntax

MENU "menupath” [WITH SHIFT | WITH ALT]

menupath The command searches for the first menu command beginning
with the complete search-string. Because menu commands differ
from language to language all macros using the menu command
are language specific.

The MENU command can be used to start a plugin (like Arbortext
IsoCompose) and can also reach all commands from the popup
menus.

You can not use the MENU command to open any item from the
Help-menu and you only have access to menu commands that are
available at the time the command is executed.

WITH_SHIFT, MENU comand can be extended by either one of the 2 optional
WITH_ALT specifiers WITH_SHIFT or WITH_ALT to simulate a pressed
SHIFT- or ALT-key.

Example

MENU "element info"

MENU "Start IsoCompose"

Further Macro Commands 141

Debugging Commands

The Arbortext IsoDraw Macro Language includes special commands that are useful when
debugging. Remove these debugging commands when your macro is working properly.

Debug Step

The DEBUG STEP command turns the step-by-step execution of a macro command
on or off.

Syntax

DEBUG STEP {ON | OFF}

ON Turns step-by-step execution of a macro command on.
OFF Turns step-by-step execution of a macro command off.
Example

MACRO debug
DEBUG STEP ON
#first create a line by a macro command
CREATE LINE 100 100 200 100
#second append line segments
APPEND LINE SEGMENT 200 200
APPEND LINE SEGMENT 100 100
APPEND LINE SEGMENT 100 200
APPEND LINE SEGMENT 200 200
APPEND LINE SEGMENT 150 250
APPEND LINE SEGMENT 100 200
APPEND LINE SEGMENT 200 100
DEBUG STEP OFF

END MACRO

Debug Commands

This command displays the Macro Language dialog box with a text box you can use to
enter and run one macro command at a time. After you enter a macro command, click OK
to run it.

After the macro command successfully executes, the text box will be cleared and is ready
for the next input. Click Cancel to close the dialog box.

Applies to Arbortext IsoDraw 7.0 F000 and later:

Click the arrow to the right of the text box to select one of the last ten sucessfully executed
macro commands from a list.

Syntax

DEBUG COMMANDS

142 Arbortext® IsoDraw® Macro Language Reference

Example

Macro Language: El

Please enter a macro command.

2dd pen "myMewPen’| »
|

Cancel | | ak. I

Debug Reset

The DEBUG RESET command termintates the execution of the current macro, discards
all variables and reloads all available macros.

Syntax
DEBUG RESET

Debug Stack

The DEBUG STACK command opens a window listing the call stack of .nested
sub-macros.

Syntax
DEBUG STACK

Debug Locals

The DEBUG LOCALS command opens a window listing all defined local variables.

Syntax

DEBUG LOCALS

Debug Globals

The DEBRUG GLOBALS command opens a window listing all defined global variables.

Syntax

DEBUG GLOBALS

Further Macro Commands 143

Dump

The DUMP command writes internal macro processor information to a text file for
debugging purposes.

Syntax

DUMP key filename

key Specifies the type of internal macro processor information to
dump. Allowed values are:

COMMANDS List of all available macro commands (the first
keyword of each).

MACROS List of all macros currently loaded in memory.

STACK List of all macros and subMacros currently on
the stack.

GLOBALS List of all variables defined with a global scope.

LOCALS Currently defined local variables of the macro in

which the DUMP command has been used.
FUNCTIONS |List of all defined IML functions.

filename (string) Location and filename of the DUMP text file. If you
specify a new filename, a new file will be created. If you specify
an existing filename, the new DUMP information will be appended
to the end of the existing file. (Existing DUMP files in the specified
location are not overwritten.)

Example

MACRO Dump all
DEFINE sOut AS string

sOut = "C:\IML dump.txt"
FNEW sOut
FWRITE sOut "----- Loaded macros: ----- "
DUMP MACROS sOut
FWRITE sOut "----- Call stack: ----- "
DUMP STACK sOut
FWRITE sOut "----- Global variables: ----- "
DUMP GLOBALS sOut
FWRITE sOut "----- Local variables: ----- "
DUMP LOCALS sOut
END MACRO

After this example Dump all macro executes, the file IML dump. txt could contain
the following information:

————— Loaded macros: —-----

Macro Dump_all

————— Call stack: —-—-——--—-

————— Global variables: -----
————— Local variables: -----
String: sOut = "C:\IML dump.txt"

144 Arbortext® IsoDraw® Macro Language Reference

Wait Timer

With the WATIT TIMER command you can stop the application for a given time period.
The current window will be redrawn beforehand.

Syntax

WAIT TIMER fticks

ticks Length of time the application will be stopped as an integer. One
tick is 1/60 of a second.

Example

MACRO movement
DEFINE i AS integer
DEFINE n AS integer
FOR i = 0 TO 90 STEP 15
CREATE ELLIPSE 100 200 20 180 1
CREATE ELLIPSE 100 200 20 90 1
END FOR
SELECT ALL
GROUP SELECTION
FOR n=2 TO 400 STEP 5
WAIT TIMER 1
MOVE SELECTION 5 1
END FOR
END MACRO

Sleep

Applies to Arbortext IsoDraw 7.0 FO00 and later:

Puts the application asleep for the defined period of time. The current window, menu and
toolbars will be refreshed before. This command releases the CPU for other applications.

Syntax

SLEEP milliseconds

‘ milliseconds | (integer) Time in milliseconds.

Example

#Sleep for one-half second:
SLEEP 500

Further Macro Commands 145

Launch

Applies to Arbortext IsoDraw 7.0 F000 and later:

Starts an external application.

Syntax

LAUNCH "app" "cmd"

app (string) Filename and path to the external application to be
started.
cmd (string) Parameters to be passed to the application on start-up.

If the application starts, the LAUNCH command returns the application’s process ID. If
the application fails to start, the LAUNCH command returns zero.

Example

Open Macro-Logfile with Notepad

MACRO Show Logfile

LAUNCH "C:\WINDOWS\notepad.exe" "C:\ ... \macro.log"
END MACRO

Terminate

Applies to Arbortext IsoDraw 7.0 FO00 and later:
Stops an external application by its process ID (PID).

Syntax

TERMINATE pid

‘ pid | (integer) Process ID of the external application to be stopped. ‘

The TERMINATE command returns (boolean) true if the external application
stopped successfully.

Caution

Stopping an external application with the TERMINATE command can cause loss of data
and system instability. The application cannot save its state or data before it is terminated.
You should only stop external applications that were started using the LAUNCH command.
Example

#Stop the application with process ID 7714:
TERMINATE 7714

146 Arbortext® IsoDraw® Macro Language Reference

Edit

Applies to Arbortext IsoDraw 7.0 FO00 and later:

The EDIT command starts a text editing application, such as Windows Notepad
(notepad.exe). If the EDIT command line includes a macro name, the macro file
containing that macro opens in the editing application.

Syntax

EDIT "app" ["macroname"] ["opt"]

app (string) The path and file name for the text editing application.

macroname (optional; string) The name of the macro to edit. If macroname
is omitted—or if an empty string (" ") is passed—the Select
macro dialog box opens so the macro name can be selected
manually.

opt (optional; string) A text editor start-up command option,

such as search string. This option enables some text editing
applications to open a file to a line containing a specific string,
such as a command or parameter value.

Note

Not all editing applications support this feature—and those that
do have different start-up command line syntax rules. See the
editing application documentation for more information.

The EDIT command returns the process ID of the text editing application if it starts
successfully, or zero if the application fails to start.

Example

This Edit command opens the Select macro dialog box.
Manually select the macro to edit:

EDIT "C:\WINNT\system32\notepad.exe" ""

Further Macro Commands

147

x

example 1
example?
macra1

File: Iexampmjsm

Cancel | (] I

This Edit command runs Notepad and opens
the macro file example.ism which contains
the macro examplel:

EDIT "C:\WINNT\system32\notepad.exe" "examplel"

=T

File Edit Format Wiew Help

b{acr:u examplel ﬂ
recorded with Arbortext IsoDraw 7.1
Create Ellipse 219.203 285.774 20 0 35.2&84
Create Ellipse 247.486 302.103 25 0 35.2&84
Create Ellipse 300.519 283.733 25 180 35.2&4
Create Line 173.241 300.062 323.24 300.0&2
Select at 248.449 300.223
Select at 248.449 300.223
Mowve Selection 0 (-28.574)
Copy
Select nonse
Baste
End Macro

Macro example?
Select at 283.903 207.48l18
Select at 283.903 207.&18
Mowve Selection (-43.871) 24.013
Select nonse
Select rectangle 155.05 325,622 347.403 244,395
Select all
Duplicate
Distribute left
Select none

End Macro

148 Arbortext® IsoDraw® Macro Language Reference

Batch

Applies to Arbortext IsoDraw 7.0 FO00 and later:

The BATCH command reads a text file line by line and calls a macro with the line’s

content individually.

Syntax

BATCH file [macro]

file

(string) The path and file name of the text file to read.

macro

(optional; st ring) The name of the macro that will process the
text file content. If this parameter is omitted, the Select macro
dialog box opens for manual selection. The BATCH command
calls the specified macro for each line of the text file. Each
line’s string content is passed to the macro as a single parameter
value. BATCH only works with macros that expect exactly one
parameter. Macros of any other kind will cause BATCH to display
an error message.

Example

SUBMACRO Delete Pen(string sPenName)
DELETE PEN sPenName "$ISOiNOPEN"

END SUBMACRO

MACRO Remove Invalid Pens
BATCH "C:\InvalidPens.txt" "Delete Pen"

END MACRO

Extension

With the EXTENSION command you can execute a plug-in extension with a command

line.

Syntax

EXTENSION "name" "param"

name Filename of the extension plug-in as string. Most likely you will
use the file name extension ISP here.
param Command line parameters for the plugin as string.

Further Macro Commands

149

Example

Please find below a sample with double-quote syntax. The target format is SVG in this
case. Note that the source and the destination folders must exist and check the name
of the batch tool in the extensions folder.

In this sample the backslash character is used for the line continuation (see Line
Continuation on page 31).

EXTENSION "batch6 e.isp" "-£f22 " + \
"-s""C:\tmp\batch in"" "+ \
"-d""C:\tmp\batch out"""

Next, we have a sample with mixed quote characters. The target format is CGM . We
call a macro ‘rotate90’ on each illustration.

EXTENSION "batch6.isp" '-s"D:\TEMP\batch\in"' \
+ ' -d"D:\TEMP\batch\out" -f10 -m"rotatad90"'

In the next sample we have defined the parameters for the batch tool as string variables.
This helps to avoid confusion with the quotes.

DEFINE sPlugin AS String
DEFINE sSourceDir AS String
DEFINE sDestDir AS String
DEFINE sParam AS String
DEFINE sFormat AS String

set the name of the BatchTool
sPlugin = 'batch6 e.isp'

set the parameter for the source folder
sSource = ' -s"d:\temp\batchin"'

set the parameter for the destination folder
sDest = ' -d"d:\temp\batchout"'

set the parameter for the export format
(10 : CGM)
sFormat = '-f10"'

build the parameter string for the BatchTool
sParam = sFormat + sSource + sDest

call the BatchTool with the paramter string
EXTENSION sPlugIn sParam

If no file format code is specified Arbortext IsoDraw will use its standard format.

EXTENSION sPlugIn "-s" + sSourceDir + " -d" \
+ sTargetDir + " - m" + sMacroName

For your convenience you will find a list of the format identifiers

Allowed format identifiers are:

#

Standard IsoDraw format, currently IsoDraw 6
IsoDraw 4 format

IsoDraw 3 format

IsoDraw 2.6 format (not supported On Windows)
Encapsulated PostScript File format

Adobe TIllustrator 1.1 format

T
s WN RO

150 Arbortext® IsoDraw® Macro Language Reference

Adobe Illustrator 88 format
Initial Graphics Exchange Standard format
Drawing Interchange Format
9 Hewlett Packard Graphics Language
10 Computer Graphics Metafile
11 PICTure format
12 Tagged Image File Format
13 Bitmap format
14 PCX format# 15 CALS Raster
16 Text Excerpt
17 Interleaf format
18 Maker Interchange Format
19 IsoDraw 5 format
20 IsoDraw 5 format, packed
21 DWG (AutoCAD format)
22 Scalable Vector Graphics
23 JPEG format
24 Portable Network Graphic format
25 Windows Metafile format
26 IsoDraw 6 format
27 IsoDraw 6 format, packed

@ J o

H o o S o S S S S S S S K S R S

Increase Text Elements

With the INCREASE TEXT ELEMENTS command you can increase the numeric values
within selected text elements and callouts by the value specified.

Syntax

INCREASE TEXT ELEMENTS value

‘Value Numeric increase as integer.
Example

INCREASE TEXT ELEMENTS 5

Decrease Text Elements

With the DECREASE TEXT ELEMENTS command you can decrease the numeric values
within selected text elements and callouts by the value specified.

Syntax

DECREASE TEXT ELEMENTS value

‘Value Numeric decrease as integer.
Example

DECREASE TEXT ELEMENTS 1

Further Macro Commands 151

Interacting with the User

Y =TS =T = RSP 154
LT 154
Wait MOUSECIICK. ...ttt ens 154
T o OO 156

These commands enable the macro to interact with a user.

153

Message

The MESSAGE command prints a message box on the screen.

Syntax

MESSAGE "text"

‘ text Message which is shown in the message box.

Example

MESSAGE "Ready!"

Get

The GET command opens a dialog window to get a value from the user.

Syntax
GET input_type "text"
input type Input value type. The parameter may have the following values

assigned:

INTEGER for an integer value

FLOAT for a float value

STRING for a string value

BOOLEAN for a boolean value
text String to display to user.
Example

username = GET STRING "Please enter your name!"

Wait Mouseclick

The WAIT MOUSECLICK command stops the execution of a macro until the user hits a
mouse button.

Syntax

WAIT MOUSECLICK

The WAIT MOUSECLICK command returns a MouseEvent.The MouseEvent contains
information which can be accessed through the following properties. (It is assumed that
myME has already been defined as a MouseEvent for the examples that follow.

154 Arbortext® IsoDraw® Macro Language Reference

Example

WAIT MOUSECLICK

DEFINE myME AS MouseEvent
myME = WAIT MOUSECLICK

mouseEvent.click
The click property returns which mouse button has been clicked.

0 No button pressed
1 Left mouse button pressed
2 Right mouse button pressed

MESSAGE myME.click

mouseEvent.ptPix

The ptPix property returns the mouse position as pixel coordinates relative to the current
active window. The point of origin is the upper left corner of the active window.

MESSAGE myME.ptPix.x

MESSAGE myME.ptPix.y

mouseEvent.ptPixGrid

The ptPixgrid property returns the mouse position as pixel coordinates depending on
element and grid magnetism relative to the current active window. The point of origin is
the upper left corner of the active window.

MESSAGE myME.ptPixGrid.x

MESSAGE myME.ptPixGrid.y

mouseEvent.ptMM

The ptMM property returns the mouse position of the page coordinates in millimeters.
The point of origin is the lower left corner of the active page.

MESSAGE myME.ptMM.x

MESSAGE myME.ptMM.y

mouseEvent.ptMMGrid

The ptMM property returns the mouse position, in millimeters of the page coordinates
depending on element and grid magnetism. The point of origin is the lower left corner
of the active page.

MESSAGE myME.ptMMGrid.x

MESSAGE myME.ptMMGrid.y

Interacting with the User 155

mouseEvent.modifiers

The modifiers property returns which special keys are simultaneously pressed with a
mouse key.

256 CRTL key
512 SHIFT key
2048 ALT key

MESSAGE myME.modifiers

MACRO MouseDemo

DEFINE me AS MouseEvent
DEFINE pt AS Point
DEFINE ms AS String

me = WAIT MOUSECLICK
IF (me.click = 0) THEN
MESSAGE "Aborted"

ELSE

pt = me.ptPix
ms = " at pixel coordinates"
ms = ms + pt.x + "," + pt.y
IF (me.click = 1) THEN

ms = "Left click" + ms
Else

ms = "Right click" + ms
END IF

IF (me.modifiers = 512) THEN
ms = ms + " with Shift-Key"

END IF

IF (me.modifiers = 256) THEN
ms = ms + " with Ctrl-Key"

END IF

IF (me.modifiers = 2048) THEN
ms = ms + " with Alt-Key"

END IF

pt = me.ptMMGrid

Create Text pt.x pt.y ms

END IF

END MACRO

Beep

The BEEP command returns an audible beep.

Syntax

BEEP

156 Arbortext® IsoDraw® Macro Language Reference

Vv

Functions and Data Types

157

—

B 16

Functions

TrgoNOMELriC FUNCHONSvvveii e 160
Other Mathematical FUNCHONS............uiiiiiieeeeee e 160
RanNdom FUNCLON ... 160
SrNG FUNCHONS. ... 161
TimME FUNCHONSeeeeeeeee et e e 162
[N [=To =i o o PP PERPT PP 163
(] £ TR 163
[0S 10 o [164
(0= | 164

Functions are handled as expressions and may contain (in brackets) additional expressions
to evaluate as a single value.

159

Trigonometric Functions

All trigonometric functions in Arbortext IsoDraw are degree based.
The following trigonometric functions are defined:

sin ()

cos ()

tan ()

arcsin ()

arccos ()

arctan ()

Example

MACRO waveplot
DEFINE i AS integer
CREATE LINE O 100 0 100
FOR i=1 TO 720
APPEND LINE SEGMENT i*0.82 sin (i) *100+100
END FOR
CREATE LINE 0 200 0 200
FOR i=1 TO 720
APPEND LINE SEGMENT 1*0.82 cos(i)*100+100
END FOR
END MACRO

Other Mathematical Functions

The following mathematical functions are defined:

sgrt (source) square root

1n (source) natural logarithm
exp (source) exponential function
abs (source) absolute value
Example

MACRO logplot
DEFINE i AS integer
FOR i=1 to 300
CREATE LINE i 0 i 1n(i)*20
END FOR
END MACRO

Random Function

The rand () function will return a random number between 0 and the given argument.

160 Arbortext® IsoDraw® Macro Language Reference

The random generator must be initialized with the command randomize. With no
parameter given the current time initiates the function; with a parameter given for a
repeatable randomized sequence.

Example

MACRO modernArt
DEFINE i AS integer
RANDOMIZE
FOR i=0 to 100

CREATE LINE rand(600)

END FOR
END MACRO

rand (420) rand(600) rand(420)

String Functions

There are some special string functions in the Arbortext I[soDraw Macro Language:

eval (source)

Evaluates a sting as a mathematical function.

lower (source)

Converts the string to lowercase.

upper (source)

Converts the string to uppercase.

len (source)

Returns the length of a string.

left (source , count)

Returns the string’s left most characters equal to the count.

right (source, count)

Returns the string’s right most characters equal to the
count.

mid (source, start ,count)

Returns the string’s characters from the given start to the
right, equal to the count.

Example

MACRO String Characters
DEFINE str AS string
str = "123456789"

MESSAGE "the string is:

MESSAGE "the first three:

MESSAGE "the last four:

MESSAGE "the 4th to 6th:
END MACRO

" + str
" + left(str, 3)
" + right(str, 4)

" + mid(str, 4, 3)

find (source, search, start)

Returns the character position of the search term. Only
searches to the right of the start term.

stripExt (source)

Returns the string without an extension.

getExt (source)

Returns the string’s extension.

stripFileName (source)

Returns the string without the file name (i.e. returns the
path).

getFileName (source)

Returns the string’s file name and extension (i.e. without
the path)

Example

MACRO Path, Name and Extension Info

NEW

Functions

161

SAVE "C:\Program Files\ITEDO Software\NameSample.iso"

MESSAGE "the file's full path is: " + $Newline + activeDoc.path
MESSAGE "the file's full name is: " + $Newline + activeDoc.name
MESSAGE "the file's name minus extension is: " + $Newline +

stripExt (activeDoc.name)

MESSAGE "the file's extension is: " + $Newline + getExt (activeDoc.name)
MESSAGE "the file's path without its name is: " + $Newline +

stripFileName (activeDoc.path)

END MACRO

isAlpha (source)

Returns if the string is composed entirely of alpha characters
as boolean.

isDigit (source)

Returns if the string is composed entirely of digits as
boolean.

isLower (source)

Returns if the string is composed entirely of lower case
alpha characters as boolean.

isUpper (source)

Returns if the string is composed entirely of upper case
alpha characters as boolean.

isSpace (source)

Returns if the string is composed entirely of spaces as
boolean.

isAscii (source)

Returns if the string consists entirely of characters found in
the first 128 from the ASCII character map as boolean.

isControl (source)

Returns is the string consists entirely of control characters
(such as TAB) as boolean.

isPrintable (source)

Returns is the string consists entirely of printable characters
(i.e. without control characters) as boolean.

isNumerical (source)

Returns if the string is numerical as boolean. This differs
from isDigit (e.g. -99.9 is not true as isDigit, but is true
as isNumberical).

code (source)

Returns the first character’s code from the Ascii character
map as integer.

char (source)

Returns the character for the character from the Ascii
character map for the given integer value.

Example

MACRO stringFunctions
DEFINE txt AS string

txt = "Arbortext IsoDraw Macro Language"

MESSAGE txt

MESSAGE len (txt)

MESSAGE upper (txt)

MESSAGE lower (txt)
END MACRO

Time Functions

There are some special functions in the Arbortext IsoDraw Macro Language to determine

the time:

162

Arbortext® IsoDraw® Macro Language Reference

date () Returns the date as string

time (seconds) Returns the time as string. Use the optional “seconds”
parameter to determine if seconds are given. Enter true to
include seconds and false to exclude them.

ticks () Returns the time in ticks as string. There are 60 ticks per
second.

Example
MESSAGE "today is " + date()

MESSAGE "and the time is " + time (true)

Negation

The not() function is for the logical negation. The result is either true or false.

Example

IF (not(a < b)) THEN

#if a is greater than b
ELSE

#if a is smaller than b
END IF

Exists

ex1sts(expression) returns TRUE if the given expression is true within the context of
the macro and the defined document, layer or element does exist.
Example

some examples:

IF (exists (activeDoc) = false) THEN
MESSAGE "No document opened!"

IF (exists (activeDoc.firstSelectedElement) = false) THEN
MESSAGE "No element selected!"

IF (exists (activeDoc.layers[3]) = false) THEN
MESSAGE "Less than three layers exist!"

IF (exists (activeDoc.layers["Background"].firstChild) = false) THEN
MESSAGE "Background layer is empty!"

IF (exists (activeDoc.firstSlectedElement.info) = false) THEN
MESSAGE "The first selected element has no object info!"

IF (exists (app.pens["Thick"]) = false) THEN
MESSAGE "Pen ""Thick"" does not exist!"

Functions 163

MACRO AddCustomPen
DEFINE penName AS String

penName = Get String "Name of your new Pen?"
IF (exists (activeDoc.Pens[penName]) = false) THEN
Add Pen penName
ELSE
MESSAGE "Pen " + penName + " already exists!"
END IF
END MACRO

Return

Parameters can be passed down to macros or subMacros using a return function.

Example

SUBMACRO Fact(Integer n)
#Calculates the factorial "n!"
DEFINE prod AS integer
DEFINE i AS integer

prod =1

FOR i = 1 TO n

prod = prod*i

END FOR

RETURN prod
END SUBMACRO

MACRO Calculate Factorial
DEFINE n AS integer
DEFINE result AS integer
n = Get integer "Please enter a small integer value"

n = abs(n)

result = Run Fact (n)
MESSAGE n+"! = " + result
END MACRO

Call

Applies to Arbortext IsoDraw 7.0 FO00 and later.

The call () function calls a subMacro as a function. The subMacro has to have a
RETURN directive to close and pass back a value to the calling macro.

call()
call (macrocall)

macrocall (string) Name of the macro or subMacro to be called. The
parameter list can be added in () parentheses. The name must
correspond to a macro or subMacro in memory.

RETURN value The type is determined by the calling macro or subMacro.

164 Arbortext® IsoDraw® Macro Language Reference

Example

SUBMACRO Foobar(integer pl, integer p2)
DEFINE r AS integer
...
RETURN r
END SUBMACRO
MACRO MyMainMacro
DEFINE result AS integer
...
SubMacro-call with "Run" command:
result = RUN Foobar (a,b)

#

The same, using the "call"-Function:
result = call ("Foobar(a,b)")

#

The following is not possible with "Run":

s = GET STRING "Please enter Macro name"
result = call(s+"(a,b)")

...

END MACRO

Functions

165

ZniT

Simple Data Types

L1 =Y 0 =T SRS 168
Floating-Point NUMDETS ..o 168
)41 o SRRt 168
[ToTo] 1= Y= o 1SR 168

IML provides four simple data types commonly found in many computer languages.
These data types can return or set a single number, string, or boolean literal value.

167

Integers

Integers are whole numbers, for example, 2, 4 and 357. The range of an integer extends
from (-2,147,483,648) through 2,147,483,647. Negative values have to be put in
parentheses, for example (-1).

Floating-Point Numbers

Floating point numbers represent numeric values with decimal digits. Negative values
have to be put in parentheses, for example, (-1.3).

Strings

String literals are delimited either with single(’) or double (") quotes in Arbortext [soDraw
macros:

'Mo Szyslak'"Julius Hibbert"

Within a string other type quotes can be used without limitation:

MESSAGE "hello world: 'part one'"
MESSAGE 'hello world: "part two™'

Quotes of the same type have to be doubled for not terminating the string:

stringl = "double quote: "" "
string2 = 'single quote: '' '

Adding one string to another with the ’+’ operator:

DEFINE text AS string
text = "con" + 'cat'
MESSAGE text + "enated"

Booleans

A boolean represents a "truth value" - it says whether something is true or not. Truth and
falseness determine the outcome of conditional code such as:

DEFINE test AS boolean
test = true

IF (test = true) THEN
#do something
ELSE
#do something ELSE
END IF

168 Arbortext® IsoDraw® Macro Language Reference

B 18

Complex Data Types

P OINt s 170
o] 10 #C TR 170
L= 3 2= T | = RS 170
2] 21 070] (o] S 170
(017 D' (@] (o] 170
L0701 o] 1] o 7= o 171
Bl et e e e e e et e e aeaeeerer e ——————————aaaareon 172
MOUSE EVENL.......eee e e e e 172

IML provides complex data types which are unique to the language. Unlike simple data
types, complex data types contain multiple values which can be returned or set separately
using IML property statements.

169

Point

A point owns two float properties which define the x- and y-coordinates of the point.

DEFINE pt Start AS point
pt Start.x = (-22.99)
pt Start.y = 123.123

Point3

The point3 type defines a three-dimensional point with its x-, y- and z-coordinates. These
properties are float literals.

DEFINE pt3 corner AS point3
pt3 corner.x = 332.76

pt3 _corner.y = 239

pt3 corner.z = (-45.88)

Rectangle

The rectangle type defines a rectangle with its top-left- and bottom-right-corners. The
properties defining the single coordinates are float literals.

DEFINE rect Select AS rectangle
rect Select.top = 252.55

rect Select.left = 299.297
rect Select.bottom = 498.348
rect Select.right = 125.73

RGBColor

An RGBColor owns three properties which are integer literals. These properties define the
values of red, green and blue. In contrast to "normal" integer literals the RGB-integers
can only range from 0 to 255.

DEFINE RGB red AS RGBColor

RGB red.red = 188

RGB red.green = 0
RGB red.blue = 139

CMYKColor

A CMYKColor owns four properties which are floats literals. These properties define the
values of cyan, magenta, yellow and key (or black). In contrast to "normal" float literals
the CMYK-float range is only from 0 to 1.

170 Arbortext® IsoDraw® Macro Language Reference

DEFINE CMYK blue AS CMYKColor
CMYK blue.cyan = 0.99

CMYK blue.magenta = 0.7

CMYK blue.yellow = 0.13

CMYK blue.black = 0.08

ColorSpec

The ColorSpec data type is an either...or data type. This means that the data type could
assume three different states. Depending on the state of the data type, it owns two or
three properties.

The first and only common to all three different states of the ColorSpec data type is the

type property. This property contains the string value "cmykValues", "rgbValues" or
"colorRef™.

If the value type is "cmykValues" the ColorSpec data type owns a second property called
cmyk which is a CMYKColor data type.

#defining a colspec with another variable
DEFINE CMYK blue AS CMYKColor

CMYK blue.cyan = 0.99

CMYK blue.magenta = 0.7

CMYK blue.yellow = 0.13

CMYK blue.black = 0.08

DEFINE color blue AS ColorSpec
color blue.type = "cmykValues"
color blue.cmyk = CMYK blue

Add color "NewBlue" color blue

If the value type is "rgbValues" the ColorSpec data type owns a second property called rgb
which is an RGBColor data type.

#defining a colorSpec directly

DEFINE color red AS ColorSpec

color red.type = "rgbValues"

color red.rgb.red = 188

color red.rgb.green = 0

color red.rgb.blue = 29

If the value type is "colorRef" the ColorSpec data type owns another two properties. One
is a string and called color and one is a float and called tone. The color property contains
the name of the color the data type is referencing. Every color defined in Arbortext
IsoDraw is allowed. The tone property defines the modification of intensity as a float (0 to
1) of the color defined by the color property.

DEFINE grey25 AS ColorSpec

grey25.type = "colorRef"

grey25.color = "$ISO BLACK"
grey25.tone = 0.25

Complex Data Types 171

Fill

The fill data type owns four properties. The first one is a string which defines the type of
the fill. The allowed values for type are "no_fill", "hatching", "pattern" and "color".
DEFINE myFill AS fill

myFill.type = "pattern"

The second property is a ColorSpec called colSpec (see ColorSpec on page 171).

myFill.colSpec.rgb.blue = 29

The third property defines the hatching used. Values allowed for this property are the
names of all existing hatchings as string.

myFill.hatching = "Aluminium"

The fourth property is used for defining the type of pattern. Allowed values for that
property are the names of all existing patterns as string.

myFill.pattern = "25% Grey"

Mouse Event

The mouse event returns information about the mouse behavior of the user, e.g. which
mouse button has been clicked (see Wait Mouseclick on page 154).

DEFINE myME AS MouseEvent
myME = WAIT MOUSECLICK

172 Arbortext® IsoDraw® Macro Language Reference

Vi

Object Data Types

About Object Data Types in IML

IML provides object data types—complex, multi-property data types that can also contain
methods that define how the object behaves when invoked.

There are four IML objects: document, element, layer, and application. (The
application object returns and sets user interface and data exchange preferences.)

IML also includes sub data types that, unlike other data types, you do not DEFINE.
Rather, you use them to set or return the attribute preferences for the current document
or application object.

173

219

Document Object

= o2 (LY=o o 177
AOCUMENE NAME ...ttt e e e e e e e e et e e e e e e e e eeeeeesasanaas 177
AOCUMENE.PALN ... 177
(o [oTo18] g =T o1 o 01=T 0 {7010 o | 177
documeNnt.actiVe Pen ... 177
docuMENt.SIYIECOUNT......oooiiie e 178
document.active _Style ... 178
document.shadoWCOUNL.........oooviiiiiii et 178
document.active_ShadOWoooiiiiiiiiii s 178
document.gridCOUNTuuiiiiiiiieeeeeeeeee e 178
docUMENL.ACHIVE_GIidoooiiiiiiiiiee e 178
document.formatCoUNtuiiiiee e 178
document.active_textFormat ... 179
document.VieWpPOrtCOUNT.........euiiiiiieieeiieeeeee e 179
(o [oTelN] o g =T o1 Y T=AN Y oo o] A 179
document.CalloUtCOUNT ... 181
document.active_CalloUt............oeiiiiiiii s 181
documENtIayErCOUNTuuiiiiiiieeieee e 181
(o [oTo1N] g =T o o =)V L=T = 181
document.selectedEIemMENtS ... 181
document.firstSelectedElement ... 181
document.selectedParts s 182
document.Modified ... 182
o (oo W] 4= o 1 oo | 5 o 1 182
AOCUMENEWINAOW. ... e e e e e e e 184
(o [oTeTN] o g =T 01 o8] o F=To [0 11 A 185
dOCUMENTENIEAU. 185
document.thickthin...........ooo s 186
(o [oTo18] g g =101 o o= Tod (o[{0] s To [T 188

175

docuUMENLIINEOPLONSuuiiiiiiii e 188

document.simpleEllipsePrinting...........ccuiii e 189
(o [oTe1¥[4aT=Tq | eTo) (o] £ 7] U o | PSSRSO 189
document.hatChingCoOUNL...........uuiiiiiieiieii s 189
document.patterNCOUNT..........uuiiiiiiiiiieeeeeeee e 189
document.ObjJectS[0DJECE ID]oeeeeeeeiiiiiiiiiiieiee e 190
document.lockedHIddeNnoouiiiiiii i 190
document.lock3DINteractionooeeeviiiiiiiiiiiiie 191

The Document object defines a document in Arbortext IsoDraw.

DEFINE myDoc AS document
myDoc = new

176 Arbortext® IsoDraw® Macro Language Reference

activeDoc

The ActiveDoc object does the following:

® Sets a defined Document object (such as myDoc above) as the currently active
document

® Enables you to return and set properties of the active document

#both examples change the name of the active

#document

DEFINE doc 01 AS document

doc 01 = activeDoc

doc_0l.name = "a new document"
#or

activeDoc.name = "a new document"

It is assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.name

Returns and sets the name of the document as string.

myDoc.name = "myNewDocument"

document.path

Returns and sets the path of the document as string.

myDoc.path = "c:\temp\doc 0l.iso"

document.penCount

Returns the number of the pens as integer. This property is read only.

MESSAGE myDoc.penCount

document.active Pen

Returns and sets the name of the active pen as string.

myDoc.active pen = "Thick"

Document Object 177

document.styleCount

Returns the number of the styles as integer. This property is read only.

MESSAGE myDoc.styleCount

document.active_style

Returns and sets the name of the active styles as string.

myDoc.active style = "Solid"

document.shadowCount

Returns the number of shadows as integer. This property is read only.

MESSAGE myDoc.shadowCount

document.active_shadow

Returns and sets the name of the active shadow as string.

myDoc.active shadow = "Autom. Short"

document.gridCount

Returns the number of grids as integer. This property is read only.

MESSAGE myDoc.gridCount

document.active_grid

Returns and sets the name of the active grid as string.

myDoc.active grid = "Isometric"

document.formatCount

Returns the number of text formats as integer. This property is read only.

MESSAGE myDoc.formatCount

178 Arbortext® IsoDraw® Macro Language Reference

document.active textFormat

Returns and sets the name of the active text format as string.

myDoc.active textFormat = "Normal"

document.viewportCount

Returns the number of viewports as integer. This property is read only.

MESSAGE myDoc.viewportCount

document.viewports]]

This property gives access to all viewport attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.viewports[].name

Returns and sets the viewport name as string.

myDoc.viewports[l] .name = "test"

document.viewports]].ld
Returns the viewport ID as string. This property is read only.

MESSAGE myDoc.viewports[1l].Id

document.viewports[].Rectangle

Returns and sets the viewport rectangle as rectangle.

myDoc.viewports[l].rectangle.bottom = 500
myDoc.viewports[l].rectangle.left = 135
myDoc.viewports[l].rectangle.right = 200
myDoc.viewports[l].rectangle.top = 650

document.viewports[].LayerCount

Returns the number of layers in a viewport as integer. This property is read only.

MESSAGE myDoc.viewports[1l].LayerCount

Document Object 179

document.viewports|].Layers|[]

This property gives access to layer attributes within a viewport but it can not be used
directly. It is assumed that myDoc has already been defined as a document and set as
the activeDoc for the following samples.

document.viewports[].Layer[].Name

Returns and sets the name of a layer within a viewport as string.

myDoc.viewports[l].Layers[1l].Name = "Lyrl"

document.viewports[].Layers[].locked

Returns and sets the locked state of a layer within a viewport as boolean.

myDoc.viewports[l].Layers[l].locked = true

document.viewports[].Layers[].protected

Returns and sets the protected state of a layer within a viewport as boolean.

document.viewports[].Layers[].active

myDoc.viewports[l].Layers[l].protected = true

Returns and sets the active state of a layer within a viewport as boolean.

myDoc.viewports[l].Layers[l].active = true

document.viewports[].Layers[].printable

Returns and sets the printable state of a layer within a viewport as boolean.

myDoc.viewports[1l].Layers[l].printable = true

document.viewports[].Layers[].exportable

Returns and sets the exportable state of a layer within a viewport as boolean.

myDoc.viewports[l].Layers[l].exportable = true

document.viewports[].Layers]].visible

Returns and sets the visible state of a layer within a viewport as boolean.

myDoc.viewports[l].Layers[l].visible = true

document.viewports[].Layers[].useColor
Returns and sets the use of color property of a layer within a viewport as boolean.
myDoc.viewports[l].Layers[l].useColor = true

This property gives access to layer attributes within a viewport but it can not be used
directly. It is assumed that myDoc has already been defined as a document and set as
the activeDoc for the following samples.

180 Arbortext® IsoDraw® Macro Language Reference

document.calloutCount

Returns the number of callout styles as integer. This property is read only.

MESSAGE myDoc.calloutCount

document.active callout

Returns and sets the name of the active callout style as string.

myDoc.active calloutstyle = "Normal"

document.layerCount

Returns the number of layers of the document as integer.

MESSAGE myDoc.layerCount

document.layers]]

Gives access to all layer attributes but can not be reached directly (see Layer — The
Layer Object on page).

myDoc.layers[1l] .name = "myLayer"

document.selectedElements

Returns the number of selected elements of the document as integer.

MESSAGE myDoc.selectedElements

document.firstSelectedElement

This property returns the first selected element of a selection as element. To get the next
element of a selection use element.nextSelectedElement (see element.nextSelectedElement
on page 197).

MACRO ListElementSelection
DEFINE el AS Element
DEFINE m AS String
el = activeDoc.firstSelectedElement
IF (exists(el) = false) THEN
MESSAGE "Select some Elements, please!"
Else
m = "Type(s) of selected Elements: " + el.type

Document Object 181

el = el.nextSelectedElement
WHILE (exists(el) = true)
m=m+", " + el.type
el = el.nextSelectedElement
END WHILE
MESSAGE m + "."
END If
END MACRO

document.selectedParts

Returns the number of selected parts of the document as integer.

MESSAGE myDoc.selectedParts

document.modified

Returns if the document was modified as boolean. (returns 0 if the document is not
modified, 1 if it has been modified)

MESSAGE myDoc.modified

document.grid

This property gives access to all grid attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.grid.gridSize

Returns and sets the grid size property as float.
myDoc.grid.gridSize = 20
document.grid.radius

Returns and sets the magnetic radius property as float.

myDoc.grid.radius = 5

document.grid.elementMagnet

Returns and sets the magnetic elements property as boolean.

myDoc.grid.elementMagnet = true

document.grid.gridMagnet

Returns and sets the magnetic grid points property as boolean.

myDoc.grid.gridMagnet = true

182 Arbortext® IsoDraw® Macro Language Reference

document.grid.showGrid

Returns and sets the show grid property as boolean.

myDoc.grid.showGrid = true

document.grid.showDim

Returns and sets the show dimensions property as boolean.

myDoc.grid.showDim = true

document.grid.constrain

Returns and sets the align to grid property as boolean.

myDoc.grid.constrain = true

document.grid.gridinFront

Returns and sets the grid in front property as boolean.

myDoc.grid.gridInFront = true

document.grid.noFShortinlso

Returns and sets the no isometric foreshortening property as boolean.

myDoc.grid.noFShortInIso = true

document.grid.gridColor

Returns and sets the color property as RGBColor.
myDoc.grid.gridColor.red = 50
myDoc.grid.gridColor.green = 150

myDoc.grid.gridColor.blue = 50

document.grid.firstSelColor

Returns and sets the first color property as RGBColor.
myDoc.grid.firstSelColor.red = 10
myDoc.grid.firstSelColor.green = 160

myDoc.grid.firstSelColor.blue = 140

document.grid.secondSelColor

Returns and sets the second color property as RGBColor.
myDoc.grid.secondSelColor.red = 75
myDoc.grid.secondSelColor.green = 30

myDoc.grid.secondSelColor.blue = 85

Document Object

183

document.window

This property gives access to all window attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.window.pageX

Returns and sets the window x-cords property as float.

myDoc.window.pageX = 200

document.window.pageY

Returns and sets the window y-cords property as float.

myDoc.window.pageY = 300

document.window.overlapX

Returns and sets the print overlap x-cords property as float.

myDoc.window.overlapX = 10

document.window.overlapY

Returns and sets the print overlap y-cords property as float.

myDoc.window.overlapY = 10

document.window.scale

This command is included for compatibility reasons only. It is not recommended that you
use this command for new development of macros as it may be discontinued in the future.
All features from this command have been incorporated into the new command ZOOM
(see Zoom on page 87).

Returns and sets the window view size (zoom) property as float.

myDoc.window.scale = 10

document.window.dimScale

Returns and sets the dimension scaling property as float.

myDoc.window.dimScale = 3

document.window.preview

Returns and sets the objects preview property as integer. The allowed values are:

0 “no preview”

1 “a preview”

2 “visible hotspots”
4 “visible objects”

Add values to combine properties.

184 Arbortext® IsoDraw® Macro Language Reference

myDoc.window.preview = 6

document.window.is3D

Returns the 3D property as boolean. This property is read only.

MESSAGE myDoc.window.is3D

document.window.curSystem

Returns and sets the current unit system property as string. Allowed values are "mm",
"in" and "pt"

myDoc.window.curSystem = "mm"

document.shadow

This property gives access to all shadow attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.shadow.shadowWidth

Returns and sets the shadow width property as float.

myDoc.shadow.shadowWidth = 5

document.shadow.shadowFactor

Returns and sets the shadow factor property as float.

myDoc.shadow.shadowFactor = 2

document.thread

This property gives access to all thread attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.thread.inner.upTo1

Returns and sets the first "inner thread up to" property as float.

myDoc.thread.inner.upTol = 20

document.thread.inner.upTo2

Returns and sets the second "inner thread up to" property as float.

myDoc.thread.inner.upTo2 = 40

document.thread.inner.size1

Returns and sets the first inner thread distance property as float.

Document Object 185

myDoc.thread.inner.sizel = 2.5

document.thread.inner.size?2

Returns and sets the second inner thread distance property as float.

myDoc.thread.inner.size2 = 4

document.thread.inner.size3

Returns and sets the third inner thread distance property as float.

myDoc.thread.inner.size3 = 5.5

document.thread.outer.upTo1

Returns and sets the first "outer thread up to" property as float.

myDoc.thread.outer.upTol = 20

document.thread.outer.upTo2

Returns and sets the second "outer thread up to" property as float.

myDoc.thread.outer.upTo2 = 40

document.thread.outer.size1

Returns and sets the first outer thread distance property as float.

myDoc.thread.outer.sizel = 2.5

document.thread.outer.size2

Returns and sets the second outer thread distance property as float.

myDoc.thread.outer.size2 = 4

document.thread.outer.size3

Returns and sets the third outer thread distance property as float.

myDoc.thread.outer.size3 = 5.5

document.thickthin

This property gives access to all thick/thin attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.thickthin.useThickThin

Returns and sets the "use thick thin technique" property as boolean.

myDoc.thickthin.useThickThin = true

186 Arbortext® IsoDraw® Macro Language Reference

document.thickthin.thickPen

Returns and sets the thick pen property as string. The name of every exiting pen is an
allowed value.

myDoc.thickthin.thickPen = "Thick"

document.thickthin.thinPen

Returns and sets the thin pen property as string. The name of every exiting pen is an
allowed value.

myDoc.thickthin.thinPen = "Thin"

document.thickthin.useEllipsePens

Returns and sets the "specify pens for ellipses and threads" property as boolean.

myDoc.thickthin.useEllipsePens = true

document.thickthin.thick1

Returns and sets the first thick pen property as string. The name of every exiting pen
is an allowed value.

myDoc.thickthin.thickl = "Thick"

document.thickthin.thin1

Returns and sets the first thin pen property as string. The name of every exiting pen
is an allowed value.

myDoc.thickthin.thinl = "Thin"

document.thickthin.thick2

Returns and sets the second thick pen property as string. The name of every exiting pen
is an allowed value.

myDoc.thickthin.thick2 = "Thick"

document.thickthin.thin2

Returns and sets the second thin pen property as string. The name of every exiting pen
is an allowed value.

myDoc.thickthin.thin2 = "Thin"

document.thickthin.thick3

Returns and sets the third thick pen property as string. The name of every exiting pen
is an allowed value.

myDoc.thickthin.thick3 = "Thick"

document.thickthin.thin3

Returns and sets the third thin pen property as string. The name of every exiting pen
is an allowed value.

Document Object 187

myDoc.thickthin.thin3 = "Thin"

document.thickthin.upto1

Returns and sets the first up to property as float.

myDoc.thickthin.uptol = 20

document.thickthin.upto2

Returns and sets the second up to property as float.

myDoc.thickthin.upto2 = 40

document.background

This property gives access to all background attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.background.inColor

Returns and sets the “in color” property as boolean.

myDoc.background.inColor = true

document.background.intensity

Returns and sets the intensity property as float. The property range is from 0 to 100.

myDoc.background.intensity = 50

document.background.color

Returns and sets the screen color property as RGBColor.

myDoc.background.color = "{RGB 50 80 120}"

document.lineOptions

This property gives access to all line option attributes but it can not be used directly. It is
assumed that myDoc has already been defined as a document and set as the activeDoc
for the following samples.

document.lineOptions.lineCap

Returns and sets the line cap ends property as integer. Allowed values are 0 for “flat”, 1
for “round” and 2 for “square”.

myDoc.lineOptions.lineCap = 1

188 Arbortext® IsoDraw® Macro Language Reference

document.lineOptions.lineJoin

Returns and sets the line option corners property as integer. Allowed values are 0 for
“mitered”, 1 for “rounded” and 2 for “bevel”.

myDoc.lineOptions.lineJoin = 2

document.lineOptions.miterLimit

Returns and sets the miter limit property as integer.

myDoc.lineOptions.miterLimit = 4

document.lineOptions.overPrint

Returns and sets the overprint property as integer. Allowed values are 0 for “none”, 1 for
“stroke”, 2 for “fill” and 3 for “stroke and fill”.

myDoc.lineOptions.overPrint = 2

document.simpleEllipsePrinting

This property sets and returns the simple ellipse printing as boolean.

myDoc.simpleEllipsePrinting = true

document.colorCount

Returns the number of colors as integer. This property is read only.

MESSAGE myDoc.colorCount

document.hatchingCount

Returns the number of hatchings as integer. This property is read only.

MESSAGE myDoc.hatchingCount

document.patternCount

Returns the number of patterns as integer. This property is read only.

MESSAGE myDoc.patternCount

Document Object 189

document.Objects[object ID]

Applies to Arbortext IsoDraw 7.0 FO00 and later:

Enables access to an object within the document by object ID string. This property is
read only.

| object ID | (String) Object ID of the object to access.

MESSAGE myDoc.patternCount

Example

MACRO ObjectIndexDemo
DEFINE sID AS string
DEFINE sName AS string
sID = "AUTOID 3833"
IF (exists(activeDoc.Objects([sID]))
sName = activeDoc.Objects[sID].info.NAME

MESSAGE "Name: " + sName
ELSE
MESSAGE "Not Found!"
END IF
END MACRO

document.lockedHidden

Applies to Arbortext IsoDraw 7.0 F000 and later:

Returns or sets the show/hide state of locked elements in a document as boolean. This
property corresponds to the Hide command on the Element menu.

true Hide locked elements.
false Show locked elements.

® [fa macro changes the state of document.lockedHidden, the changed show/hide
state of locked elements is not saved in the document.

® Recording a macro that selects or clears Hide on the Element menu adds a
document.lockedHidden = {truel|false} statement to the macro.

Note

Like Hide, this document property setting only affects locked elements on unlocked layers.
Locked elements on locked layers are not affected.

document.lockedHidden = true

190 Arbortext® IsoDraw® Macro Language Reference

Example

MACRO ObjectIndexDemo

DEFINE sID AS string

DEFINE sName AS string

sID = "AUTOID 3833"

IF (exists(activeDoc.Objects([sID]))
sName = activeDoc.Objects[sID].info.NAME

MESSAGE "Name: " + sName
ELSE

MESSAGE "Not Found!"
END IF
END MACRO

document.lock3Dinteraction

Applies to Arbortext IsoDraw 7.0 FO00 and later:

Returns or sets the show/hide state of the 3D object Rotate tool in Arbortext IsoView as
boolean. This property corresponds to the Lock 3D interaction command on the Objects
menu. It only applies when the current document contains 3D objects and the user (or
macro) selects Show in IsoView on the Objects menu. (See Show in IsoView on page 78.)

true Hides the 3D object Rotate tool in Arbortext IsoView when
Arbortext IsoView is opened with the Show in IsoView command.
3D objects cannot be rotated in Arbortext IsoView.

false Shows the 3D object Rotate tool in Arbortext IsoView when
Arbortext [soView is opened with the Show in IsoView command.
3D objects can be rotated in Arbortext IsoView.

® The state of document.lock3Dinteraction can be changed by a macro.

® Recording a macro that selects or clears Lock 3D interaction on the Objects menu
adds a document.lock3Dinteraction = {true|false} statement to the
macro. (The Lock 3D interaction command is only available when there are 3D
objects in the current document.)

document.lock3Dinteraction = true

Document Object 191

pan2i

Element Object

element.element id ... - 195
BlIEMENEAYPE .. 195
EleMENTIOCKEA ... 195
L =Yg =T o1 0 0 F= 11 TR 195
BlEMEBNT.DOX e 195
elemeENt.firStCNIld..........ooeeee e 196
elemMEeNt.IasStCNIldcoooe e 196
element.previoUuSSIDIING ... 196
element.NeXtSIDINGooiii 196
ElEMENEPAIENT.... ..ot ————— 197
BlIEMENEIAYET ... 197
€leMENT.SEIECIEAcoo e 197
element.nextSelectedElement.............cooooiiiiiiiii e 197
€1EMENEIINECAP. ... ettt ———— 198
ElemMENT.IINEJOIN. ... e 198
element.miterLimito 198
elemeNnt.OVEIPIING ... 198
element.segmeNntCOUNTuiiiiiiiiiieeee e 198
(=Y 0 =T oL 0 1 TR 198
element.group.childCount............ooeiiiiiiiii 199
€lemMENt.dOCUMENYT ... e e e e e e e 199
(11T g T=T) 1T o (o T 200
element.info.attributes]ouveriimiiie 200
element.info.ViEW _CONEEXEuuiiiiiiiiiiiii s 201
ClEMENTIING c.oeeeeee e e e 201
€1EMENEEIIPSE. ... e 202
elementinnerthread..............oooormiiiiiiiii e 203
element.outerthread ..o 205
element.CalloUtoooi i 206

193

L (= g (=T 0 =T T 209

€l1eMENT.POIYGON ... 210
ElEMENTMAIKET ... ettt eeaeens 211
ClEMENTDEZIET 211
BlEMENT XL ... e 213
ElEMENTIMEAGE ... 214

An element is something you have created in Arbortext IsoDraw, for example an ellipse
or a line.

DEFINE myElem AS element
myElem = CREATE LINE 10 10 100 10

All create commands (ellipse, line, rectangle ...) return a reference on the created element.
The properties of this element object can be queried and set.

MACRO Change Segment Pens

DEFINE myElem AS element

myElem = CREATE LINE 10 10 100 100
APPEND LINE SEGMENT 100 10

APPEND LINE SEGMENT 10 10

myElem.line.segments[1l].pen = "Thick"
myElem.line.segments[2] .pen = "Medium"
myElem.line.segments[3].pen "Thin"

END MACRO

It is assumed that myElem has already been defined as an element for the following
samples.

194 Arbortext® IsoDraw® Macro Language Reference

element.element_id

Returns and sets the element’s internal id as integer.

MESSAGE myElem.element id

element.type

Returns the element type as string. Allowed values are:

"Line"
"Rectangle"
"Polygon"
"Marker"
"Ellipse"
"Inner thread"
"Outer thread"
"Bezier"
"Text"

"Placed file"
"Image"
"Callout"

This property is read only.

MESSAGE myElem.type

element.locked

Returns and sets the locked state of the element as integer. Allowed values are 0 for
“unlocked” and 1 for “locked”.

myElem.locked = 0

element.mask

Returns the masked state of the element as boolean. This property is read only.

MESSAGE myElem.mask

element.box

Returns the element box as rectangle. This property is read only.
MESSAGE myElem.box.top
MESSAGE myElem.box.left

MESSAGE myElem.box.bottom

Element Object 195

MESSAGE myElem.box.right

element.firstChild

This will return the first element located within a group. The returned data type is element.
This property is read only.

element.lastChild

This will return the last element located within a group. The returned data type is element.
This property is read only.

element.previousSibling

This will return the previous element located within a group or on a layer. The returned
data type is element. This property is read only.

element.nextSibling

This will return the next element located within a group or on a layer. The returned data
type is element. This property is read only.

MACRO ElementChildAndSiblingDefine i AS integer
DEFINE n AS integer
DEFINE k AS integer
DEFINE m AS integer
DEFINE elel AS element
DEFINE ele2 AS element
DEFINE ele3 AS element
DEFINE lay AS layer

FOR i = activeDoc.layerCount to 1 step -1

MESSAGE "processing layer " + activeDoc.layers[i].name
elel = activeDoc.layers[i].firstChild

n=1

WHILE (exists(elel) = true)

MESSAGE "The " + n + " element of this layer is a " + elel.type
n=mn+1
ele2 = elel.firstChild
k=1
WHILE (exists(ele2) = true)
MESSAGE "The " + k + " element of this group is a " + ele2.type
ele3 = ele2.firstChild
m=1
WHILE (exists(ele3) = true)
MESSAGE "The " + m + " element of this subgroup is a " + ele3.type
ele3 = ele3.nextSibling
m=m+ 1

196 Arbortext® IsoDraw® Macro Language Reference

END WHILE
ele2 = ele2.nextSibling
k =%k + 1

END WHILE

elel = elel.nextSibling

END WHILE
END FOR
END MACRO

element.parent

Returns the parent of an element as element.

element.layer

Returns the layer which the element is located on as layer. This property is read only.

MACRO getLayerName
DEFINE el AS element
select all
el = activeDoc.firstSelectedElement
MESSAGE el.layer.name
END MACRO

element.selected

Returns the selected state of the element as integer. This property is read only. 0 means
“not selected” and 1 means “selected”.

MESSAGE myElem.selected

element.nextSelectedElement

This property returns the next selected element of a selection as element. To get the first
element of a selection see document.firstSelectedElement on page 181.

MACRO MakeHotspots
DEFINE el AS Element
Select IF Type is equal to "Text"
el = activeDoc.firstSelectedElement
WHILE (Exists (el) = true)
Create Object Info el
el.info.hotspot = "region"
el = el.nextSelectedElement
END while
END MACRO

Element Object 197

element.lineCap

Returns and sets the ends property of the element as integer. Allowed values are 0 for
“flat”, 1 for “round” and 2 for “square”.

myElem.lineCap = 1

element.linedoin

Returns and sets the corners property of the element as integer. Allowed values are 0 for
“mitered”, 1 for “rounded” and 2 for “bevel”.

myElem.lineJoin = 2

element.miterLimit

Returns and sets the miter limit property of the element as integer.

myElem.miterLimit = 4

element.overPrint

Returns and sets the overprint property of the element as integer. Allowed values are 0 for
“none”, 1 for “stroke”, 2 for “fill” and 3 for “stroke and fill”.

myElem.overPrint = 2

element.segmentCount

Returns the number of the segments of the element as integer. This property is read only.

MESSAGE myElem.segmentcount

element.fill

Returns and sets the filling of the element as Fill.
myElem.fill.colSpec.rgb.red = 200
myElem.fill.colSpec.rgb.green = 60

myElem.fill.colSpec.rgb.blue = 120

198 Arbortext® IsoDraw® Macro Language Reference

element.group.childCount

Returns the number of elements within a group as integer. This property is read only.

MESSAGE myElem.group.childCount

element.document

With element.document you can modify the properties of a placed element.

DEFINE myElem AS elementmy
Elem = place

MESSAGE myElem.document.destinationRect.top

element.document.startPoint
Note
This property is deprecated and is only supported for backward compatibility.

Returns and sets the start point parameter as point.

myElem.document.startPoint.x = 58.84

element.document.destinationRect

Returns the destination rectangle parameter as rect. This property is read only.

MESSAGE myElem.document.destinationRect.bottom

element.document.file_name

Returns the file name of the placed document as string. This property is read only.

MESSAGE myElem.document.file name

element.document.path

Returns the path of the placed document as string. This property is read only.

MESSAGE myElem.document.path

element.document.update_mode

Returns and sets the update mode of the placed document as integer. Allowed values are 1
for “auto”, 2 for “notify” and 3 for “none”.

myElem.document.update mode = 1

element.document.include_file

Note
This property is deprecated and is only supported for backward compatibility.

Element Object 199

Returns and sets if the placed file should be included in the document as integer. Allowed
values are 0 for "do not include" and 2 for "include file"

myElem.document.include file = 0

element.info

With element.info you can modify the properties of the object info of the element.

MESSAGE myElem.info.id

element.info.type

Returns and sets the type of the object info as string.

MESSAGE myElem.info.type

element.info.id

Returns and sets the object id as string.

myElem.info.id = "AQO1"

element.info.name

Returns and sets the object name as string.

myElem.info.name = "TI"

element.info.tip

Returns and sets the object tip as string.

myElem.info.tip = "hi"

element.info.hotspot

Returns and sets the object hotspot as string. Allowed string values are “none”, “line”” and
“region”

myElem.info.hotspot = "region"

element.info.attrCount

Returns the number of attributes of the object as integer. This property is read only.

MESSAGE myElem.info.attrCount

element.info.attributes|]

This property gives access to object attributes but can not be used directly. It is assumed
that myElem has already been defined as an element for the following samples

200 Arbortext® IsoDraw® Macro Language Reference

element.info.attributes[].type

Returns and sets the type of one object attribute as string. Allowed string values are
"String", "Float", "Integer" and "Link".

myElem.info.attributes[1].type
= "Integer"
element.info.attributes[].name

Returns and sets the name of one object attribute as string.

myElem.info.attributes[1l] .name
= "IsoDraw"

element.info.attributes|].value

Returns and sets the value of one object attribute. Depending on what type the
attribute is defined the values of this property could be integer, float or string (see
element.info.attributes| | on page 200).

myElem.info.attributes[1l].value = "Integer"

element.info.view_context

This property gives access to all view context attributes but can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples

element.info.view_context.type

Returns and sets the type of the view context as string. Possible values are "none",
"extent" and "size".

myElem.info.view context.type = "none"

element.info.view_context.rectangle

If the view context “size” is used, this property must also be used to return and set the size
of the view context as rectangle.

myElem.info.view context.rectangle.top = 500.89
myElem.info.view context.rectangle.left = 200
myElem.info.view context.rectangle.bottom = 300.54

myElem.info.view context.rectangle.right = 350.34

element.line

This property gives access to all line attributes but it can not be used directly. It is assumed
that myElem has already been defined as an element for the following samples

Element Object 201

element.line.startPoint

Returns and sets the start point of the line as point.
myElem.line.startPoint.x = 107.55

myElem.line.startPoint.y = 157.39

element.line.segments|].selected

Returns the selected state of one line segment as integer. This property is read only. 0
means “not selected” and 1 means “selected”.

MESSAGE myElem.line.segments[l].selected

element.line.segments|].endPoint

Returns and sets the end point of one line segment as point.
myElem.line.segments[1l].endPoint.x = 188.66

myElem.line.segments[1l] .endPoint.y = 256.66

element.line.segments[].pen

Returns and sets the pen of one line segment as string. Any existing pen is allowed.

myElem.line.segments[1l].pen = "Thick"

element.line.segments|].style

Returns and sets the style of one line segment as string. Any existing style is allowed.

myElem.line.segments[1l].style = "Solid"

element.line.segments|[].shadow

Returns and sets the shadow of one line segment as string. Any existing shadow is allowed.

myElem.line.segments[1l].shadow = "Autom. Long"

element.ellipse

This property gives access to all ellipse attributes but it can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples
element.ellipse.centerPoint

Returns and sets the center point of the ellipse as point.
myElem.ellipse.centerPoint.x = 58.76

myElem.ellipse.centerPoint.y = 12.45

element.ellipse.angle

Returns and sets the angle of the ellipse as float.

myElem.ellipse.angle = 45

202 Arbortext® IsoDraw® Macro Language Reference

element.ellipse.value

Returns and sets the value of the ellipse as float.

myElem.ellipse.value = 90

element.ellipse.radius

Returns and sets the radius of the ellipse as float.

myElem.ellipse.radius = 500

element.ellipse.segments|].selected

Returns the selected state of one ellipse segment as integer. This property is read only. 0
means “not selected” and 1 means “selected”.

MESSAGE myElem.ellipse.segments[l].selected

element.ellipse.segments|].startAngle

Returns and sets the start angle of one ellipse segment as float.

myElem.ellipse.segments[1l].startAngle = 35.7

element.ellipse.segments[].endAngle

Returns and sets the end angle of one ellipse segment as float.

myElem.ellipse.segments[1l].endAngle = 35.7

element.ellipse.segments[].pen

Returns and sets the pen of one ellipse segment as string. Any existing pen is allowed.

myElem.ellipse.segments[1l].pen = "Thick"

element.ellipse.segments|].style

Returns and sets the style of the ellipse segment as string. Any existing style is allowed.

myElem.ellipse.segments([1l].style = "Solid"

element.ellipse.segments[].shadow

Returns and sets the shadow of one ellipse segment as string. Any existing shadow is
allowed.

myElem.ellipse.segments[1l].shadow = "Autom. Long"

element.innerthread

This property gives access to all inner threads attributes but it can not be used directly. It
is assumed that myElem has already been defined as an element for the following samples

element.innerthread.centerPoint

Returns and sets the center point of the inner thread as point.

Element Object 203

myElem.innerthread.centerPoint.x = 134.56

myElem.innerthread.centerPoint.y = 12.45

element.innerthread.angle

Returns and sets the angle of the inner thread as float.

myElem.innerthread.angle = 45

element.innerthread.value

Returns and sets the value of the inner thread as float.

myElem.innerthread.value = 90

element.innerthread.radius

Returns and sets the radius of the inner thread as float.

myElem.innerthread.radius = 500

element.innerthread.segments|].selected

Returns the selected state of one inner thread segment as integer. This property is read
only. 0 means “not selected” and 1 means “selected”.

MESSAGE myElem.innerthread.segments[1l].selected

element.innerthread.segments[].startAngle

Returns and sets the start angle of one inner thread segment as float.

myElem.innerthread.segments[1l].startAngle = 35.7

element.innerthread.segments|].endAngle

Returns and sets the end angle of one inner thread segment as float.

myElem.innerthread.segments[1l] .endAngle = 35.7

element.innerthread.segments|].pen

Returns and sets the pen of one inner thread segment as string. Any existing pen is allowed.

myElem.innerthread.segments[1l].pen = "Thick"

element.innerthread.segments|].style

Returns and sets the style of one inner thread segment as string. Any existing style is
allowed.

myElem.innerthread.segments[1l].style = "Solid"

element.innerthread.segments|].shadow

Returns and sets the shadow of one inner thread segment as string. Any existing shadow is
allowed.

myElem.innerthread.segments[1l].shadow = "Autom. Long"

204 Arbortext® IsoDraw® Macro Language Reference

element.outerthread

This property gives access to all outer threads attributes but it can not be used directly. It
is assumed that myElem has already been defined as an element for the following samples
element.outerthread.centerPoint

Returns and sets the center point of the outer thread as point.
myElem.outerthread.centerPoint.x = 150.75

myElem.outerthread.centerPoint.y = 180

element.outerthread.angle

Returns and sets the angle of the outer thread as float.

myElem.outerthread.angle = 45

element.outerthread.value

Returns and sets the value of the outer thread as float.

myElem.outerthread.value = 90

element.outerthread.radius

Returns and sets the radius of the outer thread as float.

myElem.outerthread.radius = 500

element.outerthread.segments|].selected

Returns the selected state of one outer thread segment as integer. This property is read
only. 0 means “not selected” and 1 means “selected”.

MESSAGE myElem.outerthread.segments[l].selected

element.outerthread.segments|].startAngle

Returns and sets the start angle of one outer thread segment as float.

myElem.outerthread.segments[1l].startAngle = 35.7

element.outerthread.segments[].endAngle

Returns and sets the end angle of one outer thread segment as float.

myElem.outerthread.segments[1l] .endAngle = 35.7

element.outerthread.segments|].pen

Returns and sets the pen of one outer thread segment as string. Any existing pen is allowed.

myElem.outerthread.segments[1l].pen = "Thick"

Element Object 205

element.outerthread.segments|].style

Returns and sets the style of one outer thread segment as string. Any existing style is
allowed.

myElem.outerthread.segments[1l].style = "Solid"

element.outerthread.segments[].shadow

Returns and sets the shadow of one outer thread segment as string. Any existing shadow is
allowed.

myElem.outerthread.segments[1l].shadow = "Autom. Long"

element.callout

This property gives access to all callout attributes but it can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples

element.callout.style_name

Returns the name of the callout style as string. This property is read only.

MESSAGE myElem.callout.style name

element.callout.line_pen

Returns and sets the type of the callout line pen as string. Allowed values are all existing
pen names and "$CS_DEFAULT" for using the value of the Normal callout style.

MESSAGE myElem.callout.line pen

myElem.callout.line pen = "$CS DEFAULT"

element.callout.line_style

Returns and sets the type of the callout line style as string. Allowed values are all existing
style names and "$CS_DEFAULT" for using the value of the Normal callout style.

myElem.callout.line style = "$CS DEFAULT"

element.callout.line_shadow

Returns and sets the type of the callout line shadow as string. Allowed values are all
existing shadow names and "$CS_DEFAULT" for using the value of the Normal callout
style.

myElem.callout.line shadow = "$CS DEFAULT"

element.callout.shape_type
Returns and sets the callout shape type as integer. Use $CS_DEFAULT for the shape type
value of the Normal callout style. Allowed values are:

0 "None"
1 "Circle"

206 Arbortext® IsoDraw® Macro Language Reference

2 "Triangle Up"

3 "Triangle Down"
4 "Rectangle"

5 "Pentagon"

6 "Hexagon"

myElem.callout.shape type = 2

myElem.callout.shape type = $CS DEFAULT

element.callout.shape_pen

Returns and sets the callout shape pen as string. Allowed values are all existing pen names
and "$CS_DEFAULT" for using the value of the Normal callout style.

myElem.callout.shape pen = "$CS DEFAULT"

element.callout.shape_style

Returns and sets the callout shape type as string. Allowed values are all existing line style
names and "$CS_DEFAULT" for using the value of the Normal callout style.

myElem.callout.shape style = "Solid"

element.callout.shape_shadow

Returns and sets the callout shape shadow as string. Allowed values are all existing
shadow names and "$CS_DEFAULT" for using the value of the Normal callout style.

myElem.callout.shape shadow = "no shadow"

element.callout.fill

Returns and sets the fill of the callout shape.
myElem.callout.fill.colSpec.type = "ColorRef"
myElem.callout.fill.colSpec.color = "Black"

myElem.callout.fill.colSpec.tone = 0.50

element.callout.shape_width

Returns and sets the value of the callout shape width as float. Use $CS_DEFAULT for the
shape type value of the Normal callout style.

myElem.callout.shape width = 2.5

element.callout.shape_height

Returns and sets the value of the callout shape height as float. Use $SCS_DEFAULT for the
shape type value of the Normal callout style.

myElem.callout.shape height = 1.5

element.callout.text_update

Returns and sets the status of the text update width as string. The allowed values are
"none" and "auto" or "$CS_DEFAULT" for the value of the Normal callout style.

Element Object 207

myElem.callout.text update = "auto"

element.callout.text_position

Returns and sets the type of the text alignment as string. The allowed values are "aligned"
and "centered" or "$CS_DEFAULT" for the value of the Normal callout style.

myElem.callout.text position = "centered"

element.callout.text_prefix

Returns and sets the text prefix as string. Use "$CS_DEFAULT" for the value of the
Normal callout style.

myElem.callout.text prefix = "partNo:"

element.callout.text_postfix

Returns and sets the text postfix as string. Use "$CS_DEFAULT" for the value of the
Normal callout style.

myElem.callout.text postfix = " 66765"

element.callout.string

Returns and sets the text content of a callout—without prefix and postfix— as string. This
callout element property can be changed by a macro. Use "$SCS_DEFAULT" for the
value of the Normal callout style.

myElem.callout.string = "DK95002"

element.callout.text_gap

Returns and sets the text gap as float. Use $CS_DEFAULT for the value of the Normal
callout style.

myElem.callout.text gap = 1.5

element.callout.text_font

Returns and sets the text font of the callout as string. Any installed font can be used. Use
"$CS_DEFAULT" for the value of the Normal callout style.

myElem.callout.text font = "Arial"

element.callout.text_face

Returns and sets the text face of the callout as string. Allowed values are "normal”, "bold",
"italic", "bolditalic" and "$CS_DEFAULT" for the value of the Normal callout style.

myElem.callout.text face = "bold"

element.callout.text_size

Returns and sets the text size of the callout as float. Use $CS_DEFAULT for the value of
the Normal callout style.

myElem.callout.text size = 24.5

208 Arbortext® IsoDraw® Macro Language Reference

element.callout.text_strokecolor

Returns and sets the text stroke color of the callout as ColorSpec (see ColorSpec on page
171).

myElem.callout.text strokecolor.type = "rgbValues"

element.callout.text_stroke

Returns and sets the text stroke of the callout as float.

myElem.callout.text stroke = 2.2

element.callout.text_fillcolor

Returns and sets the color of the fill of the text of the callout as ColorSpec (see ColorSpec
on page 171).

myElem.callout.text fillcolor.type = "rgbValues"

myElem.callout.text fillcolor.rgb.red = 168

myElem.callout.text fillcolor.rgb.green = 201

myElem.callout.text fillcolor.rgb.blue = 98

element.callout.text_scheme

Returns the text scheme of the callout as string. This property is read only.

MESSAGE myElem.callout.text scheme

element.callout.text_hotspot_flag

Returns and sets if the hotspot flag is set as integer. Allowed values are 0 for "No
Hotspot", 1 for "Is Hotspot" and 256 for the value of the callout style.

myElem.callout.text hotspot flag = 256

element.rect

This property gives access to all rectangle attributes but it can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples
element.rect.startPoint

Returns and sets the start point of the rectangle as point.
myElem.rect.startPoint.x = 107.55

myElem.rect.startPoint.y = 200.89

element.rect.segments|].selected

Returns the selected state of one rectangle segment as integer. This property is read only.
0 means “not selected” and 1 means “selected”.

MESSAGE myElem.rect.segments[l].selected

Element Object 209

element.rect.segments|].endPoint

Returns and sets the end point of one rectangle segment as point.
myElem.rect.segments[1l] .endPoint.x = 388.66

myElem.rect.segments[1l] .endPoint.y = 388.66

element.rect.segments]].pen

Returns and sets the pen of one rectangle segment as string. Any existing pen is allowed.

myElem.rect.segments[1l].pen = "Thick"

element.rect.segments|].style

Returns and sets the style of one rectangle segment as string. Any existing style is allowed.

myElem.rect.segments[l].style = "Solid"

element.rect.segments[].shadow

Returns and sets the shadow of one rectangle segment as string. Any existing shadow is
allowed.

myElem.rect.segments[1l].shadow = "Autom. Long"

element.polygon

This property gives access to all polygon attributes but it can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples
element.polygon.startPoint

Returns and sets the start point of the polygon as point.
myElem.polygon.startPoint.x = 107.55

myElem.polygon.startPoint.y = 107.55

element.polygon.segments|].selected

Returns the selected state of one polygon segment as integer. This property is read only. 0
means “not selected” and 1 means “selected”.

MESSAGE myElem.polygon.segments[l].selected

element.polygon.segments|].endPoint

Returns and sets the end point of one polygon segment as point.
myElem.polygon.segments|[1l].endPoint.x = 188.66

myElem.polygon.segments|[1l].endPoint.y = 348.66

element.polygon.segments]].pen

Returns and sets the pen of one polygon segment as string. Any existing pen is allowed.

myElem.polygon.segments([1l].pen = "Thick"

210 Arbortext® IsoDraw® Macro Language Reference

element.polygon.segments|].style

Returns and sets the style of one polygon segment as string. Any existing style is allowed.

myElem.polygon.segments|[1l].style = "Solid"

element.polygon.segments|].shadow

Returns and sets the shadow of one polygon segment as string. Any existing shadow is
allowed.

myElem.polygon.segments|[1l].shadow = "Autom. Long"

element.marker

This property gives access to all marker attributes but it can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples

element.marker.startPoint

Returns and sets the start point of the marker as point.
myElem.marker.startPoint.x = 107.55

myElem.marker.startPoint.y = 237.55

element.marker.segments|].endPoint

Returns and sets the end point of one marker segment as point.
myElem.marker.segments[l] .endPoint.x = 188.66

myElem.marker.segments[1l].endPoint.x = 456.34

element.bezier

This property gives access to all bezier attributes but it can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples
element.bezier.startPoint

Returns and sets the start point of the bezier curve as point.
myElem.bezier.startPoint.x = 107.55

myElem.bezier.startPoint.x = 237.87

element.bezier.bezFlag

Returns and sets the type of the first bezier curve as integer. 0 means “curve” and 1 means
“corner”

myElem.bezier.bezFlag = 1

Element Object 211

element.bezier.segments|].selected

Returns the selected state of one bezier segment as integer. This property is read only. 0
means “not selected” and 1 means “selected”.

MESSAGE myElem.bezier.segments[1l].selected

element.bezier.segments[].h1Point

Returns and sets the end point of the first bezier segment handle as point.
myElem.bezier.segments[1l].hlPoint.x = 18.6

myElem.bezier.segments[1l] .hlPoint.y = 18.6

element.bezier.segments[].h2Point

Returns and sets the end point of the second bezier segment handle as point.
myElem.bezier.segments[1l] .h2Point.x = 32.68

myElem.bezier.segments[1l] .h2Point.y = 232.67

element.bezier.segments[].endPoint

Returns and sets the end point of one bezier segment as point.
myElem.bezier.segments[1l] .endPoint.x = 129.56

myElem.bezier.segments[1l] .endPoint.y = 122.53

element.bezier.segment[].bezFlag

Returns and sets the type of one bezier segment as integer. 0 means “curve” and 1 means
13 99
corner”.

myElem.bezier.segments[1l] .bezFlag = 1

element.bezier.segments]].pen

Returns and sets the pen of one bezier segment as string. Any existing pen is allowed.

myElem.bezier.segments[1l] .pen = "Thick"

element.bezier.segments|].style

Returns and sets the style of one bezier segment as string. Any existing style is allowed.

myElem.bezier.segments[1l].style = "Solid"

element.bezier.segments[].shadow

Returns and sets the shadow of one bezier segment as string. Any existing shadow is
allowed.

myElem.bezier.segments[1l].shadow = "Autom. Long"

212 Arbortext® IsoDraw® Macro Language Reference

element.text

This property gives access to all text attributes but it can not be used directly. It is assumed
that myElem has already been defined as an element for the following samples
element.text.startPoint

Returns and sets the start point of a text element as point.
myElem.text.startPoint.x = 122.76

myElem.text.startPoint.y = 131.76

element.text.justHor

Returns and sets the horizontal justification of a text element as integer. Allowed values
are 0 for “left”, 1 for “center” and (-1) for “right”.

myElem.text.justHor = 0

element.text.justVer

Returns and sets the vertical justification of a text element as integer. Allowed values are 1
for “top”, 2 for “middle”, 3 for “bottom” and 4 for “baseline”.

myElem.text.justVer = 2

element.text.stroke

Returns and sets the stroke width of a text element as float. You can enter any size but
when you enter -256 you will deactivate the stroke.

myElem.text.stroke = 2

element.text.back_stroke

Returns and sets the stroke width of the background of a text element as float. You can
enter any size but when you enter -256 you will deactivate the stroke.

myElem.text.back stroke = 1.5

element.text.backstroke_color

Returns and sets the stroke color of the background of a text element as ColorSpec (see
ColorSpec on page 171).

myElem.text.backstroke color.type = "rgbValues"
myElem.text.backstroke color.rgb.red = 188
myElem.text.backstroke color.rgb.green = 208

myElem.text.backstroke color.rgb.blue = 168

element.text.backfill_color

Returns and sets the color of the background of a text element as ColorSpec (see
ColorSpec on page 171).

Element Object 213

myElem.text.backfill color.type = "rgbValues"
myElem.text.backfill color.rgb.red = 234
myElem.text.backfill color.rgb.green = 29

myElem.text.backfill color.rgb.blue = 176

element.text.back_width

Returns and sets the width of the background of a text element as Float.

myElem.text.back width = 2.2

element.text.back_height

Returns and sets the height of the background of a text element as Float.

myElem.text.back height = 1.1

element.text.back_shape

Returns and sets the shape of the background of a text element as integer. Allowed values
are 0 for “rectangle” and 1 for “circle”.

myElem.text.back shape =1

element.text.back_auto

Returns and sets if the background of a text element is adjusted to the text as boolean.

myElem.text.back auto = TRUE

element.text.string

Returns and sets the displayed text of a text element as string.

myElem.text.string = "Hello World"

element.image

This property gives access to all image attributes but it can not be used directly. It is
assumed that myElem has already been defined as an element for the following samples
element.image.startPoint

Returns and sets the start point of an image element as point. The start point is the
images lower left corner.

myElem.image.startPoint.x = 122.76

myElem.image.startPoint.y = 131.76

element.image.horResolution

Returns the horizontal resolution of an image element in dots per inch (dpi) as float.
This value is Read Only.

MESSAGE myElem.image.horResolution

214 Arbortext® IsoDraw® Macro Language Reference

element.image.verResolution

Returns the vertical resolution of an image element in dpi as float. This value is Read Only.

MESSAGE myElem.image.verResolution

element.image.pixelDepth

Returns the pixel depth of an image element as integer. This value is Read Only.

MESSAGE myElem.image.pixelDepth

element.image.kind

Returns the kind of image element selected as string. This value is Read Only.

MESSAGE myElem.image.kind

element.image.rowBytes

Returns the image’s horizontal size in bytes as integer. This value is Read Only.

MESSAGE myElem.image.rowBytes

element.image.imageWidth

Returns the image’s horizontal size in pixels as integer. This value is Read Only.

MESSAGE myElem.image.imageWidth

element.image.imageHeight

Returns the image’s vertical size in pixels as integer. This value is Read Only.

MESSAGE myElem.image.imageHeight

Element Object

215

»21

Layer Object

F= Y=Y g =T o = RS 219
[AYEr.SCrEENCOION. ...t 219
F= Y=Y g [Yo o SRS 219
[AYEIACHVE. ... 219
F= A=Y g o]] €= o] L= RPN 219
[AYEr.eXPortableoooi i 219
[AYEIVISIDIE ... e 220
[AyerhasEIEMENTScooiiiie s 220
[AYEF.USECOION. ...ttt 220
[@YErfirsStCRIlIA . ..eveeeeeeeeeeeeeeeee e 220
[AYEFIaSTCRIIA ... 220
[ayer.previoUuSSIDIING.......coviiiiiiee s 220
[AYErNEXESIDING ... 221

The Layer Data Type is a reference on an existing layer in Arbortext IsoDraw.

DEFINE myLyr AS layer
myLyr = add layer "extra layer"

All layer commands (add, cut, paste ...) return a reference on the modified layer. The
properties of this layer object can be queried and set.

MACRO Add Layer

DEFINE myLyr AS layer

myLyr = add layer "Engine" 188 0 29
MESSAGE myLyr.name

myLyr.name = "GearBox"
MESSAGE myLyr.name

END MACRO

217

It is assumed that myLyr has already been defined as a layer for the following samples

218 Arbortext® IsoDraw® Macro Language Reference

layer.name

Returns and sets the name of the layer as string.

myLyr.name = "GearBox"
MESSAGE myLyr.name

layer.screenColor

Returns and sets the screen color of the layer as RGBColor.
myLyr.screenColor.red = 100
myLyr.screenColor.green = 200

myLyr.screenColor.blue = 175

layer.locked

myLyr.locked = 0

Returns and sets the locked state of the layer as integer. Allowed values are 0 for

“unlocked” and 1 for “locked”.

layer.active

Returns the active state of the layer as boolean. This property is read only.

MESSAGE myLyr.active

layer.printable

Returns and sets the printable state of the layer as boolean.

myLyr.printable = true

layer.exportable

Returns and sets the exportable state of the layer as boolean.

myLyr.exportable = false

Layer Object

219

layer.visible

Returns and sets the visible state of the layer as boolean.

myLyr.visible = true

layer.hasElements

Returns if the layer has elements as boolean. This property is read only.

MESSAGE myLyr.hasElements

layer.useColor

Returns and sets the use of color of the layer as boolean.

myLyr.useColor = true

layer.firstChild

This will return the first element which is located on the layer. The returned data type is
element. This property is read only.

layer.lastChild

This will return the first element which is located on the layer. The returned data type is
element. This property is read only.

layer.previousSibling

This property will return the previous layer of the layer list. The returned data type is
layer. This property is read only.
MACRO LayerSibling

DEFINE i AS integer
DEFINE thelay AS layer

i = activeDoc.layerCount
thelay = activeDoc.layers[i]
WHILE (exists (thelay) = true)

MESSAGE "Processing layer " + thelay.name
thelay = thelay.previousSibling
END WHILE
END MACRO

220 Arbortext® IsoDraw® Macro Language Reference

layer.nextSibling

This property will return the next layer of the layer list. The returned data type is layer.
This property is read only.

Layer Object 221

m22

Application Object - User
Interface Preferences

= 0] @ V=T = o] o U 225
=T o Jo (016070 11 o | SO PPUPRPPPUPRR 226
=T o) o Jo [0 To10] 0= a1 (= I 1N = 41 YU 226
APP-PENCOUNT ...ttt e e e e e e e e e e e e ea s 226
APP.SIYIECOUNL.......eeeiiiiiiiii e 226
APP.-ShAdOWCOUNL... ... 226
APP.GHACOUNT ... e e e e e e e e e e e e e e e s e e e e e e e anaenaeaaees 226
E=To] o X oo o] 4 001U o | AT 227
apP-hatChiNGCOUNLciiiiiii e e e e e e e 227
E= Y] o o= 1A =Y o a1 ©o 18 o | SR 227
APP.FOrMAatCOUNT........euiiiiiiiiti e 227
APP.CAOULCOUNL..... ..ottt 227
=0 o I 0 X= TSTS1T o] o IR USRS 227
APP.AraWORSCIEENuviiiiiiiiiiieeeeeeeeee e 227
e= Y] oI U 7= Y 1 (7 A 1= T 228
APP.SNOWLINESLYIES......uviiiiiiiiiieeeeeeee e 228
APP-SNOWTOO TIPS .. et e e e e e ee e 228
APP.SNOWODJECITIPS ...uvvviiiiiiiiiitiieeeeeeee et 228
APP-SNOWRUIEIS ... ee s 229
APP.SNOWCUISOIINTOuviiiiiiiiiieieeeeeeeeee s 229
E=T o] o T g g F=To | =Y 4 =T 1< 229
aAPP.SEIECLADIEFIIISee - 230
apP.USEISOEXIONMAC ...t 230
apP-alloWINtEINEt s 230
APP.-UPAALEPEIIOUeeiiiiiiiiieeee e ————————— 230
apP.NUMDBEIOFUNOSuviiiiiiiiiieeieeeeeeeeee e 230
ez T o] o JE= UL (oIS T Y= T 230
APP.AULOSAVEMINUEES.......uuiiiiiiiiieieeeeeeeeeeee e 230
apPP.USEEIPSESIN3DTOOIS ...vvviiiiiiiiiiieeieeee et 231

223

=T 0 0 30 o] (= V4= 231

=0 o elo] g p] o= (=TSN PP UPPPPPRPPN: 232
=T o) o I o] 1 o] 113 1 I U 232
E=T o] o o] o] =3 2G5 233
=T o) o o [0 T=T 0151 o) o |- 236
=] 0 1o | [RSP 238
= 0] o IR,/ 1 o (o LY 240
APP-SNATOW ...t 241
=] 0] 0 I8 0 (== Lo [241
APP-NICKENIN oo 242
e=To] o oTo] 1Y/ To] o1 (o | S 244
=] 0] o I 1110 17=] (oo | 244
aPP-reCtangletoo]uuuiiieee s 244
=] 0] 0 38 oY= 11 (o | {11 T I 244
APP.IINEOPLONS.eeeei e 245
app.SIMPIEEIPSEPIINTINGcoeviiieiee e 245
app.curMacroTransformMo 245
= 0] 0 1o | (o S 246
app.standardTxtFormat.........cccc.oeuiiiiiii e, 246
=T 0] 0 1] o] 1o o [246
APPNIEIACION ...ttt 246
=0 I = E 11V =Tl fo = 4 o] P 247
APP-CUITENIMACTO ... e e e 247

Applies to Arbortext IsoDraw CADprocess only

Arbortext IsoDraw automatically creates the Application Object at start-up. Unlike other
data types, you do not DEFINE the Application Object. It is always available.

With the Application object you can gain access to nearly all options available in the
Arbortext IsoDraw preferences.

MESSAGE "Is Anti-Aliasing on? ->" + app.useAntiAliasing
IF (app.useAntiAliasing = false) THEN
app.useAntiAliasing = true

MESSAGE "Now Anti-Aliasing is on"
END IF

224 Arbortext® IsoDraw® Macro Language Reference

app.version

These properties return software release information about the Arbortext IsoDraw
application that is running the macro.

MESSAGE MESSAGE app.version.name + " Version "
+ app.version.main + "." + app.version.sub
+ " MO" + app.version.xtra

#returns:

Macro Message: El

Arbortext lsoDraw 7.1 - EN Version 7.1 MO10

app.version.name
Returns the full Arbortext IsoDraw application name, the (version.revision) number, and

the language. This property is read-only.

Note

The app.version.name property does not return the full application name for
Arbortext IsoDraw releases prior to 7.0 F000.

MESSAGE app.version.name

app.version.main

Returns the version number of the currently running Arbortext IsoDraw application as
integer. This property is read-only.

app.version.sub

Returns the revision number of the currently running Arbortext IsoDraw application as
integer. This property is read-only.

app.version.build

Returns build number of the currently running Arbortext IsoDraw application as integer.
This property is read-only.

Application Object - User Interface Preferences 225

app.version.xtra

Returns the release datecode of the currently running Arbortext IsoDraw application as
integer. The datecode is of the form Fxxx (for initial releases) or Mxxx (for maintenance
releases), where xxx is a 3-digit number. This property is read-only.

app.docCount

Returns the number of currently opened documents as integer. This property is read-only.

MESSAGE app.docCount

app.documents|].name

Returns the name of one currently opened document. This property is read-only.

MESSAGE app.documents[1l].name

app.penCount

Returns the number of default pens as integer. This property is read-only.

MESSAGE app.penCount

app.styleCount

Returns the number of default styles as integer. This property is read-only.

MESSAGE app.styleCount

app.shadowCount

Returns the number of default shadows as integer. This property is read-only.

MESSAGE app.shadowCount

app.GridCount

Returns the number of default grids as integer. This property is read-only.

MESSAGE app.GridCount

226 Arbortext® IsoDraw® Macro Language Reference

app.colorCount

Returns the number of default colors as integer. This property is read-only.

MESSAGE app.colorCount

app.hatchingCount

Returns the number of hatchings as integer. This property is read-only.

MESSAGE app.hatchingCount

app.patternCount

Returns the number of patterns as integer. This property is read-only.

MESSAGE app.patternCount

app.formatCount

Returns the number of default text formats as integer. This property is read-only.

MESSAGE app.formatCount

app.calloutCount

Returns the number of default callouts as integer. This property is read-only.

MESSAGE app.calloutCount

app.password
Returns and sets the password property as string. #USE CAUTION#

app.password = "pumpernickel"

app.drawOffscreen

Returns and sets the draw Objects in background property as boolean.

app.drawOffscreen = false

Application Object - User Interface Preferences

227

app.useAntiAliasing

Returns and sets the useAntiAliasing property as boolean.

app.useAntiAliasing = true

app.showLineStyles

Returns and sets the showLineStyles attribute window property as boolean.

app.showLineStyles = true

app.showToolTips

Returns and sets the showToolTips property as boolean. This property corresponds to the
Show tooltips option under Tooltips on the Redraw preferences page.

true Causes tooltip text to appear when the pointer hovers over a tool
button or symbol.

Note

app.showToolTips must be true before the
app.showObjectTips property can be set true.
Also, setting app.showObjectTips=true while
app.showToolTips=falsewill automatically set
app.showToolTips to true.

® [fa macro changes the state of app.showToolTips, the change is saved as the
new Show tooltips preference setting.

® Recording a macro that selects or clears the Show tooltips option adds an
app.showToolTips = {true|false} statement to the macro.

app.showToolTips = true

#Note that:
app.showObjectTips = true
#Will also set:
app.showToolTips = true

app.showObijectTips

Applies to Arbortext IsoDraw 7.0 FO00 and later:

Returns and sets the showObjectTips property as boolean. This property corresponds to
the Show object tips option under Tooltips on the Redraw preferences page.

228 Arbortext® IsoDraw® Macro Language Reference

true Object tip text appears when the pointer hovers over an object that
has object tip text assigned to it.

Note

app.showToolTips must be true before the
app.showObjectTips property can be set true.
Also, setting app.showObjectTips=true while
app.showToolTips=falsewill automatically set
app.showToolTips to true.

® [fa macro changes the state of app . showObjectTips, the change is saved as the
new Show object tips preference setting.

® Recording a macro that selects or clears the Show object tips option adds an
app.showObjectTips = {true|false} statement to the macro.
app.showObjectTips = true

#Will also set:
app.showToolTips = true

app.showRulers

Returns and sets the showRulers property as boolean.

app.showRulers = true

app.showCursorinfo

Returns and sets the showCursorInfo property as boolean.

app.showCursorInfo = true

app.-magnetFlags

Returns and sets the magnetFlags property as integer. The allowed values are:

1 “Element points”

2 “Intersection points”
3 1 and 2

4 “Points on path”

5 1 and 4

6 2 and 4

7

all

app.magnetFlags = 4

Application Object - User Interface Preferences 229

app.selectableFills

Returns and sets the selectableFills property as boolean.

app.selectableFills = true

app.uselsoExtOnMac

Returns and sets the uselsoExtOnMac property as boolean.

app.uselsoExtOnMac = true

app.allowinternet

Returns and sets the allowInternet property as boolean, turning on and off the automatic
check for product updates.

app.allowInternet = true

app.updatePeriod

Returns and sets the updatePeriod property as integer, settingthe frequency in days of
automatic checks for product updates.

app.updatePeriod = 4

app.-numberOfUndos

Returns and sets the numberOfUndos property as integer.

app.numberOfUndos = 25

app.autoSave

Returns and sets the autoSave property as boolean.

app.autoSave = true

app.autoSaveMinutes

Returns and sets the autoSaveMinutes property as float.

app.autoSaveMinutes = 5

230 Arbortext® IsoDraw® Macro Language Reference

app.useEllipsesin3DTools

Returns and sets the Find elliptical arcs property as boolean. This option appears as a
dialog when using the rotational surfaces or extrusion tool. It specifies whether elliptical
arcs should be modeled as ellipses.

app.useEllipsesIn3DTools = true

app.preview

This property gives access to all preview properties but it can not be used directly.

app.preview.resolution

Returns and sets the resolution property as float.

app.preview.resolution = 72

app.preview.border

Returns and sets the border width property as float.

app.preview.border = 1

app.preview.width

Returns and sets the fixed width property in mm as float. The value (-1) disables the
fixed width.

app.preview.width = 100

app.preview.kind

Returns and sets the image depth property as string. The allowed values are here "bitmap",

nn

"grayscale", "color8" and "color24".

app.preview.kind = "color24"

app.preview.compression

Returns and sets the compression property as integer. The allowed values are:

1 "none"

2 "PackBits"

3 "CCIT Group 3"
4 "CCIT Group 4"

5 "LZW"

6 "LZW2"
app.preview.compression = 2

Application Object - User Interface Preferences 231

app.preview.page

Returns and sets the dimension property as integer. The allowed values are 1 for "Extent"
and 2 for "Drawing Size".

app.preview.page = 1

app.preview.intelOrder

Returns and sets the byte order property as boolean.

app.preview.intelOrder = true

app.preview.wantsPreview

Returns and sets the generate preview property as boolean.

app.preview.wantsPreview = true

app.compare

This property gives access to all compare attributes but it can not be used directly.

app.compare.deletedColor

Returns and sets the deleted elements property as RGBColor.

app.compare.deletedColor.red = 221

app.compare.changedColor

Returns and sets the changed elements property as RGBColor.

app.compare.changedColor.green = 212

app.compare.createdColor

Returns and sets the created elements property as RGBColor.

app.compare.createdColor.blue = 122

app.options3D

This property gives access to all 3D Options attributes but it can not be used directly.

app.options3D.showDialog

Returns and sets the Show options dialog before converting to 2D property as boolean.

app.options3D.showDialog = true

app.options3D.renderSmoothAngle

Returns and sets the Max. smoothing angle property as integer. Allowed values are from
0 to 120.

232 Arbortext® IsoDraw® Macro Language Reference

app.options3D.renderSmoothAngle = 65

app.options3D.objectAccuracy

Returns and sets the Tesselation Accuracy property as integer. Allowed values are from
0 to 100.

app.options3D.objectAccuracy = 32

app.project3D

These properties return and set 3D projection attributes—but they can not be used directly.
Any changes made to app . project3D properties in a macro are saved in the Arbortext
IsoDraw CADprocess 3D Options preferences. (See 3D Options in the Arbortext IsoDraw
User's Reference.)

Note

The app.project3D. as... properties below correspond to mutually exclusive options
in the Arbortext IsoDraw CADprocess 3D Projection dialog box. 1o ensure the desired
3D projection results, one— and only one—of these properties must be t rue before the
macro executes the 3D PROJECT command.

app.project3D.asWireframe

Returns and sets the wireframe property as boolean. This property corresponds to the as
wireframe option in the 3D Projection dialog box.

| true | Projects a 3D view into a 2D illustration as a wireframe drawing. |

app.project3D.asWireframe = true

app.project3D.asHLR

Returns and sets the remove hidden lines property as boolean. This property corresponds
to the remove hidden lines option in the 3D Projection dialog box.

true Projects a 3D view into a 2D illustration with Hidden Line
Removal (HLR).

app.project3D.asHLR = true

app.project3D.HLR_type

For HLR 3D projection only: Returns and sets the HLR 2D element type as string. This
determines the type of 2D element—Line, Polyline, or Bézier path—that all 3D data
elements are converted into during 3D projection. This property corresponds to the three
HLR 3D options: as lines, as polylines, and as Bézier paths, under Optimize in the
3D Options dialog box.

Application Object - User Interface Preferences 233

lines 3D elements convert to 2D Line elements.

polylines 3D elements convert to 2D Polyline elements.
beziers 3D elements convert to 2D Bézier path elements.
app.project3D.HLR type = "beziers"

app.project3D.HLR_plusEllipses

For HLR 3D projection only: Returns and sets the HLR 2D ellipse element conversion
property as boolean. This property corresponds to the HLR 3D option, generate ellipses,
under Optimize in the 3D Options dialog box.

true Converts ellipses formed by Line, Polyline, or Bézier path
elements during 3D projection into Ellipse elements in the 2D
illustration.

app.project3D.HLR plusEllipses = true

app.project3D.HLR_optSpeed

For HLR 3D projection only: Returns and sets the HLR 3D projection speed optimization
property as boolean. This property corresponds to the HLR 3D option, Optimize for
speed, under Advanced Settings in the 3D Options dialog box.

true Accelerates the 3D projection process by performing simpler
3D-to-2D conversion calculations.

app.project3D.HLR optSpeed = true

app.project3D.Raster_kind

For shaded (raster) 3D projection only: Returns and sets the color depth of the target
2D raster image as string. This property corresponds to the three color Depth options:
Lineart image (1 Bit), Color image (8 Bit), and Color image (32 Bit), in the shaded
dialog box. (To access Depth settings, select shaded in the 3D Projection dialog box,
then click Options.)

bitmap Converts 2D raster image to 1-bit black and white lineart
color8 Converts 2D raster image to 8-bit color

color32 Converts 2D raster image to 32-bit color
app.project3D.Raster kind = "color32"

app.project3D.resolution

For shaded (raster) 3D projection only: Returns and sets the resolution in dots per inch
(dpi) of the target 2D raster image as integer. Allowed values are from 1 dpito 1139
dpi. This property corresponds to the Resolution option in the shaded dialog box. (To
access the Resolution setting, select shaded in the 3D Projection dialog box, then click
Options.)

app.project3D.resolution = 300

234 Arbortext® IsoDraw® Macro Language Reference

app.project3D.level

For shaded (raster) 3D projection only: Returns and sets (as integer) the property that
specifies:

® [f object information is preserved or discarded during 3D projection.

® How many layers will be created in the 2D illustration for 3D objects that are converted
to 2D objects. Each layer in the 2D illustration contains a separate raster image.

Allowed values are 1 or greater. This property corresponds to the Layer option in the
shaded dialog box. (To access the Layer setting, select shaded in the 3D Projection
dialog box, then click Options.)

1 Object information is discarded during 3D projection. The target
2D raster image has one layer.
2 or greater Object information is preserved during 3D projection. The target

2D raster image has the specified number of layers. Each layer
contains a raster image of a converted 3D object.

app.project3D.level = 1

app.project3D.asShaded

Returns and sets the shaded property as boolean. This property corresponds to the shaded
option in the 3D Projection dialog box.

true Projects a 3D view into a 2D illustration as a shaded raster image.
The 2D image matches the display type in 3D mode.

app.project3D.asShaded = true

app.project3D.as3D

Returns and sets the keep 3D data property as boolean. This property corresponds to the
keep 3D data option in the 3D Projection dialog box.

‘ true ‘ Projects a 3D view into a 2D illustration and . ‘

app.project3D.as3D = true

app.project3D.useThickThin

Returns and sets the use create thick/thin lines property as boolean.

‘ true | Projects a 3D view into a 2D illustration as a wireframe drawing.

app.project3D.useThickThin = true

Use app.project3D.useThickThin to create thick/thin lines in the 2D illustration
projected from a 3D view. It corresponds to the use thick/thin lines option in the 3D
Projection dialog box; t rue selects this option; false clears this selection.

app.project3D.createSurfaceBorders

Returns and sets the use create surface borders property as boolean.

Application Object - User Interface Preferences 235

app.project3D.createSurfaceBorders = false

app.project3D.smoothSurfaces

Returns and sets the Thin line threshold property as integer. Allowed values are from
0 to 100.

app.project3D.smoothSurfaces = 65

app.project3D.thickPen

Returns and sets the for thick lines property as string. Allowed values are any existing
pen name.

app.project3D.thickPen = "$ISO Thick"

app.project3D.thinPen

Returns and sets the for thin lines property as string. Allowed values are any existing
pen name.

app.project3D.thinPen = "$ISO Thin"

app.dimensions

This property gives access to all dimension attributes but it can not be used directly.

app.dimensions.baseOffset

Returns and sets the base offset property as float.

app.dimensions.baseOffset = 2

app.dimensions.extendOffset

Returns and sets the extend offset property as float.

app.dimensions.extendOffset = 2

app.dimensions.verticalOffset

Returns and sets the vertical offset property as float.

app.dimensions.verticalOffset = 0

app.dimensions.minLength

Returns and sets the minimum length property as float.

app.dimensions.minlLength = 5

app.dimensions.decimalPlaces

Returns and sets the decimal places property as integer.

app.dimensions.decimalPlaces = 2

236 Arbortext® IsoDraw® Macro Language Reference

app.dimensions.leaderPen

Returns and sets the leader pen property as string. All existing pens are allowed.

app.dimensions.leaderPen = "Thick"

app.dimensions.leaderStyle

Returns and sets the leader style property as string. All existing styles are allowed.

app.dimensions.leaderStyle = "Solid"

app.dimensions.leaderShadow

Returns and sets the leader shadow property as string. All existing shadows are allowed.

app.dimensions.leaderShadow = "Autom. Long"

app.dimensions.startPen

Returns and sets the start pen property as string. All existing pens are allowed.

app.dimensions.startPen = "Thick"

app.dimensions.startStyle

Returns and sets the start style property as string. All existing styles are allowed.

app.dimensions.startStyle = "Solid"

app.dimensions.startShadow

Returns and sets the start shadow property as string. All existing shadows are allowed.

app.dimensions.startShadow = "Autom. Long"

app.dimensions.endPen

Returns and sets the end pen property as string. All existing pens are allowed.

app.dimensions.endPen = "Thick"

app.dimensions.endStyle

Returns and sets the end style property as string. All existing styles are allowed.

app.dimensions.endStyle = "Solid"

app.dimensions.endShadow

Returns and sets the end shadow property as string. All existing shadows are allowed.

app.dimensions.endShadow = "Autom. Long"

app.dimensions.stripZeros

Returns and sets the strip zeros property as boolean.

app.dimensions.stripZeros = true

Application Object - User Interface Preferences 237

app.dimensions.txtFormat

Returns and sets the text format property as string. All existing text formats are allowed.

app.dimensions.txtFormat = "Normal"

app.dimensions.txtFont

Returns and sets the text font property as string. All installed fonts are allowed.

app.dimensions.txtFont = "Arial"

app.dimensions.txtFace

Returns and sets the text face property as string. Allowed values are "normal", "bold",
"italic" and "bolditalic".

app.dimensions.txtFace = "bold"

Returns and sets the text size property as float.

app.dimensions.txtSize = 24.5
app.dimensions.txtSize

app.dimensions.txtStrokeColor

Returns and sets the text strokecolor property as ColorSpec (see ColorSpec on page).

app.dimensions.txtStrokeColor.type = "cmykValues"

app.dimensions.txtStroke

Returns and sets the text stroke property as float.

app.dimensions.txtStroke
= 2.2

app.dimensions.textFillcolor

Returns and sets the text fillcolor property as ColorSpec (see ColorSpec on page).
app.dimensions.textFillColor.type = "rgbValues"
app.dimensions.textFillColor.rgb.red = 168
app.dimensions.textFillColor.rgb.green = 168

app.dimensions.textFillColor.rgb.blue = 168

app.grid

This property gives access to all grid attributes but it can not be used directly.

app.grid.gridSize
Returns and sets the grid size property as float.

app.grid.gridSize = 20

238 Arbortext® IsoDraw® Macro Language Reference

app.grid.radius
Returns and sets the magnetic radius property as float.

app.grid.radius = 5

app.grid.elementMagnet

Returns and sets the magnetic elements property as boolean.

app.grid.elementMagnet = true

app.grid.gridMagnet
Returns and sets the magnetic grid points property as boolean.

app.grid.gridMagnet = true

app.grid.showGrid

Returns and sets the show grid property as boolean.

app.grid.showGrid = true

app.grid.showDim

Returns and sets the show dimensions property as boolean.

app.grid.showDim = true

app.grid.constrain

Returns and sets the align to grid property as boolean.

app.grid.constrain = true

app.grid.gridinFront

Returns and sets the grid in front property as boolean.

app.grid.gridInFront = true

app.grid.noFShortlniso

Returns and sets the no isometric foreshortening property as boolean.

app.grid.noFShortInIso = true

app.grid.gridColor
Returns and sets the color property as RGBColor.

app.grid.gridColor.red = 0

app.grid.firstSelColor
Returns and sets the first color property as RGBColor.

app.grid.firstSelColor.green = 0

Application Object - User Interface Preferences

239

app.grid.secondSelColor
Returns and sets the second color property as RGBColor.

app.grid.secondSelColor.blue = 0

app.grid.preferredGrid

Returns and sets the name of the standard Grid as string. Only the names of existing
grids can be set.

app.grid.preferredGrid = "Plane view"

app.window

This property gives access to all window attributes but it can not be used directly.

app.window.pageX
Returns and sets the window x-cords property as float.

app.window.pageX = 200

app.window.pageY
Returns and sets the window y-cords property as float.

app.window.pageY = 230

app.window.overlapX

Returns and sets the print overlap x-cords property as float.

app.window.overlapX = 10

app.window.overlapY

Returns and sets the print overlap y-cords property as float.

app.window.overlapY = 10

app.window.Scale

Returns and sets the window scale property as float.

app.window.Scale = 10

app.window.dimScale

Returns and sets the dimension scaling property as float.

app.window.dimScale = 7

app.window.preview

Returns and sets the objects preview property as integer. The allowed values are 0 for “no
preview”, 1 for “a preview”, 2 for “visible hotspots™ and 4 for “visible objects”. 3 is for
“preview and hotspots”, 6 is for “hotspots and objects” and 7 is for everything.

240 Arbortext® IsoDraw® Macro Language Reference

app.window.preview = 6

app.window.is3D

Returns the 3D property as boolean. This property is read-only.

MESSAGE app.window.is3D

app.window.curSystem

nons

Returns and sets the current system property as string. Allowed values are "mm", "in"
and "pt".

app.window.curSystem = "mm"

app.shadow

This property gives access to all shadow attributes but it can not be used directly.

app.shadow.shadowWidth
Returns and sets the shadow width property as float.

app.shadow.shadowWidth = 5

app.shadow.shadowFactor

Returns and sets the shadow factor property as float.

app.shadow.shadowFactor = 2

app.thread

This property gives access to all thread attributes but it can not be used directly.

app.thread.inner.upTo1

Returns and sets the first "inner thread up to" property as float.

app.thread.inner.upTol = 20

app.thread.inner.upTo2

Returns and sets the second "inner thread up to" property as float.

app.thread.inner.upTo2 = 40

app.thread.inner.size1

Returns and sets the first inner thread distance property as float.

app.thread.inner.sizel = 2

Application Object - User Interface Preferences 241

app.thread.inner.size2

Returns and sets the second inner thread distance property as float.

app.thread.inner.size2 = 2.5

app.thread.inner.size3

Returns and sets the third inner thread distance property as float.

app.thread.inner.size3 = 3

app.thread.outer.upTo1

Returns and sets the first "outer thread up to" property as float.

app.thread.outer.upTol = 20

app.thread.outer.upTo2

Returns and sets the second "outer thread up to" property as float.

app.thread.outer.upTo2 = 40

app.thread.outer.size1

Returns and sets the first outer thread distance property as float.

app.thread.outer.sizel = 2

app.thread.outer.size2

Returns and sets the second outer thread distance property as float.

app.thread.outer.size2 = 2.5

app.thread.outer.size3

Returns and sets the third outer thread distance property as float.

app.thread.outer.size3 = 3

app.thickthin

This property gives access to all thick/thin attributes but it can not be used directly.

app.thickthin.useThickThin

Returns and sets the "use thick thin technique" property as boolean.

app.thickthin.useThickThin = true

app.thickthin.thickPen

Returns and sets the thick pen property as string. The name of every existing pen is an
allowed value.

app.thickthin.thickPen = "Thick"

242 Arbortext® IsoDraw® Macro Language Reference

app.thickthin.thinPen

Returns and sets the thin pen property as string. The name of every existing pen is an
allowed value.

app.thickthin.thinPen = "Thin"

app.thickthin.useEllipsePens

Returns and sets the "specify pens for ellipses and threads" property as boolean.

app.thickthin.useEllipsePens = true

app.thickthin.thick1

Returns and sets the first thick pen property as string. The name of every existing pen
is an allowed value.

app.thickthin.thickl = "Thick"

app.thickthin.thin1

Returns and sets the first thin pen property as string. The name of every existing pen
is an allowed value.

app.thickthin.thinl = "Thin"

app.thickthin.thick2

Returns and sets the second thick pen property as string. The name of every existing
pen is an allowed value.

app.thickthin.thick2 = "Thick"

app.thickthin.thin2

Returns and sets the second thin pen property as string. The name of every existing pen
is an allowed value.

app.thickthin.thin2 = "Thin"

app.thickthin.thick3

Returns and sets the third thick pen property as string. The name of every existing pen
is an allowed value.

app.thickthin.thick3 = "Thick"

app.thickthin.thin3

Returns and sets the third thin pen property as string. The name of every existing pen
is an allowed value.

app.thickthin.thin3 = "Thin"

app.thickthin.upto1
Returns and sets the first up to property as float.

app.thickthin.uptol = 20

Application Object - User Interface Preferences 243

app.thickthin.upto2

Returns and sets the second up to property as float.

app.thickthin.upto2 = 40

app.polygontool

This property gives access to all polygon tool attributes but it can not be used directly.

app.polygontool.sides

Returns and sets the polygon sides property as integer.

app.polygontool.sides = 7

app.ellipsetool

This property gives access to all ellipse tool attributes but it can not be used directly.

app.ellipsetool.value

Returns and sets the ellipse value property as float.

app.ellipsetool.value = 50

app.rectangletool

This property gives access to all rectangle tool attributes but it can not be used directly.

app.rectangletool.radius

Returns and sets the rectangle radius value property as float.

app.rectangletool.radius = 25

app.background

This property gives access to all background attributes but it can not be used directly.

app.background.inColor

Returns and sets the in color property as boolean.

app.background.inColor = true

Returns and sets the intensity property as float. The properties range is from 0 to 100.

app.background.intensity = 50

244 Arbortext® IsoDraw® Macro Language Reference

app.background.intensity

app.background.Color

Returns and sets the screen color property as RGBColor.

app.background.Color = "{RGB 107 69 77}"

app.lineOptions

This property gives access to all line option attributes but it can not be used directly.

app.lineOptions.lineCap

Returns and sets the ends property as integer. Allowed values are 0 for “flat”, 1 for
“round” and 2 for “square”.

app.lineOptions.lineCap = 1

app.lineOptions.lineJoin

Returns and sets the corners property as integer. Allowed values are 0 for “mitered”, 1
for “rounded” and 2 for “bevel”.

app.lineOptions.lineJoin = 2

app.lineOptions.miterLimit

Returns and sets the miter limit property as integer.

app.lineOptions.miterlLimit = 4

app.lineOptions.overPrint

Returns and sets the overprint property as integer. Allowed values are 0 for “none”, 1 for
“stroke”, 2 for “square” and 3 for “stroke and square”.

app.lineOptions.overPrint = 2

app.simpleEllipsePrinting
This property sets and returns the simple ellipse printing as boolean.

app.simpleEllipsePrinting = true

app.curMacroTransform

This property returns the current transformation properties but it can not be used directly.

app.curMacroTransform.offset

Returns the offset property as point. This property is read-only.

Application Object - User Interface Preferences 245

MESSAGE app.curMacroTransform.offset

app.curMacroTransform.angle

Returns the angle property as float. This property is read-only.

MESSAGE app.curMacroTransform.angle

app.curMacroTransform.scale

Returns the scale property as point. This property is read-only.

MESSAGE app.curMacroTransform.scale

app.dtd

This property returns and sets the default dtd-file as string.

app.dtd = "webcgm"

app.standardTxtFormat

This property returns and sets which text format is the standard text format as string.

app.standardTxtFormat = "Normal"

app.option

This property gives access to the optimize options.

app.option.smooth_tolerance

Returns and sets the Tolerance for smoothing property as float. This setting does not
make a permanent change. The value will be reset to 0.1 each time Arbortext IsoDraw is
restarted.

app.option.smooth tolerance
= 0.1

app.interaction

Returns and sets the display of certain dialogs as boolean. We do not recommend setting
this to false permanently as many dialogs will not appear during your use of Arbortext
IsoDraw.

app.interaction = false

#Turning off dialogs
app.interaction = false
Select IF Type is equal to 'callout'

246 Arbortext® IsoDraw® Macro Language Reference

Cut
#Turn dialogs back on
app.interaction = true

app.lastMacroError

Applies to Arbortext IsoDraw 7.0 FO00 and later:

Returns the number of the last error that occurred. This property is read-only.

app.currentMacro

Applies to Arbortext IsoDraw 7.0 FO00 and later:

Returns descriptive and status information about the macro that is currently running, such
as its name and how many variables or parameters it contains. This property is read-only.

app.currentMacro.name

Returns the current macro’s name as string.

DEFINE mName AS string
mName = app.currentMacro.name
MESSAGE "The macro '" + mName + "' is running."

app.currentMacro.countVars

Returns the number of variables defined in the macro as integer.

Define x AS float

Define y AS float

DEFINE vCnt AS integer

vCnt = app.currentMacro.countVars
MESSAGE "The variable count is " + vCnt

app.currentMacro.countParams

Returns the number of parameters as integer.

DEFINE pCnt AS integer
pCnt = app.currentMacro.countParams
MESSAGE "The parameter count is: " + pCnt

app.currentMacro.unicodeFlag

Returns the current Unicode flag value as integer. The flag values are:

0 8-bit / OxFFFE
O0xFEFF Unicode file

Application Object - User Interface Preferences 247

DEFINE uFlag AS integer
uFlag = app.currentMacro.unicodeFlag
MESSAGE "The current unicode flag is: " + uflag

app.currentMacro.status

Returns a status value for the currently running macro as integer. Status values are:

0 Temporarily stopped

1 In menu

2 SubMacro

3 Write protected

4 Internal

MESSAGE "The current macro status is: " + app.currentMacro.status

app.currentMacro.callDepth

Returns the call stack depth of the current macro as integer.

MESSAGE app.currentMacro.callDepth

app.currentMacro.activeLine

Returns the text content of the active macro line as string.

MESSAGE app.currentMacro.activeline

248 Arbortext® IsoDraw® Macro Language Reference

23

Application Object - Data
Exchange Preferences

IMPOIt CGM .. e e 251
EXPOrt COM...iiiii s 253
EXPOIt EPS ... e a e 256
IMPOrt HUSTrAtOr ... e e e e 257
EXPOrt HTUSIrator ... e e e e e e eeans 257
EXPOrt SVG....ooeeeie s 257
IMPOIE SV G 259
IMPOIT IGES ...t a e 259
EXPOIt IGES. ... oottt e e e e e e e e e e e e e eeaeeeas 262
IMPOIt DWG ... e e e e ee e e 265
EXPOIE DWG ...ttt e e e e e et e e e e e e e eaaeeas 267
IMPOIE DXF ... e e e e e 267
e d oo 4 3) 269
DXF/DWG Import Options: app.dxf/ app.dWgcccccocceurrrriiiiiiiiiieeeeeeeeeeeeee e 270
IMPOIrt VRML . e e e e e e e e e eees 270
IMPOrt Wavefront ... e 272
Import with ProductView Adapterscooooiiiiiieeeeeeeeee e 273
oY i A o | = | SR 275
o o T A N 1 P 275
EXPOIt JPEGottt e e e e e e e aaeeean 276
EXPOME PNG ..o 277
EXPOIE BMP ...ttt e e e e e e e e an 278
EXPOMT PCX .o 279
EXPOIt CALS ...t e et e e e e e e e e e e e eeeaaeeas 279
EXPOIt TEXL. ..o 281
EXPOrt ODJECE LIStceiiiiiiieeeieee e e 281
[q oo 4 O PP 282
EXPOrt INTEHIEAT ... 283
EXPOME MIF .o 283

249

EXPOIt PICT e 283

EXPOIt PDF .. 284
o To AU 1 | USRI 286
IMPOIE WIMFE . e e e e e e e eee s 286
EXPOIt WIMF ... e e e e e e e e eeaaeeas 286

You can gain access to the data exchange settings through the Application Object.

250 Arbortext® IsoDraw® Macro Language Reference

Import CGM

app.cgm.showDialog

Returns and sets if the cgm import dialog is shown as boolean.

app.cgm.showDialog = TRUE

app.cgm.usebackcolor

Returns and sets if the backcolor is used as boolean.

app.cgm.usebackcolor = TRUE

app.cgm.scale
Returns and sets the scale as float. 1 stands for 100% and 0.1 for 10%.

#setting the scale to 55%
app.cgm.scale = 0.55

app.cgm.entities

Sets the CGM options as integer. Please use this formula to calculate the allowed values:

value = 2”x

X Option

0 “Polylines*

1 “Disjoint Polyline*

2 “Polymarker*

3 “Text*

4 “Restricted Text*

5 “Append Text™

6 “Polygon“

7 “Polygon Set*

8 “Cell Array*

9 “Rectangle

10 “Circle*

11 “Circular Arc 3 Point*

12 “Circular Arc 3 Point Close*
13 “Circular Arc Center*

14 “Circular Arc Center Close*
15 “Ellipse*

16 “Elliptical Arc*

17 “Elliptical Arc Close*

18 “Circular Arc Centre Reversed*
19 “Hyperbolic Arc*

20 “Parabolic Arc*

21 “Non-Uniform B-Spline*

22 “Non-Uniform Rational B-Spline*

Application Object - Data Exchange Preferences

251

23 “Polybezier

24 “Segments*

25 “Figures‘

26 “Tiles*

27 “Background Colour*
28 “Clip Element V1

29 “Clip Element V3*

30 “Appl. Str. Elements*

Add values to activate different options.

#activating the text-option only
app.cgm.entities = 8

#activating the text- (272=4), polymarker-
#(273=8) and restricted text-option (274=16)
app.cgm.entities = 4 + 8 + 16
app.cgm.importtype

Returns and sets the “Read from version 1/2 as” property as integer. Allowed values are 1
for “basic”, 2 for “boxed cap” and 3 for “isotropic cap”.

app.cgm.importtype = 1

app.cgm.pictures

Returns and sets the import pictures property as integer. Setting this property to 0 means
importing all pictures and setting the property to another number means importing just
one specific picture.

app.cgm.pictures = 0

app.cgm.cgmlinecap

Returns and sets the line caps as integer. Allowed values are 0 for “flat”, 1 for “rounded”
and 2 for “rectangle”.

app.cgm.cgmlinecap = 2

app.cgm.cgmlinejoin

Returns and sets the line join as integer. Allowed values are 0 for “mitered”, 1 for
“rounded” and 2 for “bevel”.

app.cgm.cgmlinejoin = 2

app.cgm.pageSizeKind

Returns and sets the page size value as integer. Allowed values are 1 for “default” and
2 for use “VDC extend”.

app.cgm.pageSizeKind = 1

252 Arbortext® IsoDraw® Macro Language Reference

Export CGM

app.cgm.profile

Returns and sets the CGM profile as integer. The allowed values (#) and their equivalent
macro constant names are listed in the table below. (See CGM Profile Numbers and
Names on page 303 for values in older Arbortext IsoDraw releases.)

n |CGM Profile Name Macro Constant Name
1 [ISO 8632:1999 $CGM Profile.ISO 8632 1999
2 |WebCGM 1.0 $CGM Profile. WebCGM 1 0
3 | ATA GREXCHANGE V2.8 $CGM_Profile. ATA GREXCHANGE 2 8
4 | ATA GREXCHANGE V2.7 $CGM_Profile. ATA GREXCHANGE 2 7
5 | ATA GREXCHANGE V2.6 $CGM_Profile. ATA GREXCHANGE 2 6
6 |ATA GREXCHANGE V2.5 $CGM_Profile. ATA GREXCHANGE 2 5
7 |ATA GREXCHANGE V2.4 $CGM_Profile. ATA GREXCHANGE 2 4
8 | ATA GREXCHANGE V2.5/IsoDraw | SCGM_Profile. ATA GREX-
CHANGE 2 5 ISODRAW
9 |MIL-D-28003A $CGM_Profile. MIL D 28003A
10 |[SAE J2008 $CGM_Profile.SAE J2008
11 |Model (8632:1992) $CGM Profile.Model 8632 1992
12 |ISO ISP 12071-1 $CGM Profile.ISO ISP 12071 1
13 |ISO ISP 12072-1 $CGM_Profile.ISO ISP 12072 1
14 |ISO ISP 12073-1 $CGM_Profile.ISO ISP 12073 1
15 [ISO ISP 12074-1 $CGM_Profile.ISO ISP 12074 1
16 | ATA GREXCHANGE V2.9 $CGM_Profile. ATA GREXCHANGE 2 9
17 {S1000D V2.21 $CGM_Profile.S1000D 2 2
18 | WebCGM 2.0 $CGM_Profile. WebCGM 2 0
19 | ATA GREXCHANGE V2.10 $CGM Profile.Current ATA2
20 |S1000D V2.3 No macro constant name
21 |WebCGM 2.1 $CGM Profile. WebCGM 2 1
1. S1000D V2.2 export is no longer supported.
2. The constant name $CGM_Profile.Current_ AT always applies to the newest ATA
GREXCHANGE profile that this release of Arbortext IsoDraw supports. When Arbortext
IsoDraw supports a newer version, V2.10 will be assigned a different constant name; e.g.,
$CGM_Profile. ATA_ GREXCHANGE 2 10.
Note

When setting the value of app.cgm.profile, it is best to use the constant name, which
is fixed, rather than the number, which might change from one release to the next.

app.cgm.profile = SCGM_Profile.ATA GREXCHANGE 2 9

app.cgm.useAECMAs1000d

Returns and sets the S1000d compliant as integer. Allowed values are 0 for “do not use”
and 1 for “use”.

Application Object - Data Exchange Preferences 253

app.cgm.useAECMAs1000d = 1

app.cgm.encoding

Returns and sets the CGM encoding type as integer. Allowed values are 1 for “binary”
and 2 for “text”.

app.cgm.encoding = 1

app.cgm.vdcType

Returns and sets the VDC-Type as integer. Allowed values are 1 for “16bit integer”, 2 for
“32bit integer” and 3 for “real”.

app.cgm.vdcType = 2

app.cgm.compressionColor

Returns and sets the compression color type as integer. Allowed values are:

1 “none”

2 “Runlength”

3 “JPEG”

4 “PNG”
app.cgm.compressionColor = 3

app.cgm.compressionBW

Returns and sets the B/W compression type as integer. Allowed values are:

“none”

“runlength”

“CCITT Group3 (T4)”
“CCITT Group3 (T6)”
“PNG”

DNk (W |—

app.cgm.compressionBW = 2

app.cgm.jpegQuality
(Applies to Arbortext IsoDraw 7.0 FOOO and later.)

Returns and sets the quality for embedded JPEG images as integer. Allowed values are
0 to 100.

Optimizes image quality.

Optimizes image compression.

Lowest quality; highest compression.

..99 As the value increases, quality increases and compression
decreases.

100 Highest quality; lowest compression.

?)Ni—‘c

® [fa macro changes the value of app.cgm. jpegQuality, the change is saved as
the new CGM export JPEG image quality preference setting.

254 Arbortext® IsoDraw® Macro Language Reference

® Recording a macro that changes this property adds an app . cgm. jpegQuality =
value statement to the macro.

app.cgm.jpegQuality = 40

app.cgm.textType

Returns and sets the text type as integer. Allowed values are:

“none”

“RT basic”

“RT boxed-cap”
“RT boxed-all”
“RT isotropic-cap”
“RT isotropic-all”
“RT justified”

AN N ||V | =D

app.cgm.textType = 6

app.cgm.exportType

Returns and sets the export text type as integer. Allowed values are 1 for “basic”, 2 for
“boxed-cap” and 3 for “isotropic-cap”.

app.cgm.exportType = 1

app.cgm.ellipseAsPoly

Returns and sets if ellipses should be exported as polylines as boolean.

app.cgm.ellipseAsPoly = FALSE

app.cgm.layerToPicture

Returns and sets if a separate picture should be generated for every layer as boolean.

app.cgm.layerToPicture = FALSE

app.cgm.nativeCGM

Returns and sets if CGM should be used as the native file format as boolean.

app.cgm.nativeCGM = FALSE

app.cgm.changeURL

Returns and sets if .iso should be replaced with .cgm in links as boolean.

app.cgm.changeURL = TRUE

app.cgm.vdcExtentMode

Returns and sets the VDC extent mode as integer. Allowed values are 0 for “include all
points”, 1 for “bounding box” and 2 for “page size”.

app.cgm.vdcExtentMode = 2

Application Object - Data Exchange Preferences 255

app.cgm.styleHandling

Returns and sets the linestyle handling mode as integer. Allowed values are:

1 “map”

2 “split”

3 “LETD if not solid”
4 “LETD always”

app.cgm.styleHandling = 3

app.cgm.extension

Returns and sets the file extension as string.

app.cgm.extension = "cgm"

app.cgm.version

Returns and sets the CGM version as integer. Allowed values are 1 for “1”, 2 for “2”,
3 for “3” and 4 for “4”.

app.cgm.version = 1

app.cgm.createXCF
(Applies to Arbortext IsoDraw 7.0 FOOO and later.)

Returns and sets the enabled or disabled state of XML companion file (XCF) export as
integer. This property corresponds to the advanced CGM export option, Generate XML
companion files, on the CGM Export preferences page. Allowed values are 0 and 1.

Note

Some CGM export profiles do not support XCF export.

0 Do not write XCF during CGM export.
1 Write XCF during CGM export.

® [f a macro changes the value of app.cgm.createXCF, the change is saved as the
new Generate XML companion files preference setting.

® The macro recorder will not record changes to this property.

app.cgm.createXCF = 1

Export EPS

app.eps.extension

Returns and sets the file extension as string.

app.eps.extension = "eps"

256 Arbortext® IsoDraw® Macro Language Reference

app.eps.preview

Returns and sets the preview as integer. Allowed values are 1 for “no preview”, 2 for “for

MS-DOS” and 3 for “for Mac”.
app.eps.preview = 2
app.eps.embedFonts

Returns and sets if type 1 fonts should be embedded as boolean.

app.eps.embedFonts = FALSE

Import lllustrator

app.ill.ignoreGuides

Returns and sets if the guides are ignored as boolean.

app.ill.ignoreGuides = TRUE

Export lllustrator

app.ill.extension

Returns and sets the file extension as string.

app.ill.extension = "ai

app.ill.includeEPS

Returns and sets if the EPS file is included as boolean.

app.ill.includeEPS = FALSE

app.ill.version

Returns and sets the illustrator version as integer. Allowed values are 0 for “Adobe

Illustrator™ 7.0”, 1 for “Adobe Illustrator™ 88 and 2 for “Adobe Illustrator™ 6.0”.

app.ill.version = 0

Export SVG

app.svg.extension

Returns and sets the file extension as string.

app.svg.extension = "svg"

Application Object - Data Exchange Preferences

257

app.svg.compressed

Returns and sets if an compressed svgz file is created as boolean.

app.svg.compressed = FALSE

app.svg.embedRaster

Returns and sets if the raster image is embedded as boolean.

app.svg.embedRaster = FALSE

app.svg.size

Returns and sets the Illustration size as integer. Allowed values are:

1 Scalable illustration
2 Fixed size illustration
app.svg.size = 2

app.svg.page

Returns and sets the Dimensions as integer. Allowed values are:

1 Drawing size
2 Extent

app.svg.page = 1

app.svg.encoding

Returns and sets the file encoding as integer. Allowed values are:

1 ISO Latin
2 UTF-8
3 UTF-16

app.svg.encoding = 2

app.svg.hotspot_regions

Returns and sets the Hotspot regions as integer. Allowed values are:

1 Use visible geometry only
2 Create region paths

app.svg.hotspot regions = 2

app.svg.object_attributes

Returns and sets the Object attributes as integer. Allowed values are:

1 Don’t export object attributes
2 Export attributes using namespace

app.svg.object attributes= 2

258 Arbortext® IsoDraw® Macro Language Reference

app.svg.export_metadata

Returns and sets the option to export SVG metadata as integer. Allowed values are:

1 Do not export
2 Export all
3 Export Arbortext [soDraw metadata only

Import SVG

app.svg.showDialog

Returns and sets if the SVG import dialog is shown as boolean.

app.svg.pageSizeKind

Returns and sets the page size kind as integer. Allowed values are:

1 Default
2 Adjust to drawing size

app.svg.import_metadata

Returns and sets the option to import SVG metadata as integer. Allowed values are:

1 Ignore
2 Import all
3 Import Arbortext IsoDraw metadata only

Import IGES

app.iges.showDialog

Returns and sets if the IGES import dialog is shown as boolean.

app.iges.showDialog = TRUE

app.iges.scale
Returns and sets the scale as float. 1 is used for 100% and 0.1 for 10%.

#setting the scale to 21%
app.iges.scale = 0.21

app.iges.platformin

Returns and sets the import platform as integer. Allowed values are 1 for “Mac”, 2 for
“MS Win” and 3 for “Unix”.

app.iges.platformIn = 3

Application Object - Data Exchange Preferences 259

app.iges.selectGroups

Returns and sets if the assemblies should be selected as boolean.

app.iges.selectGroups = FALSE

app.iges.createlnfo

Returns and sets if the object informations for the assemblies should be created as boolean.

app.iges.createInfo = FALSE

app.iges.hsType

Returns and sets which hotspot type is created for the assemblies as integer. Allowed
values are 0 for “no hotspot” and 1 for “lines of objects”.

app.iges.hsType = 1

app.iges.ignorelnvisElts

Returns and sets if invisibly elements should be ignored as boolean.

app.iges.ignorelInviskElts = TRUE

app.iges.use102

Returns and sets if the entity 102 should be used as bezier path as boolean.

app.iges.usel02 = TRUE

app.iges.convertAnnotations

Returns and sets if the annotations of the elements should be converted as boolean.

app.iges.convertAnnotations = TRUE

app.iges.views

Returns and sets how elements which are not assigned to a view should be handled as
integer. Allowed values are 0 for “without any view” and 1 for “in all views”.

app.iges.views =1

app.iges.bestView

Returns and sets is the best view is chosen automatically as integer. Allowed values are 0
for “do not check best view” and 1 for “check best view automatically”.

app.iges.bestView = 1

app.iges.entityFlags1

Returns and sets the IGES options as integer. Please use this formula to calculate the
allowed values:

value = 2"x

X Option

0 “100 Circular Arc*

1 “102 Composite Curve*

260 Arbortext® IsoDraw® Macro Language Reference

2 “104 Conic Arc*

3 “106 Copious Data*

4 “108 Plane*

5 “110 Line*

6 “112 Parametric Spline Curve®

7 “114 Parametric Spline Surface*

8 “116 Point*

9 “118 Ruled Surface*

10 “120 Surface of Revolution*

11 “122 Tabulated Cylinder*

12 “124 Transformation Matrix*

13 “126 Rational B-Spline Curve*

14 “128 Rational B-Spline Surface*

15 “130 Offset Curve™

16 “132 Connect Point*

17 “140 Offset Surface™

18 “141 Boundary*

19 “142 Curve on a Parametric Surface*
20 “143 Bounded Surface*

21 “144 Trimmed (Parametric) Surface*
22 “186 Manifold Solid B-Rep Object*
23 “202 Angular Dimension*

24 “206 Diameter Dimension®

25 “210 General Label*

26 “212 General codeblock*

27 “214 Leader/Wedge*

28 “216 Linear Dimension®

29 “218 Ordinate Dimension®

30 “220 Point Dimension*

31 “222 Radius Dimension*

Add values to activate different options.

#activating the Copius Data-option only
app.iges.entityFlagsl = 8

#activating the Composite Curve- (271=2),

#Copious Data-(273=8) and Lines-option (275=32)

app.iges.entityFlagsl = 2 + 8 + 32

app.iges.entityFlags2

Returns and sets the IGES options as integer. Please use this formula to calculate the

allowed values:

value = 2°x

X Option

0 “228 General Symbol*

1 “230 Sectioned Area“

2 “304 Line Font Definition*

Application Object - Data Exchange Preferences

261

3 “308 Subfigure Definition*

4 “312 Text Display*

5 “314 Color Definition*

6 “320 Network Subfigure Definition*
7

8

9

“402 Form 1, 7, 15 Group*
“402 Form 18 Flow*
“402 Form 9, 13, 16*

10 “406 Property/Drawing Size*

11 “408 Singular Subfigure Instance*

12 “412 Rectangle Array Subfigure Instance*
13 “414 Circular Array Subfigure Instance*
14 “416 External Reference*

Add values to activate different options.

#activatingthe General Symbol-option only
app.iges.entityFlags2 = 1

#activating the General Symbol- (270=1),
#Sectioned Area-(2"1=2) and Line Font Definition
#-option (272=4)

app.iges.entityFlags2 = 1 + 2 + 4

Export IGES

app.iges.platformout

Returns and sets the export platform as integer. Allowed values are 1 for “Mac”, 2 for
“MS Win” and 3 for “Unix”.

app.iges.platformout = 2

app.iges.extension

Returns and sets the file extension as string.

app.iges.extension = "igs"

app.iges.standard

Returns and sets the standard header as integer. Allowed values are 1 for “CALS 1
Subset”, 2 for “CALS II Subset” and 3 for “VDAIS”.

app.iges.standard = 3

app.iges.sender

Returns and sets the sender information as string.

app.iges.sender = "ITEDO SOFTWARE"

app.iges.receiver

Returns and sets the receiver information as string.

262 Arbortext® IsoDraw® Macro Language Reference

app.iges.receiver = "ITEDO LLC"

app.iges.author

Returns and sets the author information as string.

app.iges.author = "MS"

app.iges.company
Returns and sets the company information as string.

app.iges.company = "ITEDO SOFTWARE GMBH"

app.iges.VDAIS.sender

Returns and sets the VDAIS Sendefirma information as string.

app.iges.vdais.sender = "ITEDO SOFTWARE GMBH"

app.iges.VDAIS.partner

Returns and sets the VDAIS Ansprechpartner information as string.

app.iges.vdais.partner
= "Mg"

app.iges.VDAIS.tel

Returns and sets the VDAIS Telefon information as string.

app.iges.vdais.tel = "02242 - 92210"

app.iges.VDAIS.adresse

Returns and sets the VDAIS Adresse information as string.

app.iges.vdais.adresse = "D-53773 Hennef"

app.iges.VDAIS.system

Returns and sets the VDAIS Erzeugendes System information as string.

app.iges.vdais.system = "WIN2K"

app.iges.VDAIS.projekt
Returns and sets the VDAIS Projekt information as string.

app.iges.vdais.projekt
= "T 305 UHFE"

app.iges.VDAIS.kennung

Returns and sets the VDAIS Projektkennung information as string.

app.iges.vdais.kennung = "4711-2"

app.iges.VDAIS.variante

Returns and sets the VDAIS Variante information as string.

Application Object - Data Exchange Preferences 263

app.iges.vdais.variante = "V666"

app.iges.VDAIS.conf
Returns and sets the VDAIS Vertraulichkeit information as string.

app.iges.vdais.conf = "Nur fir den Dienstgebrauch"

app.iges.VDAIS.datum
Returns and sets the VDAIS Giltigkeitsdatum information as string.

app.iges.vdais.datum = "01 01 2005"

app.iges.VDAIS.receiver

Returns and sets the VDAIS Empféngerfirma information as string.

app.iges.vdais.receiver = "ITEDO LLC"

app.iges.VDAIS.recName

Returns and sets the VDAIS Empfangername/Abteilung information as string.

app.iges.vdais.recName = "DR"

app.iges.CALS1.identifier

Returns and sets the CALS1 Identifier information as string.

app.iges.CALSl.identifier = "11299874548"

app.iges.CALS1.description

Returns and sets the CALS1 Description information as string.

app.iges.CALSl.description = "Big Project"

app.iges.CALS2.creator

Returns and sets the CALS2 Creator information as string.

app.iges.CALS2.Creator = "HunchBack"

app.iges.CALS2.PartName

Returns and sets the CALS2 Part Name information as string.

app.iges.CALS2.partName = "EL4456:8876-1B"

app.iges.CALS2.drawingName

Returns and sets the CALS2 Drawing Name information as string.

app.iges.CALS2.drawingName = "Front Left"

app.iges.CALS2.description

Returns and sets the CALS2 Description information as string.

app.iges.CALS2.description = "put a onto b"

264 Arbortext® IsoDraw® Macro Language Reference

app.iges.CALS2.revision

Returns and sets the CALS2 Revision information as string.

app.iges.CALS2.revision = "445:7889:223211c"

app.iges.CALS2.sizeNumber

Returns and sets the CALS2 Size Number information as string.

app.iges.CALS2.sizeNumber = "76DD"

Import DWG

app.dwg.showDialog

Returns and sets if the DWG import dialog is shown as boolean.

app.dwg.showDialog = TRUE

app.dwg.scale
Returns and sets the scale as float. 1 stands for 100% and 0.1 for 10%.

#setting the scale to 37%
app.dwg.scale = 0.37

app.dwg.platformin

Returns and sets the import platform as integer. Allowed values are 1 for “Mac”, 2 for
“MS Win” and 3 for “Unix”.

app.dwg.platformIn = 3

app.dwg.unit
Returns and sets the the corresponding unit as integer. Allowed values are:
1 “mm”

2 “inch”

3 “foot”

4 “m”

app.dwg.unit = 1

app.dwg.polyAsElements

Returns and sets if polylines should be converted into lines and circles as boolean.

app.dwg.polyAsElements = FALSE

app.dwg.ignoreVarPolyWidth

Returns and sets if variable width of polylines should be ignored as boolean.

app.dwg.ignoreVarPolyWidth = TRUE

Application Object - Data Exchange Preferences 265

app.dwg.ignoreTextFactor

Returns and sets if the width factor of text elements should be ignored as boolean.

app.dwg.ignoreTextFactor = TRUE

app.dwg.ignoreHeight

Returns and sets if the height and elevation should be ignored as boolean.

app.dwg.ignoreHeight = FALSE

app.dwg.entities

Returns and sets the DWG options as integer. Please use this formula to calculate the
allowed values:

value = 2°x
X Option
0 “LINE*
1 “POINT*
2 “CIRCLE*
3 “SHAPE*
4 “ELLIPSE*
5 “SPLINE*
6 “TEXT*
7 “ARC*
8 “TRACE*
9 “SOLID*
10 “INSERT*
11 “ATTDEF*
12 “ATTRIB*
13 “POLYLINE*
14 “LINE3D*
15 “FACE3D*
16 “DIMENSION*
17 “RAY*
18 “XLINE*
19 “MTEXT*
20 “LEADER*
21 “MLINE*
22 “LWLINE*
23 “PROXY*
24 “HATCH*
25 “VIEWPORT*

Add values to activate different options.

#activating the TEXT-option only
app.dwg.entities = 64

#activating the CIRCLE- (272=4), SHAPE-
#(273=8) and ELLIPSE-option (274=16)

266 Arbortext® IsoDraw® Macro Language Reference

app.dwg.entities = 4 + 8 + 16

Export DWG

app.dwg.release

Returns and sets the AutoCAD release as integer. Allowed values are:

0 “Release 12”
1 “Release 13”
2 “Release 14”
3 “AutoCAD 2000”

app.dwg.release = 3

app.dwg.flags

Returns and sets the conversion flags as integer. Allowed values are 0 for “Convert
ellipses and beziers to 2D polylines”, 1 for “Convert ellipses to 3D arcs and beziers to 2D
polylines”, 2 for “Convert ellipses to 2D Polylines and beziers to 3D Polylines” and 3
for “Convert ellipses and beziers to 3D”. Conversion of ellipses (2 and 3) is only
valid for “Release 12”!

app.dwg.flags = 2

app.dwg.platformOut

Returns and sets the export platform as integer. Allowed values are 1 for “Mac”, 2 for
“MS Win” and 3 for “Unix”.

app.dwg.platformOut = 3

app.dwg.extension

Returns and sets file extension as string.

app.dwg.extension = "dwg"

Import DXF

app.dxf.showDialog

Returns and sets if the DXF import dialog is shown as boolean.

app.dxf.showDialog = TRUE

app.dxf.scale
Returns and sets the scale as float. 1 stands for 100% and 0.1 for 10%.

#setting the scale to 37%
app.dxf.scale = 0.37

Application Object - Data Exchange Preferences 267

app.dxf.platformin

Returns and sets the import platform as integer. Allowed values are 1 for “Mac”, 2 for
“MS Win” and 3 for “Unix”.

app.dxf.platformIn = 3

app.dxf.unit

Returns and sets the corresponding unit as integer. Allowed values are:

E3]

1 “mm
2 “inch”
3 “foot”
4

13 2

m

app.dxf.unit =1

app.dxf.polyAsElements

Returns and sets if polylines should be converted into lines and circles as boolean.

app.dxf.polyAsElements = FALSE

app.dxf.ignoreVarPolyWidth

Returns and sets if variable width of polylines should be ignored as boolean.

app.dxf.ignoreVarPolyWidth = TRUE

app.dxf.ignoreTextFactor

Returns and sets if the width factor of text elements should be ignored as boolean.

app.dxf.ignoreTextFactor = TRUE

app.dxf.ignoreHeight

Returns and sets if the height and elevation should be ignored as boolean.

app.dxf.ignoreHeight = FALSE

app.dxf.entities

Returns and sets the DXF options as integer. Please use this formula to calculate the
allowed values:

value = 2°x
X Option
0 “LINE*
1 “POINT*
2 “CIRCLE*
3 “SHAPE*
4 “ELLIPSE*
5 “SPLINE*
6 “TEXT"
7 “ARC*

268 Arbortext® IsoDraw® Macro Language Reference

8 “TRACE*

9 “SOLID*

10 “INSERT*

11 “ATTDEF*

12 “ATTRIB*

13 “POLYLINE*
14 “LINE3D*

15 “FACE3D*

16 “DIMENSION*
17 “RAY“

18 “XLINE*

19 “MTEXT”

20 “LEADER*

21 “MLINE*

22 “LWLINE*

23 “PROXY*

24 “HATCH*

25 “VIEWPORT*

Add values to activate different options.

#activating the TEXT-option only
app.dxf.entities = 64

#activating the CIRCLE- (272=4), SHAPE-
#(273=8) and ELLIPSE-option (274=16)
app.dxf.entities = 4 + 8 + 16

Export DXF

app.dxf.release

Returns and sets the AutoCAD release as integer. Allowed values are:

1 “Release”

2 “Release 13”

3 “Release 14”

4 “AutoCAD 2000~

app.dxf.release = 4

app.dxf.flags

Returns and sets the conversion flags as integer. Allowed values are 0 for “Convert
ellipses and beziers to 2D polylines”, 1 for “Convert ellipses to 3D arcs and beziers to 2D
polylines”, 2 for “Convert ellipses to 2D Polylines and beziers to 3D Polylines” and 3
for “Convert ellipses and beziers to 3D”.

Note
Conversion of ellipses (2 and 3) is only valid for “Release 12!

Application Object - Data Exchange Preferences 269

app.dxf.flags = 2

app.dxf.platformOut

Returns and sets the export platform as integer. Allowed values are 1 for “Mac”, 2 for
“MS Win” and 3 for “Unix”.

app.dxf.platformOut = 3

app.dxf.extension

Returns and sets file extension as string.

app.dxf.extension = "dxf"

DXF/DWG Import Options: app.dxf /
app.dwg

Applies to Arbortext IsoDraw CADprocess 7.1 F000 and later.

The DXF Options dialog box below shows the new DXF and DWG entites that IML
can import.

app.dxf.entities / app.dwg.entities

Bit Option Available in Release
26 TOLERANCE 7.0; 7.1

27 SURFACE 7.1

28 BODY 7.1

29 SOLID 3D 7.1

30 POLYGON MESH 7.1

31 REGION 7.1

app.dxf.entityFlags2 / app.dwg.entityFlags2

Bit Option Available in Release
0 HELIX 7.1

Import VRML

app.vrml.showDialog

Returns and sets if the VRML import dialog is shown as boolean.

app.vrml.showDialog = TRUE

270 Arbortext® IsoDraw® Macro Language Reference

app.vrml.scale
Returns and sets the scale as float. 1 stands for 100% and 0.1 for 10%.

#setting the scale to 37%
app.vrml.scale = 0.37

app.vrml.selectGroups

Returns and sets if assemblies should be selected as boolean.

app.vrml.selectGroups = FALSE

app.vrml.createinfo

Returns and sets if the object info for assemblies should be created as boolean.

app.vrml.createInfo = FALSE

app.vrml.hsType

Returns and sets the hotspot type as integer. Allowed values are 0 for “no Hotspot™ and 1
for “lines of object”.

app.vrml.hsType = 1

app.vrml.readflag

Returns and sets if the buffers should be read for all file sizes as integer. Allowed values
are 1 for “off” and 17 for “create reading buffer for all file sizes”.

app.vrml.readflag = 17

app.vrml.entities

Returns and sets the VRML options as integer. Please use this formula to calculate the
allowed values:

value = 2"x

X Option

0 “Box*

1 “Cube*

2 “Cone*

3 “Cylinder*

4 “Sphere*

5 “Elevation Grid*

6 “Point Set*

7 “Indexed Line Set™
8 “Indexed Face Set*
9 “Extrusion‘

Add values to activate different options.

#activating the Cone-option only
app.vrml.entities = 4

#activating the Cone- (272=4), Cylinder-
#(273=8) and Sphere-option (274=16)

Application Object - Data Exchange Preferences 271

app.vrml.entities = 4 + 8 + 16

app.vrml.viewpointFlag

Returns and sets the VRML Viewpoints option as integer. Use 0 to not use viewpoints, use
1 to Use viewpoints; Select from list and use 3 to Use viewpoints; Predefined viewpoint.

app.vrml.viewpointFlag = 0

app.vrml.viewpointPredef

Returns and sets the Predefined viewpoint option as string. The option to Use viewpoints;
Predefined viewpoint must be selected for this setting to take affect.

app.vrml.viewpointPredef = "test"

Import Wavefront

app.wavefront.showDialog

Returns and sets if the Wavefront import dialog is shown as boolean.

app.wavefront.showDialog = TRUE

app.wavefront.scale
Returns and sets the scale as float. 1 stands for 100% and 0.1 for 10%.

#setting the scale to 13%
app.wavefront.scale = 0.13

app.wavefront.selectGroups

Returns and sets if assemblies should be selected as boolean.

app.wavefront.selectGroups = FALSE

app.wavefront.createilnfo

Returns and sets if the object info for assemblies should be created as boolean.

app.wavefront.createInfo = FALSE

app.wavefront.hsType

Returns and sets the hotspot type as integer. Allowed values are 0 for “no Hotspot” and 1
for “lines of object”.

app.wavefront.hsType = 1

app.wavefront.readflag

Returns and sets if the buffers should be read for all file sizes as integer. Allowed values
are 1 for “off” and 17 for “create reading buffer for all file sizes”.

app.wavefront.readflag = 17

272 Arbortext® IsoDraw® Macro Language Reference

Import with ProductView Adapters
Applies to Arbortext IsoDraw CADprocess 7.1 F000 and later.

app.adapterCount

Returns and sets the number of successfully installed ProductView (PV) adapters in
Arbortext IsoDraw CADprocess as integer. This property is read-only.

app.adapters[“"name” | "index"]

The properties of a ProductView (PV) adapter are accessed by PV adapter name or
index number. The name of the folder that contains the PV adapter preferences file,
pvad xlte.prf, is the same as the PV adapter name. You cannot assign the PV
adapter itself to a variable, but you can use the exists () function to verify that it is
installed and configured correctly.

Example

Examples:

MACRO configureJTadapter
Overwrite PV Adapter file configuration of JT adapter
IF (exists(app.adapters["JT"]))
only if adapter is installed...
app.adapters["JT"] .showDialog = false
app.adapters["JT"] .selectGroups = false
app.adapters["JT"] .createInfo = true
].
].

app.adapters["JT"] .hsType = 1
app.adapters["JT"].scale = 0.1
END IF
END MACRO

MACRO ListAdapters

Write list of installed adapters to external file
DEFINE n AS Integer
DEFINE i AS Integer
DEFINE sOut AS String

sOut = "D:\temp\AdaptersList.txt"
FNew sOut
i = app.adapterCount
WHILE (i>0)
FWRITE SOUL "M——— e e e e e e

FWRITE sOut "Name : "+app.adapters[i].name
FWRITE sOut "Text : "+app.adapters[i].descriptiveText
FWRITE sOut "Extension : "+app.adapters[i].Extension
FWRITE sOut "Path : "+app.adapters[i].path
FWRITE sOut "Executable : "+app.adapters[i].executable
FWRITE sOut "Recipe : "+app.adapters[i].recipe
i =1-1

END WHILE

END MACRO

Application Object - Data Exchange Preferences 273

app.adapters[].showDialog
Returns and sets if the Import dialog box for the PV adapter is shown. Type is boolean.

app.adapters["JT"].showDialog = true

app.adapters|].selectGroups

Returns and sets if the assemblies should be selected for this PV adapter as boolean.

app.adapters["JT"] .selectGroups = false

app.adapters|].createlnfo

Returns and sets if the object information for the assemblies should be created for this
PV adapter as boolean.

app.adapters["JT"] .createInfo = false

app.adapters|].hsType

Returns and sets which hotspot type is created for the assemblies for this PV adapter as
boolean.

0 no hotspot
1 lines of object

app.adapters["JT"] .hsType =1

app.adapters|[].scale

Returns and sets the import scale for this adapter as float. 1 stands for 100% and 0.1
for 10%.

app.adapters["JT"].scale = 0.5

app.adapters[].descriptiveText

Returns the file extensions for this adapter as string. This property is read-only.

MESSAGE app.adapters([l].extension

app.adapters[].extension

Returns the list of file extensions for this adapter as string with a maximum length of
80 characters. This property is read-only

MESSAGE app.adapters[l].extension

app.adapters[].name

Returns the name for this adapter as string. The name of the adapter is the same as the
folder name where the file pvad xlte.prf is installed.

MESSAGE app.adapters[1l].name

app.adapters[].path
Returns the installation path for this adapter as string. This property is read-only.

274 Arbortext® IsoDraw® Macro Language Reference

MESSAGE app.adapters[1l].path

app.adapters[].executable

Returns the path and filename of the adapters executable as string. This property is
read-only.

MESSAGE getFileName (app.adapters[l].executable)

app.adaptersf].recipe

Returns the path and name of the adapters recipe file as string. This property is read-only.

MESSAGE getFileName (app.adapters[l].recipe)

Export HPGL

app.hpgl.extension

Returns and sets the file extension as string.

app.hpgl.extension = "hpl"

app.hpgl.sortPens

Returns and sets if the pens should be sorted for the plotter output as boolean.

app.hpgl.sortPens = TRUE

app.hpgl.refPoint.x

Returns and sets the reference point x-coord as float.

app.hpgl.refPoint.x = 10.1

app.hpgl.refPoint.y

Returns and sets the reference point y-coord as float.

app.hpgl.refPoint.y = 10.2

Export TIFF

app.tiff.extension

Returns and sets the file extension as string.

app.tiff.extension = "tif"

app.tiff.resolution

Returns and sets the resolution as float.

app.tiff.resolution = 200

Application Object - Data Exchange Preferences 275

app.tiff.border

Returns and sets the border thickness as float.

app.tiff.border = 2

app.tiff.depth

Returns the color depth as integer. This property is read only. (Returned values could be
1, 8, and 24 for 1, 8, and 24 bit)

MESSAGE app.tiff.depth

app.tiff.kind

Returns and sets the color depth as string. Allowed values are “bitmap”, “grayscale”,
“color8” and “color24”.

app.tiff.kind = "color24"

app.tiff.page

Returns and sets the dimension as integer. Allowed values are 1 for “Drawing size” and 2
for “Extent”.

app.tiff.page = 2

app.tiff.compression

Returns and sets the compression as integer. Allowed values are 1 for “none”, 7 for
“PackBits”, for “CCITT Group3”, 4 for “CCITT Group4”, 5 for “LZW” and 6 for
“LZW?2”.

app.tiff.compression = 2

app.tiff.intelOrder

Returns and sets the byte order as boolean.

app.tiff.intelOrder = TRUE

Export JPEG

app.jpeg.extension

Returns and sets the file extension as string.
app.jpeg.extension = "jpg"
app.jpeg.resolution

Returns and sets the resolution as float.
app.jpeg.resolution = 200
app.jpeg.border

Returns and sets the border thickness as float.

276 Arbortext® IsoDraw® Macro Language Reference

app.jpeg.border = 2

app.jpeg.kind
Returns and sets the color depth as string. Allowed values are “grayscale” and “color24”.

app.jpeg.kind = "color24"

app.jpeg.page

Returns and sets the dimension as integer. Allowed values are 1 for “Drawing size” and 2
for “Extent”.

app.jpeg.page = 2

app.jpeg.quality

Returns and sets the export quality as float. Allowed values are between 1 and 100. A
value to 40 would represent 4 on the quality scale.

app.jpeg.quality = 40

Export PNG

app.png.extension

Returns and sets the file extension as string.

app.png.extension = "png"

app.png.resolution

Returns and sets the resolution as float.

app.png.resolution = 200

app.png.border

Returns and sets the border thickness as float.

app.png.border = 2

app.png.kind

9% ¢

Returns and sets the color depth as string. Allowed values are “bitmap”, “grayscale”,
“color8” and “color32”.

app.png.kind = "color32"

app.png.page

Returns and sets the dimension as integer. Allowed values are 1 for “Drawing size” and 2
for “Extent”.

app.png.page = 2

Application Object - Data Exchange Preferences 277

app.png.filter

Returns and sets the export filter as float. Allowed values are:

0 “None”

1 “Sub”

2 [3 ‘Up”

3 “Average”
4 “Paeth”

5 “Adaptive”

app.png.filter = 3

Export BMP

app.bmp.extension

Returns and sets the file extension as string.

app.bmp.extension = "bmp"

app.bmp.resolution

Returns and sets the resolution as float.

app.bmp.resolution = 200

app.bmp.border

Returns and sets the border thickness as float.

app.bmp.border = 2

app.bmp.kind

bR 1Y

Returns and sets the color depth as string. Allowed values are “bitmap”, “grayscale”,
“color8” and “color24”.

app.bmp.kind = "color24"

app.bmp.page

Returns and sets the dimension as integer. Allowed values are 1 for “Drawing size” and 2
for “Extent”.

app.bmp.page = 2

app.bmp.version

Returns and sets the version as integer. Allowed values are 1 for “Windows” and 2 for
“OS/2”.

app.bmp.version = 1

278 Arbortext® IsoDraw® Macro Language Reference

app.bmp.compression

Returns and sets the compression as integer. Allowed values are 0 for “none” and 1 for
“RLE 8”.

app.bmp.compression = 1

Export PCX

app.pcx.extension

Returns and sets the file extension as string.

app.pcx.extension = "pcx"

app.pcx.resolution

Returns and sets the resolution as float.

app.pcx.resolution = 200

app.pcx.border

Returns and sets the border thickness as float.

app.pcx.border = 2

app.pcx.kind

Returns and sets the color depth as string. Allowed values are “bitmap”, “grayscale”,
“color8” and “color24”.

app.pcx.kind = "color24"

app.pcx.page

Returns and sets the dimension as integer. Allowed values are 1 for “Drawing size” and 2
for “Extent”.

app.pcx.page = 2

Returns and sets the compression as integer. Allowed values are 1 for “none” and 2 for
“RLE 8”.

app.pcx.encoding = 1

app.pcx.encoding

Export CALS

app.cals.extension

Returns and sets the file extension as string.

app.cals.extension = "cc4"

Application Object - Data Exchange Preferences 279

app.cals.resolution

Returns and sets the resolution as float.

app.cals.resolution = 200

app.cals.border

Returns and sets the border thickness as float.

app.cals.border = 2

app.cals.page

Returns and sets the dimension as integer. Allowed values are 1 for “Drawing size” and 2
for “Extent”.

app.cals.page = 2

app.cals.srcdocid

Returns and sets the srcdocid information as string.

app.cals.srcdocid = "sample"

app.cals.dstdocid

Returns and sets the dstdocid information as string.

app.cals.dstdocid = "sample"

app.cals.textfilid

Returns and sets the textfilid information as string.

app.cals.textfilid = "sample"

app.cals.figid

Returns and sets the figid information as string.

app.cals.figid = "sample"

app.cals.srcgph

Returns and sets the srcgph information as string.

app.cals.srcgph = "sample"

app.cals.doccls

Returns and sets the doccls information as string.

app.cals.doccls = "sample"

Returns and sets the codeblocks information as string.

app.cals.codeblocks = "sample"

280 Arbortext® IsoDraw® Macro Language Reference

app.cals.codeblocks

Export Text

app.txt.extension

Returns and sets the file extension as string.

app.txt.extension = "txt"

app.txt.useUnicode

Returns and sets if Arbortext IsoDraw should generate a unicode text file as boolean.

app.txt.useUnicode = TRUE

Export Object List

app.objectList.extension

Returns and sets the file extension as string.

app.objectList.extension = "txt"

app.objectList.fileTag

Returns and sets the file element as string.

app.objectList.fileTag = "MyFile"

app.objectList.objTag

Returns and sets the object element as string.

app.objectList.objTag = "MyObject"

app.objectList.layerTag

Returns and sets the layer element as string.

app.objectlList.layerTag = "MyLayer"

app.objectList.flags

Returns and sets the object list flags as integer. Allowed values are:

1 “Write as XML”

2 “ID”

4 “Name”

8 “Object tip”

16 “Other attributes”

32 “XML attributes”

64 “XML: obj-type as element name”

Application Object - Data Exchange Preferences

281

Add values to combine different flags.

fenable all attributes
app.objectlList.flags = (1+2+4+8+16+32+64)

Export XCF

Applies to Arbortext IsoDraw CADprocess 7.1 F000 and later.

app.xcf

The XCF Export preferences dialog box below shows the XCF export settings
corresponding to the IML app . xcf properties below.

Preferences: #CF Ewport
— Export
App et extension Estension: wrnl
Encoding: . Unicode [UTF-8) -
App.}{u:?.enc:ndmg I J
Bind objects: * by object (D "

App.xct object bind syobrsshrene g

by aobject lype “typa”

non-w'ebChM elements: &+ ignore
" export using namespace:

Appxcf namespace_prefis |
App.xcf.namespace_uri R [

et content: U Do nat export "none"
Anp. xcftext content [0
PR u " Export al all

% Export except callouts “no_callouts"

Administrator | Factory seftings I

@, Added ML suppart with 7.1 Cancel | oK |

O New property in 7.1 fwith IML support)

app.xcf.object_bind

Returns and sets the Bind objects setting as string. Allowed values are:

"id" for by Object ID
"name" for by object name
"type" for by object type

app.xcf.namespace_prefix

Returns and sets the XCF namespace prefix value as string with a maximum length of 256
characters. If app.xcf.namespace prefixand app.xcf.namespace uri
are both empty, namespaces are ignored.

282 Arbortext® IsoDraw® Macro Language Reference

app.xcf.namespace_uri

Returns and sets the XCF namespace uri value as string with a maximum length of 2048
characters. If app.xcf.namespace uri and app.xcf.namespace prefix
are both empty, namespaces are ignored.

app.xcf.text_content

Returns and sets the Text content setting as string. Allowed values are:

"none" for Do not export
"all" for Export all
"no_callouts" for Export except callouts

app.version.title

Returns the licensed version of Arbortext IsoDraw as displayed in the title of the main
application window as string. This property is read-only. It returns either "IsoDraw
Foundation" or "IsoDraw CADprocess".

Export Interleaf

app.interleaf.extension

Returns and sets the file extension as string.

app.interleaf.extension = "doc"

app.interleaf.useStyles

Returns and sets if linestyles should be converted into single elements as boolean.

app.interleaf.useStyles = TRUE

Export MIF

app.mif.extension

Returns and sets the file extension as string.

app.mif.extension = "mif"

Export PICT

The PICT format is a format which could only be used on a Macintosh compatible
computer.

Application Object - Data Exchange Preferences 283

app.pict.extension

Returns and sets the file extension as string.

app.pict.extension = "pic"

Export PDF

Applies to Arbortext IsoDraw CADprocess 7.1 F000 and later.

app.pdf
Returns and sets the preferences of the PDF Export preference panel and the PDF options
dialog box.

Example

Examples:

MACRO Log PDFU3D Prefs
writes current preference settings to macro logfile

Log "App.
Log "App
Log "App
Log "App
Log "App
Log "App
Log "App
Log "App
Log "App
Log "App
Log "App
Log "App
END MACRO

.pdf
.pdf
.pdf
.pdf

.pdf.
.pdf.
.pdf.
.pdf.

u3d.
.pdf.
.pdf.
.pdf.

Extension = "+ App.u3d.Extension
Extension = "+ App.pdf.Extension
text to path = "+ App.pdf.text to path
convert to raster = "+ App.pdf.convert to raster
.meta.title = "+ App.pdf.meta.title
.meta.subject = "+ App.pdf.meta.subject
.meta.author = "+ App.pdf.meta.author
.meta.keywords = "+ App.pdf.meta.keywords
raster.resolution = "+ App.pdf.raster.resolution
raster.border = "+ App.pdf.raster.border
raster.page = "+ App.pdf.raster.page

raster.kind = "+ App.pdf.raster.kind

MACRO PDF Set MetaDescription

App.pdf.meta.

author = sys.user.name

App.pdf.meta.subject = stripext (activeDoc.name)
END MACRO

MACRO PDF Prefs Factory Setting
recorded with Arbortext IsoDraw 7.1

App
App
App
App
App
App
App
App
App
App
App

.pdf
.pdf.
.pdf.
.pdf
.pdf
.pdf
.pdf
.pdf.
.pdf.
.pdf.
.pdf.

END MACRO

284

.Extension = "pdf"
text to path = false
convert to raster = false
.meta.title = ""
.meta.author = ""
.meta.subject = ""
.meta.keywords = ""
raster.resolution = 200
raster.border = 2
raster.page = 2
raster.kind = "color24"

Arbortext® IsoDraw® Macro Language Reference

app.pdf.extension

Returns and sets the file extension as string with a maximum length of 8 characters.

app.pdf.text_to_path

Returns and sets if text elements are exported to Bézier-paths as boolean.

app.pdf.convert_to_raster

Returns and sets if the content is exported as raster as boolean.

app.pdf.meta

Returns and sets PDF metadata field values.

app.pdf.meta.title

Returns and sets the PDF title metadata field. Semicolon character (";") is not allowed.
Type is string; maximum length is 256 characters.

app.pdf.meta.author

Returns and sets the PDF author metadata field. Semicolon character (";") is not allowed.
Type is string; maximum length is 256 characters.

app.pdf.meta.subject

Returns and sets the PDF subject metadata field. Semicolon character (";") is not allowed.
Type is string; maximum length is 256 characters.

app.pdf.meta.keywords

Returns and sets the PDF keywords metadata field. Semicolon character (";") is not
allowed. Type is string; maximum length is 256 characters.

app.pdf.raster

Returns and sets PDF raster image properties.

app.pdf.raster.resolution

Returns and sets the resolution for included raster in dpi as float.

app.pdf.raster.border

Returns and sets the border for included raster in mm as float.

app.pdf.raster.kind
Returns and sets the image depth for included raster as string.

Allowed values are: "bitmap": black & white, "grayscale": 8 bit gray tone, "color8": 8
bit color, "color24": 24 bit color.

Application Object - Data Exchange Preferences 285

app.pdf.raster.page
Type is integer. Returns and sets if the dimensions as integer.

Allowed values are: 1: use full page size; 2: use illustration extent.

Export U3D

Applies to Arbortext IsoDraw CADprocess 7.1 F000 and later.

app.u3d.extension

Returns and sets the file extension as string with a maximum length of 8 characters.

app.u3d.extension = "u3d"

Import WMF

The WMF format is a format which could only be used on a Windows compatible
computer.
app.wmf.showDialog

Returns and sets if the wmf import dialog is shown as boolean.

app.wmf.showDialog = TRUE

app.wmf.asRaster

Returns and sets if the wmf file should be imported as image element as boolean.

app.wmf.asRaster = FALSE

Export WMF

The WMF format is a format which could only be used on a Windows compatible
computer.

app.wmf.extension

Returns and sets the file extension as string.

app.wmf.extension = "wmf"

app.wmf.enhanced

Returns and sets if the file should be written as enhanced metafile as boolean.

app.wmf.enhanced = TRUE

286 Arbortext® IsoDraw® Macro Language Reference

Sub Data Types for Attribute
Preferences

P NS] e e aaa e 288
1 1=] 4 [P 288
=Y = o [111 RSP 289
oo o] = 1 PP 290
B g F=1 o] 1T] R SRS 291
0= 10T o [PP 291
AXEFOIrMALS] e e 291
oz]| [o 01 £ [PP 292
Lo o] U 295

IML provides several “sub data types” that you do not DEFINE directly (as you do
for other complex data types). Rather, you use sub data types to return or set attribute
preferences for the currently active Document or Application object.

287

.Pens][]

This property gives access to all pen attributes but it can not be used directly.

.Pens[].name

Returns and sets the name of a specific default pen as string.

app.Pens["Thick"] .name = "myThickPen"

.Pens|[].width

Returns and sets the width of a specific default pen as float.

app.Pens[1l].width = 2.5

.Pens][].color

This is a ColorSpec (see ColorSpec on page) type property.

MESSAGE app.Pens["Medium"].color.type

.Pens|].style

Returns and sets the style of a specific pen as string.

app.Pens["Thick"].style = "Solid"

.Pens[].shadow

Returns and sets the type of shadow as string.

app.Pens[1l].shadow = "Autom. Long"

.Pens]].switchPen

Returns and sets the type of pen switched to as string.

app.Pens[1l].switchPen = "Thin"

.Pens|].screenColor

Returns and sets the screen color as RGBColor.
app.Pens[3].screenColor.red = 122
app.Pens[3].screenColor.green = 122

app.Pens[3].screenColor.blue = 122

Jdinestyles|]

This property gives access to all style attributes but it can not be used directly.

Jdinestyles[].name

Returns and sets the name of the linestyle as string.

288 Arbortext® IsoDraw® Macro Language Reference

app.linestyles[l].name = "myLineStyle"

Jdinestyles|].type

Returns and sets the type of the linestyle as integer. The allowed values are 0 for “solid”, 1
for “dashed” and 2 for “dotted”.

app.linestyles[l].type = 2

Jdinestyles|[].startMark

Returns and sets the start mark of the linestyle as integer between 0 and 46 (0 = no mark).

app.linestyles[l].startMark = 33

Jdinestyles[].endMark

Returns and sets the end mark of the linestyle as integer between 0 and 46 (0 = no mark).

app.linestyles[l].endMark = 7

Jdinestyles[].minEndLength

Returns and sets the minimum end length of the linestyle as float.

app.linestyles[1l] .minEndLength = 33

Jdinestyles|[].pattern[]

Returns and sets the pattern values.

app.linestyles[l].pattern[l]

Returns and sets the pattern values as float. This applies to linestyles.type 1 and 2. If the
linestyle.type property is set to "dotted" and the first pattern is greater than O the first

pattern defines the point distance. If the linestyle.type property is set to "dotted" and the
first pattern is equal to (-256) the point distance is set to automatic.

app.linestyles[l].pattern[l] =1
app.linestyles[1l].pattern[2] = 1.5

The linestyles can be addressed by the language independent specifier (see International
Names on page 299):

app.linestyles[“S$SISO DOTTED”].pattern[l] = 1.5

.shadows][]

This property gives access to all shadow attributes but it can not be used directly.

.shadows|[].name

Returns and sets the name of the shadow as string.

app.shadows[1l] .name = "myPrettyShadow"

Sub Data Types for Attribute Preferences 289

.shadows|].width

Returns and sets the width of the shadow in mm as float. Setting this value to 0 means
automatic; all positive values defining the thickness of the shadow in mm; all negative
values defining the thickness of the shadow relative to the thickness of the line thickness.

app.shadows[1l].width = 7

.shadows]|].color

Returns and sets the color of the shadow as ColorSpec on page .
app.shadows[l].color.rgb.red = 155
app.shadows[l].color.rgb.green = 155

app.shadows[l].color.rgb.blue = 155

.shadows]|].start

Returns and sets the start type of the shadow as integer. Allowed values are 1 for “long”, 2
for “middle”, 3 for “short”.

app.shadows[1l].start = 1

.shadows|].end

Returns and sets the end type of the shadow as integer. Allowed values are 1 for “long”, 2
for “middle”, 3 for “short”.

app.shadows[l].end = 2

.colors|]

This property gives access to all color attributes but it can not be used directly.

.colors[].name

Returns and sets the name of the color as string.

app.colors[l].name = "myLovelyBlue"

.colors[].kind

Returns and sets the type of the color as string. The allowed values are "Custom_color",
"RGB color". "CMYK color" and "Color Tone".

app.colors[1l].kind = "RGB color"

.colors|].color

Returns and sets the color as ColorSpec (see ColorSpec on page).
app.colors[l].color.rgb.red = 188
app.colors[l].color.rgb.green = 188

app.colors[l].color.rgb.blue = 188

290 Arbortext® IsoDraw® Macro Language Reference

.hatchings|]

This property gives access to one hatching attribute but it can not be used directly.

.hatchings[].name

Returns and sets the name of the hatching as string.

app.hatchings[1l] .name = "firstHatch"

.patterns|]

This property gives access to one pattern attribute but it can not be used directly.

.patterns[].name

Returns and sets the name of the hatching as string.

app.patterns[l] .name = "firstPatch"

AxtFormats|]

This property gives access to all text format attributes but it can not be used directly.

txtFormats[].name

Returns and sets the name of the text format as string.

app.txtFormats[1l] .name = "My New Format"

txtFormats|].font

Returns and sets the name of the font of the text format as string. Any installed font can
be used.

app.txtFormats([1l].font = "Arial"

txtFormats|].face

Returns and sets the text face of the text format as string. Allowed values are “normal”,
“bold”, “italic” and “bolditallic”.

app.txtFormats([1l].face = "bold"

txtFormats|].size

Returns and sets the size of the text format as float.

app.txtFormats[l].size = 12

txtFormats|].leading

Returns and sets the leading of the text format as float.

Sub Data Types for Attribute Preferences 291

app.txtFormats[1l].leading = 2.5

txtFormats|].position

Returns and sets the position of the text format as float.

app.txtFormats[l] .position = 8

txtFormats|].kerning

Returns and sets the kerning of the text format as float.

app.txtFormats[1l].kerning = 1.2

.callouts|]

This property gives access to all callout attributes but it can not be used directly.

.callouts[].style_name

Returns and sets the name of the callout style as string.

app.callouts[1l].style name = "myNewCallout"

.callouts[].shape_type

Returns and sets the type of the callout shape type as integer. Allowed values are 0 for
"None", 1 for "Circle", 2 for "Triangle Up", 3 for "Triangle Down", 4 for "Rectangle", 5
for "Pentagon" and 6 for "Hexagon".

app.callouts[1l].shape type = 2

.callouts[].shape_width

Returns and sets the value of the callout shape width as float.

app.callouts[1l].shape width = 2.5

.callouts[].shape_height

Returns and sets the value of the callout shape height as float.

app.callouts[1l].shape height = 1.5

.callouts[].shape_pen

Returns and sets the pen of the shape of the callout as string. Any defined pen can be used.

app.callouts([1l].shape pen = "Thick"

.callouts[].shape_style

Returns and sets the style of the shape of the callout as string. Any defined style can
be used.

app.callouts[1l].shape style = "Dashed"

292 Arbortext® IsoDraw® Macro Language Reference

.callouts[].shape_shadow

Returns and sets the shadow of the shape of the callout as string. Any defined shadow can
be used.

app.callouts[1l].shape shadow = "Autom. Long"

.callouts[].text_update

Returns and sets the status of the text update width as string. The allowed values are
"none" and "auto".

app.callouts[1l].text update = "auto"

.callouts[].text_position

Returns and sets the type of the text alignment as string. The allowed values are "aligned"
and "centered".

app.callouts[1l].text position = "centered"

.callouts[].text_prefix

Returns and sets the text prefix as string.

app.callouts[1l].text prefix = "partNo:"

.callouts[].text_postfix

Returns and sets the text postfix as string.

app.callouts[1l].text postfix = " 66765"

.callouts[].text_gap

Returns and sets the text gap as float.

app.callouts[1l].text gap = "1.5"

.callouts[].line_pen

Returns and sets the line pen as string. Any existing pen can be used.

app.callouts([1l].line pen
= "Thick"

.callouts[].line_style

Returns and sets the line style as string. Any existing style can be used.

app.callouts([1l].line style = "Solid"

.callouts[].line_shadow

Returns and sets the line shadow as string. Any existing shadow can be used.

app.callouts[1l].line shadow = "Autom. Long"

.callouts][].fill
Returns and sets the callout fill as fill.

Sub Data Types for Attribute Preferences 293

app.callouts([1l].fill.type = "no fill"

.callouts[].text_format

Returns and sets the text format of the callout as string. Any defined format can be used.

app.callouts[1l].text format = "Normal"

.callouts[].text_font

Returns and sets the text font of the callout as string. Any installed font can be used.

app.callouts[1l].text font = "Arial"

.callouts[].text_face

Returns and sets the text face of the callout as string. Allowed values are "normal",
"bold", "italic" and "bolditalic".

app.callouts[1].text face = "bold"

.callouts[].text_size

Returns and sets the text size of the callout as float.

app.callouts[1l].text size = 24.5

.callouts|[].text_strokecolor

Returns and sets the text stroke color of the callout as ColorSpec (see ColorSpec on page).

app.callouts[1l].text strokecolor.type = "cmykValues"

.callouts|[].text_stroke

Returns and sets the text stroke of the callout as float.

app.callouts[1l].text stroke = 2.2

.callouts[].text_fillcolor

Returns and sets the color of the fill of the text of the callout as ColorSpec (see ColorSpec
on page).

app.callouts[1l].text fillcolor.rgb.red = 168

app.callouts([1l].text fillcolor.rgb.green = 168

app.callouts([1l].text fillcolor.rgb.blue = 168

.callouts[].text_scheme

Returns and sets the text scheme of the callout as string. Allowed values are "no_scheme",

nn

"alpha_uppercase", "alpha_lowercase" and "numeric".

app.callouts[1l].text scheme = "no scheme"

.callouts[].text_hotspot_flag

Returns and sets if the hotspot flag is set as boolean.

app.callouts[1l].text hotspot flag = false

204 Arbortext® IsoDraw® Macro Language Reference

.grids|[]

This property gives access to all grid attributes but it can not be used directly.

.grids[].name

Returns and sets the name of the grid as string.

app.grids[l].name = "Isometric"

.grids[].xAngle

Returns and sets the x-angle of the grid as float.

app.grids[1l].xAngle = 30

.grids[].zAngle

Returns and sets the z-angle of the grid as float.

app.grids[1l].zAngle = 30

Sub Data Types for Attribute Preferences

295

VH—

Appendix

A
\

25

International Names

Writing Language-Independent Macros

In order to develop macros that are independent from the language version of Arbortext
IsoDraw, use the international attribute-names.

Using these names rather than the language specific names will enable these macros to run
in Arbortext IsoDraw disregarding the language version.

Even if it is valid to switch the active pen with:

myDoc.active pen = “No Pen”

This would switch the pen only if the Pen is really named “No Pen”. This is true for
the English language version of Arbortext IsoDraw only. In the German version the
appropriate command would be:

myDoc.active pen = “Kein Stift”

In order to write a macro which works always, we recommend using the international
names:

myDoc.active pen = “$ISO_NOPEN”

The proper pen name is calculated during run time of the macro. This command line
would work on Arbortext IsoDraw, no matter if it is an English, German, Italian, French
or even Japanese installation.

Pen Names

e $ISO NOPEN

e $ISO _THICK

e SISO MEDIUM

e SISO THIN

® SISO _CENTERLINE

299

Style Names

$ISO_SOLID

$ISO DASHED
$ISO_CENTERLINE
$ISO DOTTED
$ISO_DOTDASHED
$ISO DASHDOTDOT
$ISO_STARTARROW
$ISO_ENDARROW
$ISO_ ENDDOT
$ISO_ARROW
$ISO_STITCHLINE
$ISO_CENTERLINE2
$ISO_HIDDENLINE
$ISO PHANTOMLINE
$ISO_BREAKLINEI
$ISO_BREAKLINE2

Shadow Names

$ISO NOSHADOW
$ISO_LONG

$ISO MIDDLE
$ISO_SHORT
$ISO_CENTER

Color Names

$ISO_NOFILL
$ISO_WHITE
$ISO BLACK

Callout Names

300

$ISO NORMAL

Arbortext® IsoDraw® Macro Language Reference

IML File Format Names

The table below lists the file format names you can use in place of the keyword variables
"exportformat" and "processformat" in the EXPORT and PROCESS commands.

For more information on these two commands, see Export on page 51 and Export on

page 51.

"exportformat" Names

"processformat” Names

File Format

Standard IsoDraw format of
current version

ISO 4 IsoDraw 4

IsoDraw 3
IsoDraw 2.6 format (not
supported on Windows)

EPSF EPSF Encapsulated PostScript File
Adobe Illustrator 1.1

AT AT Adobe Illustrator (88 if not
spec. in preference)

IGES IGES Initial Graphics Exchange
Standard format

DXF DXF Drawing Exchange Format

HPGL HPGL Hewlett Packard Graphics
Language

CGM CGM Computer Graphics Metafile

PICT PICT PICTure format (not
supported on Windows)

TIFF TIFF Tagged Image File

BMP BMP Bitmap

PCX PCX PCX

CALS Raster CALS Raster CALS Raster

Text Excerpt Text Excerpt Text Excerpt

301

"exportformat" Names |"processformat" Names |File Format
Interleaf Interleaf Interleaf
MIF MIF Maker Interchange Format
ISO 5 IsoDraw 5
IsoDraw 5, packed
DWG DWG DWG (AutoCAD)
SVG SVG Scalable Vector Graphics
JPEG JPEG JPEG (Joint Photographic
Experts Group)
PNG PNG Portable Network Graphic
WMF WMF Windows Metafile
ISO 6 IsoDraw 6
IsoDraw 6, packed
ISO 7 IsoDraw 7
IS0Z 7 IsoDraw 7, packed
XCF XCF XML companion file)
Objects Text Objects Text Objects text excerpt
ISO 71 IsoDraw 7.1
IS0Z 71 IsoDraw 7.1, packed
PDF PDF 3D PDF files
U3D U3D Universal 3D files

302

Arbortext® IsoDraw® Macro Language Reference

. 57

CGM Profile Numbers and Names

CGM Export profile numbers and names for the current release and older releases of
Arbortext [soDraw are listed below. The numbers (#) are integer values returned and set in
the app.cgm.profile property of the Application object.

Arbortext IsoDraw 7.1 app.cgm.profile Numbers and Names

n |CGM Profile Name Macro Constant Name

1 |ISO 8632:1999 $CGM Profile.ISO 8632 1999

2 |WebCGM 1.0 $CGM Profile. WebCGM 1 0

3 | ATA GREXCHANGE V2.8 $CGM Profile. ATA GREXCHANGE 2 8

4 | ATA GREXCHANGE V2.7 $CGM Profile. ATA GREXCHANGE 2 7

5 | ATA GREXCHANGE V2.6 $CGM Profile. ATA GREXCHANGE 2 6

6 |ATA GREXCHANGE V2.5 $CGM Profile. ATA. GREXCHANGE 2 5

7 | ATA GREXCHANGE V2.4 $CGM _Profile. ATA GREXCHANGE 2 4

8 | ATA GREXCHANGE V2.5/IsoDraw | SCGM_Profile. ATA GREX-
CHANGE 2 5 ISODRAW

9 |MIL-D-28003A $CGM _Profile MIL D 28003A

10 | SAE J2008 $CGM_Profile.SAE J2008

11 |Model (8632:1992) $CGM_Profile.Model 8632 1992

12 |ISO ISP 12071-1 $CGM_Profile.ISO ISP 12071 1

13 |ISO ISP 12072-1 $CGM _Profile.ISO ISP 12072 1

14 |ISO ISP 12073-1 $CGM Profile.ISO ISP 12073 1

15 |ISO ISP 12074-1 $CGM _Profile.ISO ISP 12074 1

16 | ATA GREXCHANGE V2.9 $CGM_Profile. ATA GREXCHANGE 2 9

17 |S1000D V22! $CGM_Profile.S1000D 2 2

18 | WebCGM 2.0 $CGM_Profile. WebCGM 2 0

19 | ATA GREXCHANGE V2.10 $CGM_Profile.Current ATA?

303

Arbortext IsoDraw 7.1 app.cgm.profile Numbers and Names (continued)

n |CGM Profile Name Macro Constant Name
20 |S1000D V2.3 No macro constant name
21 |WebCGM 2.1 $CGM _Profile. WebCGM 2 1

1. S1000D V2.2 export is not supported in release 7.1 FOOO and later.

2. The constant name $CGM_Profile.Current_ AT always applies to the newest ATA
GREXCHANGE profile that this release of Arbortext IsoDraw supports. When Arbortext
IsoDraw supports a newer version, V2.10 will be assigned a different constant name; e.g.,
$CGM_Profile. ATA GREXCHANGE 2 10.

Arbortext IsoDraw 7.0 F000 app . cgm.profile Numbers and Names

n |CGM Profile Name Macro Constant Name

1 |ISO 8632:1999 $CGM_Profile.ISO 8632 1999

2 |WebCGM 1.0 $CGM _Profile. WebCGM 1 0

3 | ATA GREXCHANGE V2.8 $CGM _Profile. ATA GREXCHANGE 2 8

4 | ATA GREXCHANGE V2.7 $CGM Profile. ATA GREXCHANGE 2 7

5 | ATA GREXCHANGE V2.6 $CGM Profile. ATA GREXCHANGE 2 6

6 |ATA GREXCHANGE V2.5 $CGM Profile. ATA GREXCHANGE 2 5

7 | ATA GREXCHANGE V2.4 $CGM _Profile. ATA. GREXCHANGE 2 4

8 | ATA GREXCHANGE V2.5/IsoDraw | SCGM_ Profile. ATA GREX-
CHANGE 2 5 ISODRAW

9 |MIL-D-28003A $CGM Profile MIL D 28003A

10 | SAE J2008 $CGM Profile.SAE J2008

11 |Model (8632:1992) $CGM_Profile.Model 8632 1992

12 |ISO ISP 12071-1 $CGM Profile.ISO ISP 12071 1

13 |ISO ISP 12072-1 $CGM_Profile.ISO ISP 12072 1

14 |ISO ISP 12073-1 $CGM_Profile.ISO ISP 12073 1

15 |ISO ISP 12074-1 $CGM _Profile.ISO ISP 12074 1

16 | ATA GREXCHANGE V2.9 $CGM_Profile. ATA GREXCHANGE 2 9

17 [S1000D V2.2 $CGM _Profile.S1000D 2 2

18 | WebCGM 2.0 $CGM Profile. WebCGM 2 0

19 | ATA GREXCHANGE V2.10 $CGM_Profile.Current ATA!

1. The constant name $CGM_Profile.Current AT always applies to the newest ATA
GREXCHANGE profile that this release of Arbortext IsoDraw supports. When Arbortext
IsoDraw supports a newer version, V2.10 will be assigned a different constant name; e.g.,
$CGM_Profile. ATA_ GREXCHANGE 2 10.

Arbortext IsoDraw 6.1 M030 app.cgm.profile Numbers and Names

CGM Profile Name

ISO 8632:1999

WebCGM

WIN |3

ATA GREXCHANGE V2.8

304

Arbortext® IsoDraw® Macro Language Reference

Arbortext IsoDraw 6.1 M030 app.cgm.profile Numbers and Names

(continued)

CGM Profile Name

ATA GREXCHANGE V2.7

ATA GREXCHANGE V2.6

ATA GREXCHANGE V2.5

ATA GREXCHANGE V2.4

ATA GREXCHANGE 2.5/IsoDraw

MIL-D-28003A

SAE J2008

Model (8632:1992)

ISO ISP 12071-1

ISO ISP 12072-1

ISO ISP 12073-1

ISO ISP 12074-1

ATA GREXCHANGE V2.9

AECMA S1000D

Arbortext IsoDraw 6.1 M020 app.cgm.profile Numbers and Names

CGM Profile Name

ISO 8632:1999

WebCGM

ATA GREXCHANGE V2.8

ATA GREXCHANGE V2.7

ATA GREXCHANGE V2.6

ATA GREXCHANGE V2.5

ATA GREXCHANGE V2.4

ATA GREXCHANGE 2.5/IsoDraw

NI I NI YN E

MIL-D-28003A

—_
=]

SAE J2008

—_—
—

Model (8632:1992)

—
[\

ISO ISP 12071-1

—_
W

ISO ISP 12072-1

._
o

ISO ISP 12073-1

—
(V)]

ISO ISP 12074-1

—_
o)}

ATA GREXCHANGE V2.9

Arbortext IsoDraw 6.1 M010 app.cgm.profile Numbers and Names

n |CGM Profile Name
1 [ISO 8632:1999
2 | WebCGM

CGM Profile Numbers and Names

305

Arbortext IsoDraw 6.1 M010 app.cgm.profile Numbers and Names
(continued)

CGM Profile Name

ATA GREXCHANGE V2.9

ATA GREXCHANGE V2.8

ATA GREXCHANGE V2.7

ATA GREXCHANGE V2.6

ATA GREXCHANGE V2.5

ATA GREXCHANGE V2.4

ATA GREXCHANGE 2.5/IsoDraw

MIL-D-28003A

SAE J2008

Model (8632:1992)

ISO ISP 12071-1

ISO ISP 12072-1

ISO ISP 12073-1

ISO ISP 12074-1

Arbortext IsoDraw 6.0 (M010 to M070) app.cgm.profile Numbers and
Names

CGM Profile Name

ISO 8632:1999

WebCGM

ATA GREXCHANGE V2.8

ATA GREXCHANGE V2.7

ATA GREXCHANGE V2.6

ATA GREXCHANGE V2.5

ATA GREXCHANGE V2.4

o|wla|n[b|w||—|s

ATA GREXCHANGE 2.5/IsoDraw

N\l

MIL-D-28003A

—_
[

SAE J2008

—_—
—

Model (8632:1992)

—_
o

ISO ISP 12071-1

—_
W

ISO ISP 12072-1

,_
~

ISO ISP 12073-1

—_—
9]

ISO ISP 12074-1

306

Arbortext® IsoDraw® Macro Language Reference

	About This Guide
	Introduction
	About Macros
	Macros and Macro Language
	What’s In IML?
	How are Macros Created and Updated?

	Macro File Structure
	Macro File Storage
	Creating Macros
	Recording Macros
	Debugging Macros
	Editing Macro Files

	Built-in IML Limits

	Language Basics
	Lexical Structure
	Case Sensitivity
	Statements and Line Breaks
	Line Continuation
	Spaces and Tabs
	Comments
	Literals
	Identifiers
	Keywords
	Macro
	SubMacro

	Variables
	Dispose

	Operators and Expressions
	Flow Control Statements
	If
	While
	For
	Break
	Run
	Return
	Error Handling
	On Error Goto
	Error

	Menu Commands
	File Menu
	New
	Open
	Close
	Save
	Import Layers
	Save Layers
	Export
	Place
	Printer Setup
	Print
	Save
	Quit

	Edit Menu
	Cut
	Copy
	Duplicate
	Delete Selection
	Paste
	Select All
	Select None
	Select Object
	Select If / SubSelect If
	Move
	Align
	Distribute
	Preferences

	Element Menu
	Arrange
	Convert Selection into Elements
	Convert Selection into Bezier Parts
	Convert Selection into Polylines
	Join Polylines
	Join Beziers
	Generate Contour
	Create Compound Path
	Groups
	Group Selection
	Ungroup Selection
	Start Group
	End Group

	Mask At
	Release Mask
	Lock
	Unlock
	Transformation 3D
	Set Image Transparency
	Import Selection

	Objects Menu
	Create Object_info
	Delete Object_info
	Create Object_attribute
	Delete Object_attribute
	Create Hotspots
	Show in IsoView
	Delete Uncompliant Attributes

	Text Menu
	Text
	Convert Text to Paths

	Window Menu
	Activate Window
	Hide
	Show
	Zoom

	Window Commands
	Layer Window
	Add Layer
	Cut Layer
	Copy Layer
	Paste Layer
	Duplicate Layer
	Delete Layer
	Activate Layer
	Delete All Empty Layers
	Selected Elements to Active Layer
	Selected Text to Active Layer

	Palette Window Toolbox
	Selecting Elements
	Select Rectangle
	Select Polygon Start
	Select Polygon Points
	Select Polygon End
	Select At

	Transform Selection
	Scale Selection
	Shear Selection
	Rotate Selection
	Reflect Selection
	Create Parallels

	Transforming the Illustration
	Set Transform
	Restore Transform
	Absolute

	Creating Elements
	Create Line
	Append Line Segment
	Create Ellipse
	Create Inner Thread
	Create Outer Thread
	Create Callout
	Create Rectangle
	Create Polygon
	Create Bezier Curve
	Append Bezier Segment
	Create Text
	Change Text At

	Set Ellipsevalues

	Attribute Window
	Pens
	Add Pen
	Delete Pen
	Set Active Pen
	Set Lineoptions
	Toggle Pens

	Styles
	Add Style
	Delete Style
	Set Active Style

	Shadows
	Add Shadow
	Delete Shadow
	Set Active Shadow

	Grids
	Add Grid
	Delete Grid

	Formats
	Add Format
	Delete Format
	Set Active Format

	Viewports
	Add Viewport
	Delete Viewport
	Execute Viewport
	Add Layerstatus
	Remove Layerstatus

	Callouts
	Add Callout_Style
	Delete Callout_Style
	Renumber Callouts

	Fill Window
	Colors
	Add Color
	Delete Color

	3D and User Interaction Commands
	3D Commands
	3D View
	3D SetView
	3D Project
	3D Center
	3D ZoomExtent
	3D HLRMode
	3D Mode
	3D Explosion
	3D Move
	3D Axis
	3D Transform
	3D Reset
	3D SetDist
	3D Hole rectangle
	3D Hole polygon start
	3D Hole polygon points
	3D Hole polygon end

	Further Macro Commands
	FWrite
	FNew
	Log
	Menu
	Debugging Commands
	Debug Step
	Debug Commands
	Debug Reset
	Debug Stack
	Debug Locals
	Debug Globals
	Dump

	Wait Timer
	Sleep
	Launch
	Terminate
	Edit
	Batch
	Extension
	Increase Text Elements
	Decrease Text Elements

	Interacting with the User
	Message
	Get
	Wait Mouseclick
	mouseEvent.click
	mouseEvent.ptPix
	mouseEvent.ptPixGrid
	mouseEvent.ptMM
	mouseEvent.ptMMGrid
	mouseEvent.modifiers

	Beep

	Functions and Data Types
	Functions
	Trigonometric Functions
	Other Mathematical Functions
	Random Function
	String Functions
	Time Functions
	Negation
	Exists
	Return
	Call

	Simple Data Types
	Integers
	Floating-Point Numbers
	Strings
	Booleans

	Complex Data Types
	Point
	Point3
	Rectangle
	RGBColor
	CMYKColor
	ColorSpec
	Fill
	Mouse Event

	Object Data Types
	Document Object
	activeDoc
	document.name
	document.path
	document.penCount
	document.active_Pen
	document.styleCount
	document.active_style
	document.shadowCount
	document.active_shadow
	document.gridCount
	document.active_grid
	document.formatCount
	document.active_textFormat
	document.viewportCount
	document.viewports[]
	document.viewports[].name
	document.viewports[].Id
	document.viewports[].Rectangle
	document.viewports[].LayerCount
	document.viewports[].Layers[]

	document.calloutCount
	document.active_callout
	document.layerCount
	document.layers[]
	document.selectedElements
	document.firstSelectedElement
	document.selectedParts
	document.modified
	document.grid
	document.window
	document.shadow
	document.thread
	document.thickthin
	document.background
	document.lineOptions
	document.simpleEllipsePrinting
	document.colorCount
	document.hatchingCount
	document.patternCount
	document.Objects[object_ID]
	document.lockedHidden
	document.lock3Dinteraction

	Element Object
	element.element_id
	element.type
	element.locked
	element.mask
	element.box
	element.firstChild
	element.lastChild
	element.previousSibling
	element.nextSibling
	element.parent
	element.layer
	element.selected
	element.nextSelectedElement
	element.lineCap
	element.lineJoin
	element.miterLimit
	element.overPrint
	element.segmentCount
	element.fill
	element.group.childCount
	element.document
	element.info
	element.info.attributes[]
	element.info.view_context
	element.line
	element.ellipse
	element.innerthread
	element.outerthread
	element.callout
	element.rect
	element.polygon
	element.marker
	element.bezier
	element.text
	element.image

	Layer Object
	layer.name
	layer.screenColor
	layer.locked
	layer.active
	layer.printable
	layer.exportable
	layer.visible
	layer.hasElements
	layer.useColor
	layer.firstChild
	layer.lastChild
	layer.previousSibling
	layer.nextSibling

	Application Object - User Interface Preferences
	app.version
	app.docCount
	app.documents[].name
	app.penCount
	app.styleCount
	app.shadowCount
	app.GridCount
	app.colorCount
	app.hatchingCount
	app.patternCount
	app.formatCount
	app.calloutCount
	app.password
	app.drawOffscreen
	app.useAntiAliasing
	app.showLineStyles
	app.showToolTips
	app.showObjectTips
	app.showRulers
	app.showCursorInfo
	app.magnetFlags
	app.selectableFills
	app.useIsoExtOnMac
	app.allowInternet
	app.updatePeriod
	app.numberOfUndos
	app.autoSave
	app.autoSaveMinutes
	app.useEllipsesIn3DTools
	app.preview
	app.compare
	app.options3D
	app.project3D
	app.dimensions
	app.grid
	app.window
	app.shadow
	app.thread
	app.thickthin
	app.polygontool
	app.ellipsetool
	app.rectangletool
	app.background
	app.lineOptions
	app.simpleEllipsePrinting
	app.curMacroTransform
	app.dtd
	app.standardTxtFormat
	app.option
	app.interaction
	app.lastMacroError
	app.currentMacro

	Application Object - Data Exchange Preferences
	Import CGM
	Export CGM
	Export EPS
	Import Illustrator
	Export Illustrator
	Export SVG
	Import SVG
	Import IGES
	Export IGES
	Import DWG
	Export DWG
	Import DXF
	Export DXF
	DXF/DWG Import Options: app.dxf / app.dwg
	Import VRML
	Import Wavefront
	Import with ProductView Adapters
	Export HPGL
	Export TIFF
	Export JPEG
	Export PNG
	Export BMP
	Export PCX
	Export CALS
	Export Text
	Export Object List
	Export XCF
	Export Interleaf
	Export MIF
	Export PICT
	Export PDF
	app.pdf
	app.pdf.meta
	app.pdf.raster

	Export U3D
	Import WMF
	Export WMF

	Sub Data Types for Attribute Preferences
	.Pens[]
	.linestyles[]
	.shadows[]
	.colors[]
	.hatchings[]
	.patterns[]
	.txtFormats[]
	.callouts[]
	.grids[]

	Appendix
	International Names
	IML File Format Names
	CGM Profile Numbers and Names

