
 

1 | P a g e  
 

 

 

 

 

 

Content Sharing and Reuse in PTC 
Integrity Lifecycle Manager 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author: Scott Milton 

http://www.ptc.com/


 

2 | P a g e  
 

Table of Contents 

1. Abstract ................................................................................................................................................. 3 

2. Introduction .......................................................................................................................................... 4 

3. Document Model .................................................................................................................................. 5 

3.1. Reference Modes .......................................................................................................................... 6 

4. Reusing Content Items .......................................................................................................................... 8 

5. Reusing Entire Documents .................................................................................................................... 9 

5.1. Differences between Included and Referenced Documents ........................................................ 9 

5.2. Branching Documents ................................................................................................................. 10 

5.3. Trace Propagation for Branched Documents .............................................................................. 12 

6. Recommended Strategies for Reuse ................................................................................................... 13 

6.1. Reuse Content Appropriately by Context ................................................................................... 13 

6.2. Use Parameters to Write Requirements intended for Reuse (and Sharing) .............................. 15 

6.2.1. Defining Parameters and Allowable Parameter Values ...................................................... 16 

6.2.2. Inserting Parameters into Content ..................................................................................... 19 

6.2.3. Viewing Parameter Values Inline ........................................................................................ 20 

7. Strategies on Deferring Updates on Shared Content ......................................................................... 20 

8. Conclusion ........................................................................................................................................... 23 

9. Appendix 1. Online Learning Video ..................................................................................................... 24 

10. Appendix 2.  Theoretical Discussion of Requirements Reuse ............................................................. 24 

11. Appendix 3.  Hierarchy of Related Items Considered When Determining Parameter Values ............ 24 

12. Appendix 4.  Identifying where Content has been Shared or Reused ................................................ 25 

13. Appendix 5.  Theoretical Discussion of Software Product Lines ......................................................... 27 

 

  

http://www.ptc.com/


 

3 | P a g e  
 

 

1. Abstract 
This document details the various mechanisms that provide content "reuse" in PTC Integrity Lifecycle 
Manager.  For the purposes of this document, content is defined as the individual line items in 
documents, such as requirements and test cases, and reuse is defined as the ability to use the same 
requirement in multiple documents.  Both real examples and instructions on how to configure and use 
various Lifecycle Manager features are described and recommendations for implementation are made.  
The Document Model, Parameters and Trace Propagation are also briefly discussed.   

 

 

  

http://www.ptc.com/


 

4 | P a g e  
 

2. Introduction 
Generally, a set of requirements changes minimally from one release of a product to the next.  If the 
changes are a small portion of the total requirements, a good requirements management solution 
makes it easy not only to introduce new requirements, but also to maintain and reuse the majority of 
unchanged requirements.  A requirement that was introduced in one version or release of a product 
must continue in all subsequent versions until it is either modified or dropped.  Each intervening version 
or release must be able to account for how the requirement was satisfied.  In addition to reusing 
requirements from one release to the next, it is often desirable to reuse requirements by sharing them 
across projects that are distinct, but that share a common set of requirements.   Non-functional 
requirements such as those detailing regulatory and compliance are a typical example of this. Reusing 
requirements allows the user to leverage the work products and activities of similar projects. 

Note: A brief update on naming.  The product formerly known as “PTC Integrity” is now named “PTC 
Integrity Lifecycle Manager”, since PTC Integrity now refers to a family of software and systems 
engineering products.  For brevity and clarity, this document uses “Lifecycle Manager” as an 
abbreviation for the full name, “PTC Integrity Lifecycle Manager”.  

 
Lifecycle Manager allows reuse of requirements by copying one or more individual requirements, or by 
selecting the root document and copying the entire hierarchy of requirements.  However, this copying is 
not limited to a simple "clone and own" procedure which would lead to the newly copied version of the 
requirement becoming out of date when the original requirement is updated.   By using Lifecycle 
Manager, the newly copied Requirements will reference the original versions in a variety of user defined 
modes which will either automate or facilitate updates.  Where the Requirement came from, in other 
words its history or heritage, will remain readily available.  The system manages the underlying items 
and artifacts to appropriately reuse and share those items between documents and projects; as a result, 
unnecessary duplication in the repository is prevented while providing revision history and usage 
information.  It is also possible to create requirements that are specifically designed for reuse and make 
use of a publish-subscribe model to facilitate sharing.   

Note:  The rest of this document assumes you have at least a passing familiarity with Lifecycle Manager.  
For more information about integrity, please visit here.  To schedule additional training for your 
location, please visit here. 

 

 

 

http://www.ptc.com/
http://www.mks.com/platform/our-product
http://www.mks.com/platform/services/training


 

5 | P a g e  
 

3. Document Model 
Before proceeding further, it is necessary to briefly describe a particular feature available in Lifecycle 
Manager, the Document Model.  In Lifecycle Manager Terms, a document is a collection of related 
items.  The document model describes the various types of items used by a document and the particular 
roles they play to form a cohesive unit.  The Document view is the interface used to view and modify 
both documents, and their content, in a hierarchical tree structure.   Documents are typically used in the 
Requirements Management and Test Management domains, although numerous other domains of 
analysis are supported by the Lifecycle Manager document model. 

Lifecycle Manager uses specific terms to describe the component items of a document. Specifically: 

• The Document item (or segment) is the holder of the document's metadata, lifecycle and 
container for all its content;   

• The Content item (or nodes) is any line item within a document, such as individual requirements 
or test cases, as well as any sub-segments (i.e., included documents).  Content items typically 
have both significant and non-significant fields, as defined by an administrator.  Some fields are 
more meaningful than others and significant fields are those that would generally be the same 
on all instances of the content when it is reused.  It would be expected that non-significant fields 
would often be set separately on each instance of the reused content and typically are used for 
metadata. 

 

Note:  There is an additional role to the two described above called the Shared Item.  It is used "under 
the covers" to represent shared content in a document.  Since the item that plays this role is transparent 
to end users during the creation or modification of content, it is not described in any detail this 
document.  For administrators who require more information about the shared item, please refer to the 
Lifecycle Manager Administrator's guide. 

Similar to other Lifecycle Manager items, relationships are the "glue" that ties document and content 
items together and also allows for reuse and persistence of artifacts over time.  Within the document 
model there is a special subset of relationships called Trace Relationships, or Traces, that link Content 
Items to other Content Items, e.g., Requirements "Decompose To" other Requirements, or 
Requirements are "Verified By" Test Cases.     

To learn about the relationships inherent in the document model, see “Relationships in the Document 
Model” of the Lifecycle Manager Administrator's guide or the "Traceability in Lifecycle Manager.docx" 
file provided. 

  

http://www.ptc.com/


 

6 | P a g e  
 

3.1. Reference Modes  

All content within a Lifecycle Manager document has specific permissions and access levels associated 
with it.  In addition, reference modes dictate how the system behaves when content is created, copied 
and modified.  When the reference modes available are:  

• Author:  The Author reference mode controls the evolution of the content item, i.e., it is the 
original or principal source of the item.   

• Reuse: The Reuse reference mode allows users to reuse the content by exposing a fixed revision 
of the content item in one or more additional locations.  If a user has the appropriate 
permissions and attempts a "significant edit" to an item whose reference mode is set to reuse, 
“branching" occurs behind the scenes, leaving the original content source unchanged.  This 
effectively allows a user to share the content, up until the content is significantly modified in the 
new location.  A significant edit is a modification made to one or more significant fields on the 
content item, as defined by the administrator.  This concept allows for some fields to be edited 
in each of the reused copies without causing the branching to occur. 

                                    

Fig A. Significant edit of a Reused Requirement 

 

  

When a significant edit is made to 
requirement 111, it automatically 
branches off from the original source 

http://www.ptc.com/


 

7 | P a g e  
 

• Share:  The Share reference mode allows users to share content by exposing the current version 
of the content item in an additional location.  The shared item is not editable and it 
automatically receives any changes made by the node from which it was shared from.  i.e., Users 
will see a read only copy of the content that always reflects the most up to date version of the 
content. 

 

Fig B. Sharing of a Requirement 

 

The user may change the reference mode on content by selecting the content and clicking on the 
Content > Toggle Share/Reuse menu option, and choosing between Reuse or Share.  A user can change a 
reference mode from Share to Reuse and from Reuse to Share; however, an Author reference mode 
cannot be changed.   

Note: If the reference mode of a content item is currently set to Reuse and the original content is 
modified, the reused content's reference mode can no longer be toggled to Share.  If needed, the 
original content can be recopied and the new copy set to Share. 

Further details about specific sharing scenarios, such as what happens when a user attempts to share 
content that is already being reused  can be found in the Knowledge Base article entitled "Shares and 
Shared By relationship fields added in 2009" located here. 

  

 

 

Requirement 
Item 111 

Share 

Requirement 
110 

Author 

Requirement 
Item 112 

Share 

http://www.ptc.com/
http://mks.com/community/home.jsp?module=kb&show=details&issue_id=10083


 

8 | P a g e  
 

4. Reusing Content Items 
To copy content within and between documents for the purposes of reuse/sharing. 

• Open the applicable document in the Document View. 
• Select a row or section in the Content panel of the document the user wants to copy from and 

select Content > Copy on the menu.  The selected row or section is highlighted.  Selecting a node 
to copy from the Content panel results in just the selected items being copied.   Selecting a node 
to copy from the Outline panel results in all items in the node’s structural relationship list (i.e., 
its children) also being copied. 
 

Note:  If desired,  the user can configure their client to always or never copy child items by opening the 
document view, going to the View >Options menu and toggling the Operations mode to Section or 
Content respectively.   

• Select an insertion point in the target document and select Content > Paste Special to paste row 
• On the resulting Paste Special dialog: 
• The user can choose the resulting reference mode of the newly copied content item(s); share, 

reuse, or just a regular, disconnected copy. 
• The "Include Traces" checkbox allows you to specify to carry over all traces associated with the 

children of the copied content. 

 

Fig C. Paste Special Dialog 

  

http://www.ptc.com/


 

9 | P a g e  
 

Note: If a user is performing a simple Ctrl+C and Ctrl+V to copy and paste a content item, just like in 
standard Windows applications, within the same document boundary, a standard copy with no 
reuse/history will be performed.  If the user performs the same keyboard sequence, but the target and 
source documents are not the same, the system will perform a “paste special” and the reference mode 
of the target item will be chosen depending on the "Default Reference Mode" set by the administrator 
on the Document Type definition the user is pasting into.  The user can then toggle the reference mode 
as needed using the standard menu option of Content > Toggle Share/Reuse.  

5. Reusing Entire Documents 
Lifecycle Manager allows you to create nested documents which are subdocuments inside of 
documents. This allows users to partition content for logical, semantic, or performance reasons. 

5.1. Differences between Included and Referenced Documents 

Nested documents can be either inserted (as a reference) or included in other documents: 

• Insert (reference): When a subdocument is inserted into a parent document, only the reference 
to the subdocument is exposed. You must open a subdocument in order to manage its contents. 

• Include: When a subdocument is included into the parent, the entire contents of the 
subdocument are exposed as if they were a sequential part of the parent. However all editability 
rules are governed by the included document. e.g., you cannot make the contents of a 
“published” subdocument editable by including it in an open document. 

 
In a component-based environment, where an application or product is made up of smaller, more 
purpose-built components managed by separate teams, the inserted option is common. This allows the 
parent document to reference the content, but it does not require direct management of the content. 
Inserted documents are not exposed as part of the parent document. 

After you insert or include a subdocument into a document, a user can toggle the reference to either 
see the entire document expanded as a sequential part of the parent, or see only the reference, or link, 
to the subdocument in the content panel.  This is a convenience feature for the user, but does not affect 
the document or its content. 

  

http://www.ptc.com/


 

10 | P a g e  
 

5.2. Branching Documents 

Branching is a method to reuse existing documents by creating a copy of the original document, rather 
than inserting it in another parent document.  However, much like copying content items, this is not a 
simple "clone and own" copy of the document.  All the content in the newly branched copy of the 
document has a Reference Mode of Reuse.  This default value can be set by the administrator in the 
Document Model settings of the types.  Individual content items can also be changed to have a 
Reference Mode of Share after the branch is completed, if desired. 

 

 

Fig D. Branching a Requirements Document 

 

http://www.ptc.com/


 

11 | P a g e  
 

 

Fig E. Original and Branched Requirements Document 

When the user initiates a branch command (Document > Branch), the system: 

1. Asks for the project that the branch will be created in. 

2. Copies the original document item and populates the fields listed in the item type’s Copy Fields 
to the new item. 

3. Traverses the Contains relationship field and both copies and relates all of the node items 
contained within the document. 

4. Determines the reference mode (Share or Reuse) on the branched document's newly created 
content items by looking at the Default Reference Mode set on the document type.  

5. Notes a branch in the branch tab of the original document. 

6. Marks the new document as branched from in the history. 

 

http://www.ptc.com/


 

12 | P a g e  
 

5.3. Trace Propagation for Branched Documents 

To propagate traces means to copy trace relationships from one item to another.  An example of this 
might be the situation where there is a Requirements Document (RD1) that has various traces to a Test 
Suite (TS1).  When a new Release is being planned, both the Requirements Document and Test Suite are 
branched, creating a new Requirements Document (RD2) and Test Suite (TS2) respectively.  The trace 
propagation wizard guides the user in copying the original set of traces in the original pair of documents 
into the newly created pair of branched documents. 

 

Fig F. Trace Propagation between two pairs of documents 

 

http://www.ptc.com/


 

13 | P a g e  
 

 

Fig G. Trace Propagation Wizard 

Note:  The fields that are copied when you branch a document are determined by your administrator. 
PTC recommends that trace relationship fields are not automatically copied during branching. This 
enables users to control which trace relationships get copied to the branched document using the 
propagate traces wizard. 

Note: For proper operation of the wizard, PTC also recommends that no content items are allowed to be 
deleted from the database (i.e., by using the "im deleteissue" command), although the content can 
certainly be removed or "de-referenced" from documents. 

6. Recommended Strategies for Reuse 

6.1. Reuse Content Appropriately by Context 

Whether content is being reused or shared for the purposes of a new Release of an existing Product or 
an entirely new Project, perhaps creating a related Product in the same Product Line, some general rules 
apply: 

• Reuse is not for everyone.  If content authors are heavily invested in single use word or excel 
documents, it may be difficult for them to transition to a new paradigm and the benefits may 
not outweigh the transition efforts.   Also, if requirements, or other content, vary dramatically 
from release to release or from product to product, there may be little value in restructuring for 
reuse.  It may be that only certain common components remain consistent enough over time to 
warrant reuse.  

• Externally created regulatory requirements, especially those needed for compliance to various 
industry specific laws, are generally a good candidate for reuse.  These tend to not change 
frequently, but it can be of critical importance to an organization that they are always followed 
and that updates are carefully monitored and enforced. 

http://www.ptc.com/


 

14 | P a g e  
 

• Where appropriate, create a Lifecycle Manager document that holds a common set of Base 
Content, such as Requirements, to facilitate Sharing.  This is especially appropriate for a Product 
Line Scenario where many similar products, i.e., variants, are possible.  For each of the variants, 
reuse an appropriate amount of content from the base set of requirements, and then 
supplement with the additional variant specific requirements.  To easily do this after the base 
set of Requirements is created, create a new document for each Variant, and then use Copy +  
Paste Special > Share the new Variant Documents.  Each Variant may then author new 
requirements as needed.   See figure below for an example. 

 

Fig H. Reusing from a base set of requirements 

 

Once the common base of requirements is approved or validated, it need not be re-validated 
every time a new variant points to it; only the requirements unique to the variant need to be 
examined and validated.  When changes are made to the common base, of course revalidation 
will need to be performed for all product variants pointing to the changed requirements in the 
common base, but the effort needed to determine which variants are affected and how, as well 
as which downstream shared development assets may also need to be recertified for each 
variant is straightforward and precise because Lifecycle Manager maintains the appropriate 
relationships between shared assets across the product line. 

http://www.ptc.com/


 

15 | P a g e  
 

• If Documents are needed almost verbatim in a new project, such as for a supplemental release, 
branch the document and make modifications to the individual content items as appropriate.  
Branching is the most appropriate mechanism in this case, as the content is nearly guaranteed 
to be the same and each of the branched documents can be easily accessed from the Branches 
tab on the source document that it was branched from. 

6.2. Use Parameters to Write Requirements intended for Reuse (and Sharing) 

Parameters are typically used in the Requirements Management and Test Management domains to 
facilitate reuse or sharing of a content item in different contexts by being able to specify unique item 
values for each context.  For example, a requirement item with parameters that display different values 
based upon the project the current requirements document is linked to.   

Example:  A company produces a number of models of widgets in its Product Line.  Each widget is tested 
to different internal pressures, but the pressure requirement is different for each model in the line (e.g., 
the deluxe model can withstand more pressure for a greater length of time).  If the maximum pressure is 
a parameter value, then the same requirement or test can be used for each model, but the value of the 
pressure parameter will change based on the model being tested at the time.  If there are multiple tests 
for the different amounts of time the widget should work at the pressure, making the pressure a 
parameter also ensures that if the pressure requirement for a model changes, all the requirements and 
tests for that model would use the new value. 

Lifecycle Manager determines what parameters can be specified and what parameter values are 
substituted in text fields based on items that are related to the item being edited or viewed.  See 
Appendix 3.  Hierarchy of Related Items Considered When Determining Parameter Values for more 
details.  Parameter substitution is particular appropriate for managing Product Lines, as Products in the 
same Product Line typically vary from each other by a strict set of easily defined variables.  The tests 
often must follow the same testing process and steps, but the steps just have slightly different values 
being set or slightly different expected results due to the Product variation. 

  

http://www.ptc.com/


 

16 | P a g e  
 

6.2.1. Defining Parameters and Allowable Parameter Values 
There are two portions of parameter configuration, one to be done by administrators and the other by 
users with appropriate permissions, such as Project or Product Managers.   

Administrators must:  

• Make the Parameters and/or Parameter Values fields visible on the content item type.  These 
fields will allow users to define the Parameters and/or Parameter Values for the specific 
instance of the item.  The Parameters field essentially allows end users to define a variable.  The 
Parameter Values field allows end users to set a value to an already defined parameter.   It is 
also possible to make FVA fields (i.e., pointer fields) that will retrieve Parameters and Parameter 
Values from a remote item.  E.g., Projects may have FVA fields that retrieve the parameters 
defined on the related Product item. 

• Set a long text field that is visible on the content item type to have a "Substitute Parameters" 
value of true.  Users will be able to refer to the defined parameters in this field. 
 

 

 Fig I. Setting Substitute Parameters on the Edit Field dialog 

  

http://www.ptc.com/


 

17 | P a g e  
 

After the administrators have made the proper configuration, users with the appropriate permissions 
may:  

• Edit the Parameters field that is visible on the item, if any.  The Parameters field essentially 
allows users to define a variable for that item, or other items that may inherit parameters from 
it. Apart from the name, users may add Description and choose whether it is a String or Pick 
parameter.  If the latter, potential values may also be entered. 
 

 

Fig J. Creating a Parameter 

  

http://www.ptc.com/


 

18 | P a g e  
 

• Edit the Parameter Values field visible on the item, if any.  The Parameter Values field allows 
users to set a value to an already defined parameter.  The Parameters themselves might be 
defined on the same item, but are often inherited from elsewhere in the hierarchy.  If a 
parameter value is locked, by clicking on the lock checkbox, it cannot be overridden by items 
further down in the hierarchy.  If there have been no parameters defined on the current item, or 
in its hierarchy, it will not be possible to define a Parameter Value. 
 

 

Fig K. Creating a String Parameter Value 

 

 

Fig L. Creating a Pick List  Parameter Value 

 

  

http://www.ptc.com/


 

19 | P a g e  
 

The project item is a good example of an Item that uses Parameters and Parameter Values, as well as 
potentially using inherited Parameter Values. 

 

Fig J. Sample Project Parameters 

In the figure above, there is a Product called "Widget" selected on the Project, and a Parameter called 
MAX_PRESSURE has been inherited from the Product.  This particular Parameter has been locked, so 
cannot be overridden on this project.  Any other Project items that select this Product will also inherit 
this value.    There is also a project specific Parameter called BATTERY_VOLTAGE defined on this project 
in Particular and a value for 600 has been set on this Project.  Since this is a project specific parameter, 
other projects will not know of this parameter definition, let alone its value of 600.  

6.2.2. Inserting Parameters into Content 
In any long text field that supports parameter substitution, the user simply types the parameter name in 
this field using the following format {{< parameter name>}}.   

Example:  If a parameter of MAX_PRESSURE has been defined, the text of a requirement may be written 
as "The widget shall withstand a pressure of {{MAX_PRESSURE}} without visible or functional damage”. 

  

http://www.ptc.com/


 

20 | P a g e  
 

6.2.3. Viewing Parameter Values Inline  
If an item has parameters specified in a text field and the field is set up to support parameter 
substitution, selecting the "Substitute parameters" option will replace the parameter name with the 
correct parameter value.   When parameter substitution is not enabled for a field, users see parameter 
entries in the following format:  {{< parameter name >}} .  To configure the Items view in the GUI: 

• Select View > Options. The Options dialog box displays.  
• On the General tab, select the "View layout > Substitute parameters" option. 

 

Note:  If a user changes a parameter value in the document view, the user must refresh the view in 
order to see the impact of the change on related document items. 

For more information on how users work with Parameters and Parameter Values fields, see the PTC 
Integrity Lifecycle Manager 10.0 User Guide. 

7. Strategies on Deferring Updates on Shared Content  
Although immediate updates to shared content are desirable in many situations, this may not always be 
the case. Occasionally, a project manager may need to defer the updates to a future point in time, or 
may wish to defer them indefinitely.  These are not primary use cases resolved by "out-of-the-box" 
configurations of Lifecycle Manager, but they can be addressed in a variety of ways. 

First and foremost is the need for proper notification of updates.  Users that will be selectively adopting 
updates on a case by case basis will need to know when new content is added, and when existing 
content is updated or dropped.  This can easily be configured through the use of a "Stakeholders" or 
"Watchers" field, on documents and/or content items where users may add one or more names, 
essentially subscribing them to notifications of changes.  Depending upon the prevalence of updates, a 
scheduled digest of emails may be more appropriate than immediate notifications. 

In situations where project managers only have certain windows of time to accepts updates, 
notifications may not be needed at all.  When a new window for updates is about to begin, documents 
containing the common content can be differenced between the current date and the date the last 
update window closed. The project manager can then decide how to configure their current content 
based upon the delta. 

The easiest way to defer updates is when entire documents are inserted as the method of reuse.  In this 
case, a branched copy of the common document can be inserted, rather than the original.  The 
branched copy can be treated as a static copy of the common document at a certain point in time.  It will 
remain unchanged as the common document continues to develop.  When a new version of the 
common document is available and desired for inclusion, the existing branched copy can be dropped 
and a new branched copy of the current common document inserted.  Traces would need to be 
propagated to the newly branched document using the Trace Propagation Wizard. 

http://www.ptc.com/


 

21 | P a g e  
 

 

Fig K. Inserting Branched Document 

 

Fig L. Updating Inserted Branched Document  

 

In situations where only individual content items, rather than entire documents are being reused, a 
more sophisticated method may be needed.  A typical strategy would be to add additional fields to 
shared content, e.g., one that will reflect the accepted version of the text in the current document and 
another the current version of the text from the common source document.  After appropriate 
notifications that the common document has been updated, the project manager would set a flag, 

http://www.ptc.com/


 

22 | P a g e  
 

either on individual content or recursively throughout the document, causing a trigger script to fire and 
copy the current common value(s) into the accepted value(s).  Relevance rules would be used to hide 
the current common value(s) from unauthorized users to prevent any possible confusion.  Depending 
upon the exact needs, the trigger script could be configured to copy multiple fields, rather than just the 
primary text field of the content (e.g., priority, owner, etc.).  It would also need to be decided whether 
this trigger script should create any nested requirements that may have been added in the common 
document, as well as how to process content that had been dropped from the current document.   

In this scenario, manual notification and updates would still be necessary for entirely new content 
added to the common document.  This should not be of great concern, because the origin of this use 
case is that the document author had decided to selectively reuse content. 

 

Fig M. Accepted Text and Shared Common Text on Requirement 

http://www.ptc.com/


 

23 | P a g e  
 

 

Fig N. Accepting Updates will copy Common Text over Accepted text  

 

There are future plans to add core functionality to further enhance deferred update capabilities of 
shared content, but these have not yet been scheduled for a release.   

8. Conclusion 
Lifecycle Manager provides the most powerful and flexible mechanisms that provide real content 
"reuse" and "sharing".  The capabilities were built from the ground up to be flexible and capable of 
handling real world scenarios.  By leveraging these capabilities organizations can achieve real benefits to 
traceability, auditability and impact analysis of change management to such critical areas of 
development as Requirements and Test Management.  

 

  

http://www.ptc.com/


 

24 | P a g e  
 

9. Appendix 1. Online Learning Video 
A Lifecycle Manager Online Learning Video is available on this topic:  Reusing Requirements. 
 

10. Appendix 2.  Theoretical Discussion of Requirements Reuse 
A white paper describing additional theory around requirements sharing and reuse is provided here:  
Real Reuse for Requirements  
 

11. Appendix 3.  Hierarchy of Related Items Considered When Determining 
Parameter Values 

The following hierarchy of related items is considered when determining parameters and parameter 
values for an item: 

• Shared parameters from a related project item. For example, the related project item has an 
FVA field that displays a parameter value from the Product item. 

• Parameters defined in the related project item. 
• Shared parameters from a related test session item. 
• Parameters defined in the related test session item. 
• Shared parameters from a related document content item linked through a Shares relationship. 
• Parameters defined in a related document content item linked through a Shares relationship. 
• Shared parameters from the closest related document root item, for example, a test suite. 
• Parameters defined in the closest related document root item. 
• Shared parameters from the item containing the backing field or from the item represented by 

the table row. 
• Parameters defined in the item containing the backing field for an FVA field or in the item 

represented by the table row. 
• Shared parameters on the current item. 
• Parameters defined in the current item. 
• Parameter values higher in the hierarchy are overridden by parameter values lower in the 

hierarchy, unless the parameter value is locked, in which case the value locked at the highest 
point in the hierarchy is used.  If the relationship does not exist, Lifecycle Manager skips that 
step and continues down the hierarchy. 

 
If a parameter value is changed in an item, and an item that is lower in the hierarchy is open, the user 
must refresh the view of the lower level item in order to see the updates. 

http://www.ptc.com/
http://download.mks.com/downloads/learning_videos/Reusing_Requirements/Reusing%20Requirements.html
http://www.mks.com/resources/data/documents/whitepapers/instances/real-reuse-for-requirements


 

25 | P a g e  
 

Note:  Steps 9 and 10 only apply when substituting parameters in FVA fields backed by a text field with 
parameter substitution, or when substituting parameters in text fields for items in a relationship table 
field. 

12. Appendix 4.  Identifying where Content has been Shared or Reused 
To truly understand where content has been shared or reused, it is necessary to explain couplet concept 
of the Document Model in more detail.  Each time content is newly authored in Lifecycle Manager, two 
items are actually created; the content item (aka node) and the shared item.  The end user generally 
does not need to be aware of the shared item, but its main purpose is to act a common location to store 
shared metadata from the content.  As a practical example, if a requirement is shared 20 times, there 
will be 20 requirement items that all "point" to or reference the common Shared Requirement item.  
When the original, or author Requirement is updated, it will automatically pass the update on to the 
Shared Requirement item and each of the other 19 Requirement items will now display the updated 
data housed on the Shared Requirement. 

It is easy to find where content has been reused/shared via two different mechanisms: 

• For a quick summary, simply looking at the Branches tab on the content item is sufficient.  This 
will generally be used to determine if there are any cases where the content item has been 
shared or reused and allow the user quickly navigate to them. 

• In cases where more detail is required, especially if there is no desire to navigate to each of 
them individually, traversing the References relationship on the content item, then looking at 
the value of the Referenced By field on the Shared item may be a more desirable option.  This 
view helps show the potential impact of updating the content item across documents and/or 
projects by showing what other locations are referencing the same version of the content. E.g., 
in the diagram on the next page, we can traverse the References relationship to the Shared 
Requirement and see that Requirement 132 is being "Referenced By" Requirement 441 with a 
Reference Mode of Reuse.  Requirement 441 is contained by Document 408, which in turn could 
easily be opened and reviewed for more context.   

 

http://www.ptc.com/


 

26 | P a g e  
 

 

Fig O. References Relationship 

 

Note: In some circumstances, the Shared Item that is displayed after following the "Referenced By" 
relationship might have been branched.  The typical reason for this to have occurred is the original 
content item was reused in another location, but a significant edit was performed on the item.  After a 
significant edit is performed on reused content, the reused content no longer "subscribes" to updates 
from its original source item and will have its reference mode set to Author.  It is still easy to locate the 
original content that is was reused from however.  The user can just look in the header of the shared 
item and look for the line "Branched from <ID #> by <User> on date <date>".  The ID # displayed will be 
that of the original shared item.    

http://www.ptc.com/


 

27 | P a g e  
 

 

Fig P. Branching of a shared item 

 

Additional details can obtained from the "Shares" and "Shared by" relationship fields on the original 
content item, although by default these fields are only visible to Administrators.  "Shared By" will list 
instances where the content item has been shared to and "Shares" will list where it has been shared 
from.  Neither field lists content that is being reused, only shared.  

All of this information can be easily displayed in reports or the hierarchical relationships view as well.   

 

 

13. Appendix 5.  Theoretical Discussion of Software Product Lines 
A white paper describing additional theory around managing Software Product Lines is provided here:  
Managing Variants in a Software Product Line (SPL) With Lifecycle Manager, A PTC Product  

 

http://www.ptc.com/
http://www.mks.com/resources/data/documents/whitepapers/instances/managing-variants-in-a-software-product-line-spl-with-integrity-a-ptc-product

	1. Abstract
	2. Introduction
	3. Document Model
	3.1. Reference Modes

	4. Reusing Content Items
	5. Reusing Entire Documents
	5.1. Differences between Included and Referenced Documents
	5.2. Branching Documents
	5.3. Trace Propagation for Branched Documents

	6. Recommended Strategies for Reuse
	6.1. Reuse Content Appropriately by Context
	6.2. Use Parameters to Write Requirements intended for Reuse (and Sharing)
	6.2.1. Defining Parameters and Allowable Parameter Values
	6.2.2. Inserting Parameters into Content
	6.2.3. Viewing Parameter Values Inline


	7. Strategies on Deferring Updates on Shared Content
	8. Conclusion
	9. Appendix 1. Online Learning Video
	10. Appendix 2.  Theoretical Discussion of Requirements Reuse
	11. Appendix 3.  Hierarchy of Related Items Considered When Determining Parameter Values
	12. Appendix 4.  Identifying where Content has been Shared or Reused
	13. Appendix 5.  Theoretical Discussion of Software Product Lines

