

THINGWORX AS AN IOT DATA MANAGEMENT MODULE IN A ROCKET MOTOR MONITORING SYSTEM

H. Heath Dewey Software Engineer, Orbital ATK

9 June 2016

Derek DeVries Sr. Fellow, Orbital ATK

liveworx.com #LIVEWORX

AGENDA

Company Overview

Motivation for Monitoring Rocket Motors

Maintenance Approaches

Prognostic Health Management

□ Health Management System Development

- \$4.5B Global Aerospace and Defense Systems Company
- Innovative, Affordable Products for Government and Commercial Customers
- 12,500 Employees, including 4,300 Engineers and Scientists
- R&D, Production, and Test Facilities in 17 States

GROUP STRUCTURE

FLIGHT SYSTEMS GROUP

Small-Class Launch Vehicles

Medium-Class Launch Vehicles

Large-Class Launch Vehicle Propulsion Systems

Strategic Missile Propulsion Systems

Missile Defense Interceptors

Suborbital Targets

Commercial Aerostructures

Military Aerostructures

THE PROBLEM

- Life-cycle costs dominated by operations and maintenance
- Small number of assets removed from fleet destructively tested
- Empirical data collected from assets predicts the fleet service life

- Large variance in data yields low confidence and conservative estimates
- Entire fleet replaced when reliability is predicted to be too low
- No way to identify "bad" assets and remove from the fleet to increase fleet reliability

MAINTENANCE APPROACHES

Maintenance Approaches				
	Reactive	Proactive		
Category	Run-to-fail	Preventive	Predictive	
Sub-Category	Fix when it breaks	Scheduled maintenance	Condition-based maintdiagnostic	Condition-based maint prognostic
When Scheduled	No scheduled maintenance	Maintenance based on a fixed time schedule for inspect, repair and overhaul	Maintenance based on current condition	Maintenance based on forecast of remaining equipment life
Why Scheduled	N/A	Intolerable failure effect and it is possible to prevent the failure effect through a scheduled overhaul or replacement	Maintenance scheduled based on evidence of need	Maintenance need is projected as probable within mission time

Condition Based Maintenance Plus DoD Guidebook, May 2008

MAINTENANCE APPROACH BENEFITS

Orbital ATK

#LIVEWORX

PROGNOSTIC HEALTH MANAGEMENT

- PHM is required when:
 - System failure is unacceptable
 - System behavior changes
- System behavior changes driven by:
 - Cumulative physical damage
 - Material changes due to aging
 - Environment state changes
- Systematic Process is used to:
 - Determine required critical performance parameters
 - Capture relevant data to ascertain critical performance
 - Assess Model Viability

D.R. DeVries, "An Aerospace and Defense Company's PHM System Development Approach," IEEE Aerospace Conference, Big Sky MT, Mar 2016. A. Hess, T Dabney, "Joint Strike Fighter PHM Vision," IEEE Aerospace Conference, Big Sky MT, Mar 2004.

Degradation is a process that leads to a failure event $\sum_{i=1}^{n}$

PHYSICS-BASED MODELS

- Three groups of mechanistic physics-based models
 - Evolution How do state variables evolve with time?
 - Conversion How are state variables converted to properties?
 - Performance Assessment How will the asset operate with a given set of properties?

- Initial Condition
 - Concrete has varying sizes of particles (sand, gravel, etc.)
- Evolution
 - Cement bonding agent ages and degrades chemically and physically with time
- Conversion
 - State of particles and bonding agent can be used to calculate strength of the concrete
- Performance Assessment
 - Strength of the concrete can be used to predict the performance and/or failure probability of concrete under load

CBM ARCHITECTURE

Orbital ATK

#LIVEWORX

DEVELOPED MOTOR MONITORING SYSTEM

- Integrated Motor Life Management, Data Acquisition, and Analysis System (IMLM DAAS)
- Air Force Research Laboratory Program
- Develop a system to predict ability of a specific motor to perform its mission

Orbital ATH

MATURING DEVELOPED SYSTEMS

- Series of internal development and demonstration programs
- Evaluate new technologies
- Augment the IMLM DAAS system
- Enable system use on future programs

TECHNOLOGY DEMONSTRATION SYSTEM

TECHNOLOGY DEMONSTRATION SYSTEM

TECHNOLOGY DEMONSTRATION SYSTEM WITH THINGWORX

WORX

Orbital ATK

IOT TECHNOLOGY STACK

 $\#\,L\,I\,V\,E\,W\,O\,R\,X$

USER INTERFACE

WHY USE COTS TOOLS?

- Development time of connectivity and interface
 - IMLM DAAS took > 1 year
 - Technology demonstration system took < 1 month
- Maturity
 - Products are well vetted by users
 - SIL test may be more focused to application
- Maintenance
 - Good support system for development and initial fielding cycle
- Security
 - Experience base to leverage during development
- Predictable life-cycle costs
 - Licensing costs are relatively constant
 - Required staffing levels are relatively constant

- Additional Costs
 - Licensing costs can be significant over the lifetime of a fleet of assets
 - Version certification and control costs
- Sustainability Risks
 - Significant risk if licensing lapses during life-cycle
 - Maintenance and sustainability limited to commercial product viability
- Security
 - Introduction of new vulnerabilities

CONCLUSIONS

- Use prognostic health management where appropriate
 - Maximize reliability, minimize operation and maintenance costs
 - Requires significant up-front investment in constructing the models
 - Required when failure is not an option

Design open architecture and modular systems

- Upgradable throughout lifecycle
- Define a process for control and assessment before implementation
 - Rollout with complete confidence vs. rollout to find issues

Stay abreast of new technologies

- The IoT industry is changing rapidly
- Reevaluate both new and legacy systems with the latest technologies

• Utilize COTS solutions where appropriate

Perform cost and risk trade studies

