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Abstract 

Research in coding theory has seen many proposals aimed at the construction 

of powerful codes using block and convolutional codes. Recently, a new forward 

error control code, known as turbo code, was introduced. This new code yields very 

good performance (near the Shannon limit) with relatively simple component codes 

and large interleavers in combination with an iterative decoding process. 

Among the most important applications of turbo codes are wireless mobile 

communication systems. A significant performance metric for this application is the 

minimization of end-to-end delay. In this dissertation, different ways to enhance the 

performance of turbo codes with short frames are presented. One way of enhancing 

the performance of turbo codes with short frames is by optimizing the energy 

allocation strategies to the output bitstreams. For turbo codes with short frames, 

different ways to allocate the energy are investigated using computer simulation and 

modified analytic bounds. The results show that the performance is improved without 

any increase in complexity. Another way to enhance the performance is with the 

proper design of the interleaver. This work proposes a new and unique interleaver for 

equal and unequal error protections. In equal error protection applications, the 

proposed interleaver performance outperforms the other conventional interleavers at 

higher signal-to-noise ratios. The introduction of this interleaver allows for less 

complex hardware implementations as the single interleaver replaces multiple 

interleavers performing the task. 

A novel analytical bound is developed to evaluate the performance of 

punctured turbo codes, along with its applications to different channel types. The new 

approach introduces a random device, the hypergeometric-puncturing device, which 

xiii 



averages the output weight of the punctured codeword over all the punctured 

positions. Before the development of this novel bound, the only way to study the 

performance of punctured turbo codes was via computer simulation. Introduction of 

this bound allows the analytical study to be extended to higher signal-to-noise ratios 

where the computer simulation is not effective. This bound serves to illustrate the 

achievable performance of turbo codes and the effects of block length and constituent 

encoder choice in the performance of turbo codes. 

xiv 



Turbo Codes for Wireless Mobile Communication 

Systems Applications 

1 Introduction 

1.1 Error control Coding 

In recent years, wireless mobile communication systems have grown very rapidly 

to transmit voice, image, and data. Wireless mobile communication systems present 

several design challenges resulting from the mobility of users throughout the system and 

the time-varying channel. Also, there has been an increasing demand for efficient and 

reliable digital communication systems. The major concern of design engineers is to 

minimize the received error probability by making efficient use of power and bandwidth 

resources, while keeping system complexity reasonable to reduce cost. 
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Figure 1-1 shows the basic configuration of a point-to-point digital 

communication link. The data to be transmitted over this link can come from an analog 

source, in which case it is first converted into digital format, or a direct digital 

information source. If the data represents a speech signal, the digitizer is implemented as 

a speech codec. Usually, a digital data is source encoded to remove unnecessary 

redundancy from the data (data compression). The channel encoder operates on the 

compressed data and introduces controlled redundancy prior to transmission over the 

channel. The modulator converts the discrete channel symbols into waveforms which are 

transmitted through the channel. Upon reception, the demodulator reconverts the 

waveforms into a discrete sequence of symbols. The decoder then reproduces an estimate 

of the compressed input data sequence which is subsequently reconverted into the 

original signal or data sequence. 
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Figure 1-1 Block diagram of a point-to-point digital communication link. 
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In 1948, Shannon demonstrated [1] that by proper information encoding, errors 

induced by a noisy channel could be reduced to any desired level without sacrificing 

information transfer rate. The most famous formula from Shannon’s work is the channel 

capacity of an ideal band-limited Gaussian channel which is given by: 

C = W log2 (1 + S / N )  bits/s (1-1) 

where C is the channel capacity, i.e., the maximum number of bits that can be transmitted 

through the channel per unit of time, W is the bandwidth of the channel in Hz, and S/N is 

the signal-to-noise power ratio at the receiver. Shannon’s theorem asserts that error 

probabilities as small as desired can be achieved as long as the transmission rate Rs 

through the channel is smaller than the channel capacity, C. This can be achieved using 

an appropriate encoding and decoding operation. For information rates Rs > C, it is not 

possible to find a code that can achieve an arbitrary small error probability. 

Shannon did not indicate how this could be achieved. Subsequent research has 

led to a number of techniques that introduce structured redundancy to allow for error 

correction without retransmission. These techniques, collectively known as forward error 

correction (FEC) coding techniques or channel coding techniques, are used in systems 

where a reverse channel is not available for requesting retransmission of incorrect frames. 

Since Shannon’s work, many efforts have investigated the problem of devising 

efficient encoding and decoding. Coding theorists have traditionally attacked the 

problem of designing good codes by developing codes with structure that leads to 

feasible decoders. Coding theory suggests that codes chosen “at random” should perform 

well if the block size is large enough. The challenge of finding practical decoders for 

3




almost random large codes has not been seriously considered until recently. Perhaps the 

most exciting and potentially important development in coding theory in recent years has 

been the dramatic announcement of “Turbo Codes” invented by French researchers in 

1993 [2]. Turbo codes are a parallel concatenation of two constituent convolutional 

codes separated by an interleaver and the decoder working in an iterative fashion. This 

new coding technique has been considered as a candidate for many applications, 

including deep space communications and wireless mobile communication systems, due 

to its very good performance. 

1.2 Research Goals 

In 1993 a new error correcting technique, known as turbo coding, was introduced 

[2] and claimed to achieve near Shannon-limit error correction performance; a required 

Eb/N0 of 0.7 db was reported for bit error rates (BER) of 10-5 using a code rate of 1/2 in 

an Additive White Gaussian Noise (AWGN) channel. 

Turbo code techniques are based on encoding on a frame-by-frame basis (size of 

the interleaver). The interleaver size greatly determines the performance of turbo codes. 

The goal of this research is two-fold. The first is to study the turbo code 

performance and the encoder and decoder structures used to generate the codes. The 

research goal is to examine ways to enhance turbo code performance in a mobile wireless 

environment. To successfully use turbo codes in wireless mobile communication systems 

for speech transmission, the following two requirements must be met. First, the 

interleaver must be designed in such a way that the maximum delay in speech 

4




transmission is not exceeded. Second, the turbo decoder signal processing delay must not 

be large. 

The second goal of the research is to extend the body of knowledge related to the 

mathematical analysis of bit error probability for punctured turbo codes. This will 

facilitate studying the performance of punctured turbo codes at higher signal-to-noise 

ratios. 

1.3 Dissertation Outline 

The dissertation is organized in the following manner. Chapter 2 presents the 

characteristics and parameters of the wireless communication channel. The traditional 

channel coding techniques of block, convolutional, and concatenated codes are presented. 

An extensive review of literature covering turbo codes, the details of choosing its 

individual components, its performance, and its applications to different wireless 

communication systems are also covered. 

In Chapter 3, the principle of the iterative decoding process of the turbo decoder 

is presented. Turbo decoders consist of two soft-input/soft-output constituent 

convolutional decoders working together in an iterative fashion. Both constituent 

decoders accept soft input and deliver soft output. The problem of estimating the state 

sequence of a Markov process observed through noise using the trellis-based decoding 

algorithms is addressed. The Viterbi Algorithm and its modified version, the Soft Output 

Viterbi Algorithm (SOVA), are presented. 
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The research methodologies applied throughout this thesis were mathematical 

analysis and computer simulations. In Chapter 4, the methodology used to develop the 

mathematical models of an analytical bound and its calculations are presented. Also, this 

chapter covers simulation model development for the proposed turbo code. An algorithm 

to build a simulation model of the channel under consideration is also presented. 

Chapter 5 addresses the problem of enhancing turbo code performance using short 

frames. One way of enhancing performance is to optimize the energy allocated to each 

bitstream (turbo codes have three output bitstreams: systematic, first encoder, and second 

encoder) to achieve the best possible performance. In standard turbo codes, all bits are 

transmitted with equal energy. Changing the energy allocation strategy can enhance 

turbo code performance using short frame lengths. 

Another way to enhance performance is in the interleaver design. With proper 

design, the pairing of low-weight sequences into the encoders can be avoided. Circular 

shift interleavers can be used to ensure that the minimum distance due to weight-2 input 

sequences grows roughly as N 2 , where N is the block length. A generalization of the 

circular shift interleaver mapping function for both equal and unequal error protections is 

presented. 

Chapter 6 presents background discussion of punctured convolutional codes and 

useful definitions and notations as used in the derivation of the analytical punctured 

bound. The punctured bound derivation is presented. Applications of the punctured 

bound to AWGN, fully-interleaved fading, and correlated fading channels are presented. 
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Performance evaluation of these bounds and a comparison of the analytical bound with 

simulation results are also presented. 

Chapter 7 concludes the dissertation with a summary of the work presented. 

Recommendations for research extensions are also discussed. 
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2 Background


2.1 Introduction 

In 1948, Shannon [1] demonstrated in a landmark paper that, by proper encoding 

of the information, errors induced can be reduced to any desired level without sacrificing 

the rate of information transfer. The Shannon limit of -1.59 dB is the minimum amount 

of signal-to-noise ratio (Eb/N0) that is necessary to achieve an arbitrarily low bit error 

probability over an Additive White Gaussian Noise (AWGN) channel. Since Shannon’s 

work, numerous research efforts have investigated the problem of devising efficient 

encoding and decoding. Perhaps the most exciting and potentially important 

development in coding theory in recent years has been the dramatic announcement of 

“Turbo codes” [2]. Turbo code performance is claimed to achieve near Shannon-limit 

error correction performance with relatively simple component codes and large 

interleavers. A required Eb/N0 of 0.7 dB was reported for a Bit Error Rate (BER) of 10-5 

and code rate of 1/2. 

Turbo codes are constructed by applying two or more component codes to 

different interleaved versions of the same information sequence. Then, the encoded bits 

are decoded through an iterative decoding algorithm of relatively low complexity. 
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Since the first publication regarding turbo codes in 1993 [2], the following aspects 

of turbo codes have been under research: (i) optimization of the constitute encoder and 

decoder structures, and (ii) optimization of the interleaving function. Applications of 

turbo codes to different wireless communication channels and to speech transmission 

(short frame applications) are also under research. 

Turbo codes are based on the encoding on a frame-by-frame basis (size of the 

interleaver). The size of the interleaver greatly determines the performance (BER) of the 

turbo code. In the foundational work by [2], a frame size of 65,532 information bits was 

used to achieve a BER in an AWGN channel of 10-5 at Eb/N0 of 0.7 dB. By comparison, 

the speech frames contain less than 200 bits to be processed by the channel encoder. In 

the case of Global System for Mobile communications (GSM) [3], the speech frames 

contain 189 bits. Also in the case of DS-CDMA digital cellular system, known as 

Interim Standard (IS-95), the speech frames contain 192 bits [4]. 

In this chapter we address the problem of optimizing the components of turbo 

code and their applications to speech transmission systems. There are different proposed 

configurations of turbo codes-two parallel concatenated codes [2], multiple parallel 

concatenated codes [5], serial concatenated codes [6-8], and hybrid concatenated codes 

[8, 9]. In our survey we concentrate on the original turbo code proposed in [2], which 

uses the parallel concatenation. 

Section 2.2 reviews the characteristics and parameters of the wireless 

communication channel. In Section 2.3, the traditional channel coding techniques-block, 

convolutional, and concatenated codes are presented. Section 2.4 presents an intensive 
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review of the literature that covers the turbo code. The details of choosing the individual 

components of turbo codes, its performance, and its applications to different wireless 

communication systems are also covered in Section 2.4. Section 2.5 summarizes the 

contents of the chapter. 

2.2 The Wireless Mobile Channel 

In the study of communication systems, the classical (ideal) Additive White 

Gaussian Noise (AWGN) channel is the usual starting point for understanding basic 

performance relationships. The additive noise introduced by hardware components is at 

the front end receiver. The channel model is illustrated in Figure 2-1, where the noise 

term n(t) is a stochastic process. Receiver noise is commonly modeled as a zero-mean 

Gaussian process. When the noise is white, the channel is referred to as an Additive 

White Gaussian Noise (AWGN) channel. 

X (t) 

n(t) 

y(t)X (t) 

n(t) 

y(t) 

Figure 2-1 Additive noise channel. 
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The transmission path between the transmitter and the receiver in a wireless 

mobile communication system can vary from simple line-of-sight to one that is severely 

obstructed by buildings, mountains, and foliage. Even the speed of motion impacts how 

rapidly the signal level fades. A signal can travel from transmitter to receiver over 

multiple reflective paths. This phenomenon is referred to as multipath propagation. The 

effect can cause fluctuations in the received signal’s amplitude, phase, and angle of 

arrival giving rise to the terminology multipath fading [10]. The end-to-end modeling 

and design of systems that mitigate the effects of fading are usually more challenging 

than those whose sole source of performance degradation is AWGN. The wireless 

mobile channel places fundamental limitations on the performance (Eb/N0 and BER) of a 

wireless mobile communication system. Modeling the radio channel has historically 

been one of the most difficult parts of mobile radio system design, and is typically 

performed in a statistical fashion, based on measurements made specifically for an 

intended communication system or spectrum allocation [11, 12]. 

In order for systems engineers to be able to determine optimum methods of 

mitigating the impairments caused by the channel, it is essential that the transmission 

channel be accurately modeled. It seems reasonable, therefore, to consider mobile radio 

channels as special cases of random time-invariant linear filters. Two types of fading 

effects characterize mobile communication: large-scale and small-scale fading. Large 

scale fading represents the average signal power attenuation or path loss due to motion 

over large areas [10, 13]. This phenomenon is affected by prominent terrain contours 

(hills, forests, clumps of buildings, etc.) between the transmitter and the receiver. The 

receiver is often represented as being “shadowed” by such prominence. The statistics of 

11




large-scale fading provide a way of computing an estimate of path loss as a function of 

distance. Small-scale fading refers to the dramatic changes in signal amplitude over a 

short period of time or travel distance. 

As the mobile moves over very small distances, the instantaneous received signal 

strength may fluctuate rapidly giving rise to small-scale fading. The reason for this is 

that the received signal is a sum of many contributions coming from different directions 

[14]. In small-scale fading, the received signal power may vary by as much as three or 

four orders of magnitude (30 or 40 db) when the receiver is moved by only a fraction of a 

wavelength. 

Small-scale fading, or simply fading, is used to describe the rapid fluctuations of 

the amplitude of a radio signal over a short period of time or travel distance, so that the 

large scale path loss effects may be ignored. Fading is caused by interference between 

two or more versions of the transmitted signal, which arrive at the receiver at slightly 

different times. These waves, called multipath waves, combine at the receiver antenna to 

give a resultant signal which can vary widely in amplitude and phase. When the received 

signal is made up of multiple reflective rays plus a significant line-of-sight (non faded) 

component, the envelope amplitude due to small-scale fading has a Rician probability 

density function (pdf), and is referred to as Rician fading [14]. The nonfaded component 

is called the specular component. As the amplitude of the specular component 

approaches zero, the Rician pdf approaches a Rayleigh pdf, and is expressed as follows: 

2r 
-r

PRayleigh (r) = 
2 

e 2s 2 , r ‡ 0  (2-1) 
s 
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where r is the envelope amplitude of the received signal and s2 is the variance of the 

received signal r. The Rayleigh pdf results from having no specular component of the 

signal, thus for a single link it represents the pdf associated with the worst case of fading. 

2.2.1 The Mobile Multipath Channel Parameters 

In order to compare different multipath channels and to develop some general 

design guidelines for wireless systems, parameters which grossly quantify the multipath 

channel are used. 

• Maximum excess delay: For a typical wireless radio channel, the received signal 

usually consists of several discrete multipath components. For some channels, such as 

the tropospheric scatter channel, received signals are often seen as a continuum of 

multipath components [10]. For a single transmitted impulse, the time, Tm, between the 

first and last received component represents the maximum excess delay, during which the 

multipath signal power falls to some threshold level below that of the strongest 

component. The threshold level might be chosen at 10 or 20 db below the level of the 

strongest component. Note that for the ideal case, the excess delay would be zero. 

• Root mean square delay spread: The maximum excess delay, Tm, is not 

necessarily the best indicator of how any given system will perform on a channel because 

different channels with the same value of Tm can exhibit very different profiles of signal 

intensity, S (t ) , over the delay span. Knowledge of a multipath intensity profile, S (t ) , 

helps answer the question “For a transmitted impulse, how does the average received 

power vary as a function of time delay, t ?” The term “time delay” is used to refer to the 
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excess delay. It represents the signal’s propagation delay that exceeds the delay of the 

first signal arrival at the receiver. A more useful measurement of delay spread is most 

often characterized in terms of the root mean square (rms) delay spread, s t , where: 

s t = ( )2 2 t t - (2-2) 

2and t is the mean excess delay, t is the square root of the second central moment of 

S (t )  [14]. 

• Coherence bandwidth: The coherence bandwidth, f0, is a statistical measure of the 

range of frequencies over which the channel passes all spectral components with 

approximately equal gain and linear phase (channel can be considered flat over this range 

of frequencies). An exact relationship between coherence bandwidth and delay spread 

does not exist. Several approximated relationships have been described in [10, 14]. 

• Doppler spread and Coherence time: Delay spread and coherence bandwidth are 

parameters which describe the time dispersive nature of the channel in a local area. 

However, they do not offer information about the time varying nature of the channel 

caused by either relative motion between the mobile and base station, or by movement of 

objects in the channel. Doppler spread, fd, and coherence time, Tc, are parameters which 

describe the time varying nature of the channel in a small-scale region. 

The following example illustrates the Doppler phenomena [14]. Consider a 

mobile moving at a constant velocity, v, along a path segment having length d between 

points X and Y, while it receives signals from a remote source, S. This is illustrated in 

Figure 2-2. 
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Figure 2-2 Illustration of Doppler shift [14]. 

The difference in path lengths traveled by the wave from source, S, to the mobile 

points X and Y is Dl = d cosq = v Dt cosq, where Dt is the time required for the mobile to 

travel from X to Y, and q is assumed to be the same at points X and Y since the source is 

assumed to be very far away. The phase change in the received signal due to the 

difference in path lengths is therefore: 

Df = 
2pDl 

= 
2pvDt 

cosq  (2-3)
l l 

And hence, the apparent change in frequency or Doppler shift, Bd, is: 

1 Df v
Bd = 

2p Dt 
= 

l 
cosq  (2-4) 
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Equation 2-4 relates the Doppler shift to the mobile velocity, the spatial angle 

between the direction of the motion of the mobile and the direction of the arrival of the 

waves, and the wave length of the carrier signal (carrier frequency). 

In a typical multipath environment, the received signal arrives from several 

reflected paths with different path distances and different angles of arrivals, and the 

Doppler shift of each arriving path is generally different from that of another path. The 

effect on the received signal is seen as a Doppler spreading or spectral broadening of the 

transmitted signal frequency, rather than a shift. The Doppler spread, fd, is sometimes 

called the fading bandwidth, and it is defined as the maximum Doppler shift as follows: 

v
fd = 

l 
(2-5) 

If the baseband signal bandwidth is much greater than the Doppler spread, fd, the effects 

of Doppler spread is negligible at the receiver [14]. 

Coherence time, Tc, is the expected time duration over which the channel’s 

response to a sinusoid is essentially invariant. When Tc is defined more precisely as the 

time duration over which the channel’s response to a sinusoid has a correlation greater 

than 0.5, the relationship between Tc and fd is approximately [10] as follows: 

9
Tc »  (2-6)

16pf d 

Coherence time, Tc, is used to characterize the time varying nature of the 

frequency dispersiveness of the channel in the time domain. 
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2.2.2 Multipath Fading Channel Types 

Depending on the relation between the signal parameters (such as bandwidth, 

symbol period, etc.) and the channel parameters (such as rms delay spread and Doppler 

spread), different transmitted signals will undergo different types of fading.  The time 

dispersion and frequency dispersion mechanisms in a mobile radio channel lead to four 

possible distinct effects [10, 14]; flat fading, frequency selective fading, fast fading, and 

slow fading. The two propagation mechanisms, multi path delay and Doppler spread, are 

independent of one another. 

Table 2-1 shows the four different types of fading, the conditions to occur, the 

explanation of the effect of this type of fading to the reception of the symbol, the 

associated degradation, and the mitigation techniques for combatting the degradation. In 

Table 2-1, we denote the bandwidth of the signal by Bs, the symbol by Ts, the maximum 

delay spread by Tm, the coherence bandwidth of the channel by f0, the intersymbol 

interference by ISI, and signal-to-noise ratio by SNR. 

From Table 2-1, summarizing the conditions that must be met so that the channel 

does not introduce frequency selective and fast fading distortion, we need Equation 2-7 or 

2-8 to be satisfied. 

f0 > Bs > f d  (2-7) 

Tm < Ts < Tc  (2-8) 

We want the channel coherence bandwidth to exceed the signaling rate, which in turn 

should exceed the fading rate of the channel [15]. 
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Table 2-1 Types of multipath fading, conditions, effects, degradations, and mitigations. 

Fading type 

Fading based on time dispersion 

due to multipath 

Fading based on Doppler spread 

Flat fading Frequency 

selective fading 

Fast fading Slow fading 

Conditions to 

occur 

Tm < Ts 

Bs < f0 

Tm > Ts 

Bs > f0 

Tc < Ts 

fd > Bs 

Tc > Ts 

fd < Bs 

Effects 

The received 

multipath 

components of 

the symbol 

arrive within 

the symbol 

duration 

The received 

multipath 

components of 

the symbol 

extend beyond 

the symbol 

duration 

The fading 

characteristics 

of the channel 

change several 

times while a 

symbol is 

propagating 

The time 

duration that 

the channel 

behaves in a 

correlated 

manner is long 

compared to Ts 

Degradation 

effect 

Loss in SNR ISI distortion PLL failure Loss in SNR 

Mitigation 

* Diversity 

techniques 

* Error control 

coding 

* Adaptive 

equalization 

* Spread 

spectrum 

* Robust 

modulation 

* Signal 

redundancy 

to increase 

signal rate 

* Coding 

and 

interleaving 

* Diversity 

techniques 

* Error control 

coding 

18




2.3 Channel Coding Techniques 

In 1948, Claude Shannon issued a challenge to communications engineers by 

proving that the communication systems could be made arbitrarily reliable as long as a 

fixed percentage of the transmitted signal was redundant [1]. He did not indicate how 

this could be achieved. Subsequent research has led to a number of techniques that 

introduce redundancy to allow for correction of errors without retransmission. 

Channel coding protects digital data from errors by selectively introducing 

redundancies in the transmitted data. Coding involves adding extra bits to the data 

stream so that the decoder can reduce or correct errors at the output of the receiver. 

However, these extra bits have the disadvantage of increasing the data rate (bits/s) and, 

consequently, increasing the bandwidth of the encoded signal. 

Before discussing any codes, several definitions are needed. The Hamming 

weight of a code word is the number of binary 1 bits the word contains. The Hamming 

distance between two code words, denoted by d, is the number of bit positions that differ 

between the two words. The minimum Hamming distance of the code, dmin, is the 

minimum Hamming distance between any two code words in the code. The weight 

distribution or distance spectrum of a code is the number of code words for each possible 

weight. 

Channel coding techniques can be divided into four categories [11, 12, 16, 17]; 

block codes, convolutional codes, concatenated codes, and turbo codes. In the next 

subsections, we review the first three types of codes with turbo codes being introduced in 

the following section. 
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2.3.1 Block Codes 

Block codes enable a limited number of errors to be detected and corrected 

without retransmission. A block code is a mapping of k input binary symbols into n 

output binary symbols. Consequently, the block coder is a memoryless device (each bit 

in the code word is independent of the previous bits). Because n > k, the code can be 

selected to provide redundancy, such as parity bits, which are used by the decoder to 

provide some error detection and correction. The codes are denoted by (n, k), where the 

code rate R is defined by R = k/n. Practical values of R range from 1/4 to 7/8, and k 

ranges from 3 to several hundred. The ability of a block code to correct errors is a 

function of the code distance. Properties of block codes are as follows [11, 12]: 

Linearity: The code is said to be linear if and only if the addition of any two 

codewords of the code is also a codeword. A linear code must contain the all-zero 

codeword. 

Systematic: A systematic code is one in which the parity bits are appended to the 

end of the information bits. 

Cyclic: Cyclic codes are block codes, such that another codeword can be 

obtained by taking any one codeword, shifting the bits to the right, and placing the 

dropped-off bits on the left. 

Encoding and decoding techniques make use of the mathematical constructs 

known as finite fields. Finite fields are algebraic systems which contain a finite set of 

elements. Addition, subtraction, multiplication, and division of finite field elements is 

accomplished without leaving the set. Addition and multiplication must satisfy the 
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commutative, associative, and distributive laws [18]. For any prime number p, there 

exists a finite field which contains p elements. This prime field is denoted as GF(p) 

because finite fields are also called Glois fields, in honor of their discoverer. It is also 

possible to extend the prime field GF(p) to a field of pm elements which is called an 

extension field of GF(pm), where m is a positive integer. Codes with symbols from the 

binary field GF(2) or its extension field GF(2m) are most commonly used in digital data 

transmission systems, since information in these systems is always encoded in binary 

form in practice. 

In binary arithmetic, modulo-2 addition and multiplication are used. This 

arithmetic is actually equivalent to ordinary arithmetic except that 2 is considered equal 

to 0. 

There are a number of block codes that are frequently encountered in practice like 

Hamming codes, Harmard codes, Golay codes, cyclic codes, BCH codes, and Reed-

Solomon codes. Here, we will describe four of them. 

• Hamming codes: Hamming codes were among the first of nontrivial error 

correction codes [19]. There are both binary and non-binary codes. A binary hamming 

code has the property that: 

(n, k) = (2m-1, 2m-1-m) (2-9) 

where k is the number of information bits used to form an n bit codeword, and m ‡ 2. The 

number of parity symbols are n-k = m. For example, if m = 3, we have a (7,4) code. 

These binary codes have a minimum distance of 3, and they are capable of correcting all 
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single error or detecting all combinations of two or fewer errors within the block [11]. 

The weight distribution for the class of Hamming (n, k) codes is known and it is given as 

follows [12]: 

n 

A(Z ) = � Ai Z i 
i=0 

n- ) 
2 

1 n+ ) 
2

1
= 

1 Ø(1 + Z )n + n(1 + Z )( (1 - Z )( ø (2-10) 
n + 1 º ß 

where Ai is the number of codewords of weight i. 

• Golay codes: Golay codes are linear binary (23, 12) codes with minimum distance 

of 7. The extended Golay code (24, 12) is obtained by adding an overall parity to the (23, 

12) code. A (24, 12) code has minimum distance of 8. The weight distributions of the 

Golay code (23, 12) and the extended Golay (24, 12) code are known [12]. Extended 

Golay codes are considerably more powerful than the Hamming codes. The extended 

Golay code is guaranteed to correct all triple errors. 

• Bose-Chaudhuri-Hocquenghem (BCH) codes: BCH codes are among the most 

important block codes since they exist for a wide range of rates, achieve significant 

coding gains, and can be implemented even at high speeds [12]. BCH codes are a 

generalization of Hamming codes that allow multiple error correction. The block length 

of the code is n = 2m-1 for m ‡ 3, and the number of errors that they can correct is 

bounded by t < 
(2m -1) 

. The most important and common class of non-binary BCH
2 

22




codes is the family of codes known as Reed-Solomon codes. The (63, 47) Reed-Solomon 

code in U.S. Cellular Digital Packet Data (CDPD) uses m = 6 bits per code symbol [14]. 

• Reed-Solomon codes: One special class of the BCH codes is the non-binary set 

called Reed-Solomon codes. Reed-Solomon codes achieve the largest possible code 

minimum distance for any linear block code with the same encoder input and output 

block lengths. Reed-Solomon codes are capable of correcting errors which appear in 

bursts and are commonly used in concatenated coding systems. The minimum distance 

of the code is given by [11]: 

dmin = n – k +1 (2-11) 

where k is the number of data symbols being encoded, and n is the total number of code 

symbols in the encoded block. The code is capable of correcting any combination of t or 

fewer symbol errors, and t is given as following: 

t = 
d min -1 

= 
n - k

 (2-12)
2 2 

Thus the number of parity symbols that must be used to correct t errors is n – k = 2t. 

2.3.2 Convolutional Codes 

Convolutional codes are powerful coding schemes for wireless mobile 

communication systems [20]. Convolutional codes are fundamentally different from 

block codes in that information sequences are not grouped into distinct blocks and 

encoded. Instead, a continuous sequence of information bits is mapped into a continuous 

23




sequence of encoder output bits. It can be argued that convolutional coding can achieve a 

larger coding gain than a block coding with the same complexity. 

Figure 2-3 shows the configuration of the convolutional encoder with a coding 

rate of ½ with constraint length (K) of 3. The convolutional encoder consists of (K-1 = 2) 

shift registers and two modulo-2 adders connected to some of the shift registers. The 

input data sequence is fed to the shift registers, and two output data are calculated using 

the contents of the shift registers. The generator polynomials determine the encoding 

process. For the convolutional encoder shown in Figure 2-3, two coded bits are produced 

when a single source bit is input. 

Generally, we can define the convolutional code rate as R = k/n, where n is the 

number of coded symbols produced when k information bits are shifted to the 

convolutional encoder. The convolutional encoder shown in Figure 2-3 has k = 1 and n = 

2. 

I n p u t  

O u t p u  t  2  

O u t p u  t  1  

I n p u t  

O u t p u  t  2  

O u t p u  t  1  

I n p u t  

O u t p u  t  2  

O u t p u  t  1  

Figure 2-3 Configuration of the convolutional encoder with 1/2 code rate and K =.3. 
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There are various ways of representing convolutional codes such as generator 

polynomials, state diagrams, tree diagrams, and trellis diagrams [12]. 

Generator polynomials: for rate 1/2, the generator polynomial can be expressed as• 

follows: 

1 k -1 1 k -2 1 2 1 1G1 (x) = gk -1 x + gk -2 x + ... + g 2 x + g1 x + g0 (2-13) 

2 k -1 2 k -2 2 2 2 2G2 (x) = gk -1 x + gk -2 x + ... + g 2 x + g1 x + g0 (2-14) 

where x indicates a 1-bit timing delay, G1(x) is the generator polynomial for the first 

nencoded bit and G2(x) is for the second bit. The gm  parameters indicate whether or not 

an m-bit delayed source bit is added on the modulo-2 basis to obtain the nth encoded bit. 

For the encoder shown in Figure 2-3, the generator polynomials are given by: 

2G1 (x) = x + 1  (2-15) 

2G2 (x) = x + x + 1  (2-16) 

The polynomial generators of a convolutional code are usually selected based on 

the code’s free distance properties. The first criterion is to select a code that does not 

have catastrophic error propagation and that has the maximum free distance for the given 

rate and constraint length, then the number of paths at the free distance, dfree. The 

selection procedure can be further refined by considering the number of paths at dfree+1, 

at dfree + 2, and so on, until only one code or class of codes remains. A list of best known 

codes of rate 1/2, K = 3 to 9, and rate 1/3, K = 3 to 8, was compiled in [21] based on this 

criterion. 
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• State diagram: The state diagram is simply a graph of the possible states of the 

encoder and the possible transitions from one state to another. The state of a 

convolutional encoder is determined by the contents of the right most (K-1) shift 

registers. 

• Tree diagram: The tree diagram shows the structure of the encoder in the form of 

a tree with the branches representing the various states and the outputs of the encoder. 

• Trellis diagram: Close observation of the tree reveals that the structure repeats 

itself once the number of stages is greater than the constraint length. It is observed that 

all branches emanating from two nodes having the same state are identical in the sense 

that they generate identical output sequences. This means that the two nodes having the 

same label can be merged. By doing this throughout the tree diagram, we can obtain 

another diagram called a trellis diagram which is a more compact representation. 

Unlike block codes, the codewords of a convolutional code do not have fixed 

lengths. However, it is desirable to force the convolutional code word to be limited to a 

specific length. This can be done by a process called trellis termination. The trellis can 

be forced back to the all-zero state by setting the last K-1 bits of the input message to 

zeros. 

There are a number of techniques for decoding convolutional codes [12]: Viterbi 

algorithm, Fano’s sequential decoding, the stack algorithm, and feedback decoding. The 

most important of these methods is the Viterbi algorithm which performs maximum 

likelihood decoding of convolutional codes. 
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2.3.3 Concatenated Codes 

A concatenated code is one that uses two levels of coding, an inner code and an 

outer code, to achieve the desired error performance. A simple concatenated code can be 

formed as shown in Figure 2-4. Figure 2-4 illustrates the order of encoding and 

decoding. The inner code, the one that interfaces with modulator/demodulator and 

channel, is usually configured to correct most of the channel errors. To spread any error 

bursts that may appear at the output of the inner coding operation, an interleaver should 

be inserted between the two coding steps as shown in Figure 2-4. 

Outer 
encoder Interleaver 

Inner 
encoder 

Outer 
decoder 

Deinterleaver 
Inner 
decoder 

Demodulator 

Modulator 

Channel 

Input data 

Output data 

Outer 
encoder Interleaver 

Inner
encoder 

Outer 
decoder 

Deinterleaver 
Inner 
decoder 

Demodulator

Modulator

Channel 

Input data 

Output data 

Figure 2-4 Block diagram of a concatenated coding system. 
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Typical practice has shown that the inner code is designed to be a powerful, lower 

rate code, while the outer code is a high rate code [22]. Massey [23] stated that 

convolutional codes should be used in the first stage of decoding because they can easily 

accept soft decisions and channel state information from the channel. Reed-Solomon 

codes are then used to clean up the errors left over by the Viterbi decoder. Indeed, 

Viterbi decoding and the decoding of Reed-Solomon codes complement each other very 

nicely. The Viterbi decoder has no problems accepting soft decisions from the channel, 

and it delivers short bursts of errors. Short error bursts do not affect the Reed-Solomon 

decoder as long as they are within the correction capability of the Reed-Solomon code. 

One of the most popular concatenated coding systems uses a Viterbi decoding 

convolutional code as an inner code and Reed-Solomon as an outer code, with 

interleaving between the two coding steps [21]. The operation of such systems is such 

that with Eb/N0 in the range of 2.0 to 2.5 db the probability of error p=10-5 (only about 4 

db away from the Shannon limit) can be achieved. This complementary feature was one 

of the reasons that this concatenated system has been selected by the Consultative 

Committee for Space Data Systems (CCSDS) of NASA and ESA for deep space 

missions, where power saving is the main concern [24]. 

We can summarize the concatenation as a method of constructing long codes from 

shorter codes. This method was first proposed by Forney [16] in 1966 as a means of 

constructing long block codes which can be decoded without the complexity of using 

long codes. 
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2.4 Turbo Codes 

Research in coding theory has seen many proposals aimed at the construction of 

powerful codes using block and convolutional coding techniques. Shannon theory has 

proved that larger block length and “random” codes possess good BER. However, the 

decoding complexity increases exponentially with the block length. On the other hand, 

the structure imposed on the codes in order to decrease their decoding complexity often 

results in relatively poor performance. As a result, approaching the channel capacity or 

even, more modestly, going significantly beyond the channel cutoff rate (practical limit 

on the highest rate at which a sequence decoder can operate) had been an unreachable 

dream of coding theorists for many years. 

There are two basic approaches to decrease the bit error probability of a system 

through channel coding. The more traditional approach attempts to increase the 

minimum Hamming distance of the code. This results in a lowering of the word and bit 

error probabilities. The goal of the second approach is to reduce the multiplicity (i.e., the 

number) of code words with low Hamming weights. This is the approach applied to the 

design of “turbo” codes. Recently proposed ‘turbo codes’ yield very good performance 

(near the Shannon limit) in combination with simple iterative decoding strategies. Turbo 

codes were introduced in 1993 by Berrou, Glavieux, and Thitimajshima [2]. 

It has been claimed that these codes achieve near-Shannon-limit error correction 

performance with relatively simple component codes and large interleavers. For a bit 

error probability of 10-5 and code rate of 1/2, the authors report a required Eb/N0 of 0.7 dB 

and block lengths of 65,536. The codes are constructed by applying two or more 
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constituent codes to different interleaved versions of the same information sequence. 

Decoding calls on iterative processing in which each component decoder takes advantage 

of the work of the other at the previous step. Since the introduction of turbo codes, 

numerous research efforts have been dedicated to optimize the components of turbo 

codes and their applications to wireless mobile communication systems. 

2.4.1 Turbo Code Encoder 

A block diagram of the encoder of turbo code is shown in Figure 2-5. As seen in 

the figure, a turbo encoder consists of two parallel concatenated convolutional encoders 

called constituent codes (Recursive Systematic Convolutional encoders (RSC)) separated 

by an interleaver, with an optional puncturing mechanism. 

dk 

Y k1 
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yk 
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and 
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Code1 

data 

Interleaver 

dk 

Y k1 

Y k2 

xk 

yk 
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multiplexing 
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Code1 

data 

Interleaver 

Figure 2-5 Turbo code encoder. 
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2.4.1.1 The Constituent Encoder 

The first block of the turbo code encoder is the constituent encoder. A distinctive 

feature of turbo codes is the fact they use systematic recursive convolutional codes [25, 

26]. 

The most typical form of a convolutional encoder is the nonrecursive 

nonsystematic convolutional (NSC) encoder [11]. For a rate 1/2 convolutional encoder, 

the constraint length is K and memory is K-1. The input to the encoder at time k is a bit 

dk, and the corresponding code word is the bit pair (uk, vk), where: 

K -1 
uk = � 

i=0 
g1i dk -i  modulo-2 g1i = 0,1  (2-17) 

K -1 
vk = � 

i=0 
g 2i dk -i  modulo-2 g 2i = 0,1  (2-18) 

G1 = {g1i } and G2 = {g 2i } are the code generators, generally expressed in octal form, and 

dk is represented as a binary digit. This encoder has a finite impulse response (FIR). An 

example of NSC code is shown in Figure 2-6. 

In this example, the constraint length is K= 5, and the two generators are (in octal 

form) G1 = 37 and G1 = 21. It is well-known that the BER of a classical NSC code is 

lower than that of a classical Systematic code (SC) with the same memory at large signal-

to-noise ratio (SNR). At low SNR, the performance of NSC and SC are generally 

reversed. 
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uk 

vk 
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+ 

+ 

uk 
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Figure 2-6 Classical nonsystematic convolutional code. 

The new class of Recursive Systematic Convolutional (RSC) codes, the infinite 

impulse response (IIR) convolutional codes, has been proposed in [2, 27]. Performance 

of IIR codes can be shown to be better than the best NSC code at any SNR for high code 

rates larger than 2/3. A binary rate 1/2 RSC code is obtained from a NSC code by using a 

feedback loop, and setting one of the two outputs (uk or vk) equal to dk. Figure 2-7 

illustrates an example of RSC code, with K = 5, where ak is recursively calculated as 

follows: 

K -1 * 

i=1 
gi ai-1 modulo-2 (2-19)ak = dk + � 
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*where gi is respectively equal to g1i  if uk = dk, and to g2i  if vk = dk. It is stated in [2] that 

ak exhibits the same statistical properties as dk. The trellis structure is identical for the 

RSC code of Figure 2-7 and the NSC code of Figure 2-6, and these two codes have the 

same free distance (free distance is the minimum distance in the set of all arbitrarily long 

paths that diverge and re-emerge in the trellis diagram). However, the two output 

sequences {uk} and {vk} do not correspond to the same input sequence {dk} for RSC and 

NSC codes. For the same code generators, RSC codes do not modify the output weight 

distribution of the output codewords compared to NSC codes. They only change the 

mapping between input data sequences and output codeword sequences. 

a k a k -1 
a k - 2 a k -3 

+ 

uk 

vk 

d k 

+ a k a k -1 
a k - 2 a k -3 

+ 

uk 

vk 

d k 

+ 

Figure 2-7 Recursive systematic convolutional code. 
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In Figure 2-8, a parallel concatenation of two RSC encoders of the type shown in 

Figure 2-7, provides an example of a rate R = 1/2 turbo code encoder. Two encoders 

with K = 4, and the same polynomial generators (37, 21) are used in [2]. Both encoders 

receive the same information sequence {dk} but are arranged in a different sequence due 

to the presence of the interleaver. Puncturing (some outputs bits Xk or Yk are deleted 

according to a chosen pattern) is often used to increase the rate to 1/2. Without the 

switch (puncture), the code would be rate 1/3. Additional concatenation can be continued 

with multiple component codes. In general, the component encoders need not be 

identical with regard to constraint length and rate. 

Choosing the best constituent code is one way of improving the performance of 

turbo codes. Different researchers take different optimum criteria to optimize the 

constituent codes. In [28], the search for the best constitute encoder is based only on 

maximizing the input weight 2 free distance of the code (minimal output weight 

codewords most of time due to the input weight 2, the importance of input weight 2 is 

explained in weight distribution of turbo codewords section). In [29] the search is based 

on maximizing codewords of input weight 2 and 3 ( d2 and d3). In [30], the authors 

examined d2, as well as minimized the number of nearest neighbors ( Neff ), where Neff is 

the number of paths having the same effective distance. In [31], the search is based on 

optimization of the pairs (di, Ni), where di represent the input sequence of weight i and Ni 

are their multiplicities (i.e. the number of code sequences of weight di generated by input 

sequences of weight i). The authors in [31] performed sequential optimization. First di is 

maximized and then Ni minimized from i = 2 to i = 6. The authors take into account the 

multiplicity of low weight sequences which lead to significantly better codes. 
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Figure 2-8 Recursive systematic convolutional codes with parallel concatenation. 

The encoder in Figure 2-8 is used to generate a (2(N+M), N) block code, where N 

is the information size. Following the information bits, additional M = K-1 tail bits (K is 

the constraint length of the convolutional code) are appended in order to drive the 

encoder to the all-zero state at the end of the block. Due to the encoders’ recursiveness, 

the required M tail bits cannot be predetermined automatically. This action of returning 

the encoders to the all-zero state is called trellis termination. Some input data sequence 

of length N are self-terminating because the encoders are already in the all-zero state after 
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encoding N information bits and M tail bits are appended.  All M tail bits are zero for a 

self-terminating input sequence. Non-self-terminating input sequences require one or 

more nonzero tail bits for proper trellis termination. 

Since the component encoders are recursive, it is not sufficient to set the last M 

information bits to zero in order to drive the encoder to the all-zero state (i.e., to 

terminate the trellis). The termination tail sequence depends on the state of each 

component encoder after N bits. Due to the presence of the interleaver, it is impossible to 

simultaneously terminate the trellises of both component encoders using the same M bit 

tail [32]. The solution to the problem of terminating the trellis of component encoders 

has not been stated in the original paper [2]. In [33, 34], it is shown that by properly 

designing the interleaver, it is possible to force both constituent encoders back to the all-

zeros state with a single M bit tail. 

Some researchers [35, 36] suggest terminating only one encoder. These studies 

take differing approaches by either terminating the first encoder or terminating the second 

encoder. The authors in [37] provide a survey for the termination schemes used for short 

frames. The authors conclude that at low bit error rates, the termination errors dominate, 

where perfect termination (terminate both encoders and send both tailing bits) has fewer 

errors. In [38], the authors proposed a new method for termination. This method is not 

included in the survey [37]. This method of termination uses both encoders and sends the 

systematic tailing bits of the first encoder and the check bits of both encoders. The 

approach uses the configuration in Figure 2-9 to terminate both encoders. In our 

simulation model we used this scheme for terminating both encoders. 
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Figure 2-9 Trellis termination scheme. 

The configuration in Figure 2-9 is sufficient to terminate the trellis at the end of 

the block, where the switch is in position “A” for the first N clock cycles (N is the 

number of information bits per frame) and is in position “B” for the additional required 

tailing bits, which will flush the encoder with zeros. The same termination is used for 

both encoders. 

37




2.4.1.2 Interleaver 

The turbo encoder in Figure 2-8 produces codewords from each of two 

component encoders. The weight distribution for the codewords out of this parallel 

concatenation depends on how the codewords from one of the component encoders are 

combined with codewords from the other encoder(s). Good code design attempts to 

avoid pairing low-weight codewords from one encoder with low-weight codewords from 

the other encoder, to increase the minimum weight of the code words. The trick in turbo 

coding is to match low-weight codewords of one encoder with high-weight codewords 

from the other encoder(s). This results in total weights significantly higher than the low 

weights that are possible from each of the simple component codes individually. Many 

such pairings can be avoided by proper design of the interleaver [38-42]. One important 

property of turbo code is that its minimum distance is not fixed by the constituent codes 

but by the interleaving function. Finding the optimum interleaver for turbo code remains 

a real challenge [27]. 

The choice of the interleaving scheme also has an effect on the performance of the 

overall code. An interleaver that permutes the data in a random fashion provides better 

performance than the familiar block interleaver [41]. For short frames, the performance 

of block interleaving is quite close to the best nonuniform interleavers; the difference 

between interleavers becomes clear only at bit error rates lower than 10-3 [43]. Another 

way to choose the interleaver is to combine the problem of trellis termination with 

interleaving. By using a “simile” type interleaver proposed in [33], the trellis of both 

constituent encoders can be terminated with one set of tail bits. In [38], the authors 
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proposed a new interleaver, known as S-random interleaver. For a given S, this 

interleaver satisfies the constraint that any two symbols separated by fewer than S 

symbols in the input sequence are separated by at least S symbols in the interleaved 

sequence. 

2.4.2 Turbo Decoder 

In digital transmission systems, the received signal is a sequence of waveforms 

whose correlation extends well beyond the signaling period (Ts). There can be many 

reasons for this correlation, such as coding, intersymbol interference, or correlated fading 

[44]. It is well-known that the optimum receiver in such situations cannot perform its 

decisions on a symbol-by-symbol basis. Deciding on a particular information symbol, uk, 

involves processing a portion of the received signal Td seconds long, with Td > Ts. The 

decision rule can be either optimum with respect to the individual symbol, uk, k = 1,2, . . 

.,n, where n is the number of sequence symbols in sequence U, or with respect to the 

sequence of symbols U = (u1, u2, . . .,un). The ultimate goal of the decoding operation is 

^ 

to minimize the errors in the finally decoded sequence U . Two optimum decoding 

criteria are thus proposed; the minimum symbol error rate and the minimum word 

(sequence) error rate. When U is a binary sequence, the minimum symbol error rate 

criterion achieves the minimum bit error rate (BER). A minimum symbol error rate 

decoder maximizes the a posteriori probability P(û k Y ) , where Y is the received 

sequence, i.e., 

P(û k Y ) = max P(uk Y )  (2-20)
all uk 
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^ 

is the maximum a posteriori probability (MAP) estimate of symbol uk, k = 1, . .where uk

.,n. Similarly, a minimum word error rate decoder maximizes the a posteriori probability 

ˆP(U Y ) , i.e., 

P(Û Y ) = max P(U Y )  (2-21)
all U 

^ 

where U  is the MAP estimate of the information sequence U. It has been shown that the 

performances of these decoders are almost identical in any error criterion [45]. The 

Viterbi algorithm [46] is an optimal decoding method for minimizing the probability of 

word error rate. 

Optimum symbol decision algorithms have been known since the early 1970s [47, 

48]. These algorithms are much less popular than the Viterbi algorithm and almost never 

applied in practical systems. There is a very good reason for this neglect. They yield 

performance in terms of symbol error probability only slightly superior to the Viterbi 

algorithm, yet they present a much higher complexity [44]. 

A maximum likelihood (ML) decoding of turbo code is impractical because of the 

computational complexity. By taking advantage of the structure of the turbo code, the 

decoding can be broken into simpler decoding steps. This allows for the total decoding 

complexity to be lower than that of the ML algorithm. A known suboptimal decoder for 

the turbo code is the iterative decoder [2]. From the results reported in [2, 38], it is 

deduced that the iterative decoder achieves a performance that is close to the Shannon 
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limit (and consequently, is close to the performance of the ML decoding after few 

iterations). 

The turbo decoder is constructed from simple constituent decoders which share 

bit reliability measures. The constituent decoder is the optimal decoder for the 

component codes used by the turbo encoder. The decoder depicted in Figure 2-10 is 

made up of two elementary decoders (DEC1 and DEC2) in a concatenated scheme [2]. 

The first elementary decoder DEC1 is associated with the first encoder and yields 

a soft decision. The error bursts at DEC1 output are scattered by the interleaver. 
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Figure 2-10 Turbo decoder. 
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For a discrete memoryless Gaussian channel and a binary modulation, the decoder 

input is made up of two random variables xk and yk, at time k: 

xk = (2dk - 1)+ ik  (2-22) 

yk = (2Yk - 1)+ qk  (2-23) 

where ik and qk are two independent noises with the same variance s2. The redundant 

information yk is demultiplexed and sent to the decoder DEC1 when Yk = Yk1 and toward 

decoder DEC1 when Yk = Yk2. The first decoder DEC1 must deliver to the second 

decoder DEC2 a soft decision. The logarithm of likelihood ratio (LLR), 

L¢(dk ) associated with each decoded bit dk by the first decoder DEC1 is used as a 

relevant piece of information for the second decoder DEC2, where: 

Ø P{dk = 1Y }ø 
L¢(dk ) = log 

º
Œ 

P{dk = 0 Y }œ
ß 

(2-24) 

where P{dk=1|Y}, i = 0, 1 is the a posteriori probability (APP) of the bit dk given 

knowledge of the received data Y. 

Ø P{Y dk =1} P{dk =1}ø

Œ œ
L¢(d

k 
) = logŒP{Y dk = 0} P{dk = 0}œ


º ß


Ø P{Y dk = 1}ø Ø P{dk = 1}ø 
= logŒ

Œ P{Y dk = 0}œœß 
+ log 

º
Œ 

P{dk = 0}ß
œ 

º 

L¢(dk ) = Lc (dk )+ L(dk )  (2-25) 
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where Lc(dk) is the LLR of the channel measurements of dk and L(dk) is the a priori LLR 

of the dk. Equations 2.24 and 2.25 were developed with only the data detector in mind 

[49]. The introduction of a decoder typically yields decision-making benefits. For a 

systematic code, it can be shown that the LLR (soft output) L(d̂ 
k ) out of the decoder is 

equal to: 

L(d̂ 
k ) = L¢(d̂ 

k )+ Le (d̂ 
k )  (2-26) 

where L¢(d̂ 
k ) is the LLR of the data bit out of the detector (input to the decoder), and 

Le (d̂ 
k ), called the extrinsic LLR, represents extra knowledge that is gleaned from the 

decoding process. The output sequence of a systematic decoder is made up of values 

representing data and parity. Equation 2-26 partitions the decoder LLR into the data 

portion represented by the detector measurements, and the extrinsic portion represented 

by the decoder contribution due to parity. From Equations 2-25 and 2-26: 

L(d̂ 
k ) = Lc (dk )+ L(dk )+ Le (d̂ 

k )  (2-27) 

The soft decision L(d̂ 
k ) is a real number that provides a hard decision as well as 

the reliability of that decision. For iterative decoding, the extrinsic likelihood is fed back 

to the decoder input to serve as a refinement of the a priori value for the next iteration. 

The decoding algorithm for turbo codes uses an iterative procedure whose heart is 

an algorithm which computes the sequence of the a posteriori probability (APP) 

distributions of the information symbols. Unfortunately, the Viterbi algorithm is not able 

to yield the APP for each decoded bit. A relevant algorithm for this purpose has been 
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proposed by in [47], and is also known as the MAP algorithm. This algorithm minimizes 

the bit error probability in decoding linear block and convolutional codes and yields the 

APP for each decoded bit. For RSC codes, the MAP algorithm has been modified in [2] 

in order to take into account their recursive character. However, the MAP decoder 

suffers from a complexity that is significantly higher than that of the Viterbi algorithm 

[2]. Currently, effort is underway to find reduced complexity decoders that can produce 

soft outputs. Two approaches have been taken. The first approach tries to modify the 

Viterbi algorithm to yield soft output. This is known as the Soft-Output Viterbi 

Algorithm (SOVA) [50-52]. Because the MAP algorithm suffers from a complexity that 

is significantly higher than that of the Viterbi algorithm, the second approach consists of 

revisiting the original symbol MAP decoding algorithm with the aim of simplifying it to a 

form suitable for implementation [53-57]. 

2.4.3 Performance Analysis of Turbo Codes 

Many research efforts on turbo codes have been published seeking to find the 

exact explanation for its extraordinary performance and to provide methods for further 

improvement. Since the output weight distribution decides the performance of turbo 

codes, these efforts are concentrated on finding the connection between the output weight 

and the system components. 

2.4.3.1 The Weight Distribution of Turbo Codes 

In order to estimate the performance of a code, it is necessary to have information 

about its minimum distance, dmin, weight distribution, or actual code geometry, depending 

on the accuracy required for the bounds or approximations. However, the minimum 
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distance is not the most important quantity of the code, except for its asymptotic 

performance at very high Eb/N0. At moderate signal-to-noise ratios (SNRs), the weight 

distribution at the first several possible weights is necessary to compute the code 

performance. Estimating the complete weight distribution for a large N is still an open 

problem for these codes. The proper choice of the interleaver can reduce the number of 

low-weight codewords. 

The weight distribution for the codewords produced by the turbo encoder depends 

on how the codewords from one of the simple component encoders are teamed with 

codewords from the other encoder. Due to recursiveness of the encoders, it is important 

to distinguish between self-terminating and non-self-terminating input sequences. The 

non-self-terminating sequences have little effect on decoder performance. This is due to 

the accumulated high encoded weight that caused the code to artificially terminate at the 

end of the block. From probabilistic arguments based on selecting the permutations 

randomly, it is concluded that the self-terminating weight-2 data sequences are the most 

important consideration in the design of the constituent codes [41]. There are also many 

weight-n, n=3, 4, 5, . . ., data sequences that produce self-terminating output and hence 

low encoded weight. However, these sequences are much more likely to be broken up by 

the random interleavers than the weight-2 sequences [38]. Higher-weight, self-

terminating sequences have successively decreasing importance. Better weight 

distributions were obtained by using random interleaver [39, 41]. One can argue that 

turbo code performance is determined largely from minimum weight codewords that 

result from the weight-2 input sequence. 
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2.4.3.2 The Analytical Bound of Turbo Code 

The discovery of turbo codes and the near capacity-performance reported in [2] 

has stimulated numerous research efforts to fully understand this new coding scheme. 

Initially, the original results were independently reproduced by several researchers [58-

60]. Subsequently, recent research [28, 41, 42, 58, 61] on turbo codes has focused on 

understanding the reasons for their outstanding performance. 

Despite various attempts, a satisfactory explanation yielding a good 

comprehension of the behavior of turbo codes has not yet appeared in literature. Only 

cut-and-try approaches based on simulation have been addressed to the problem of 

designing the interleaver, as well as to that of performance evaluation. 

Since the first appearance of turbo codes, many of the structural properties of 

turbo codes have now been on firm theoretical footing [59, 61, 62]. In [62], the authors 

derive an analytical upper bound to the average performance of such a coding scheme. 

The average upper bound was constructed by averaging over all possible interleavers. 

This is independent of the interleaver used and shows the influence of the interleaver 

length on the code performance. 

It is useful to consider turbo codes as block codes. The input sequences are 

restricted to length N, where N corresponds to the size of the interleaver in the turbo 

encoder. Consider a traditional union upper bound for maximum likelihood decoding of 

a (N, K) block codes. Without loss of generality, it is assumed that the all-zero codeword 

was sent, and the upper bound on the probability of word error is [63]: 
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N 
Pe £ � A(d ) P2 (d )  (2-28)

d =d free 

where A(d) denotes the number of codewords that have Hamming weight d. P2(d) is the 

pairwise error probability between code word with weight “0” and the codeword with 

weight “d”, and dfree is the minimum weight codeword different from the all-zero 

codeword. 

For a turbo code with a fixed interleaver, the construction of A(d) requires an 

exhaustive search. Due to complexity issues involved in this search, [62] proposes an 

average upper bound constructed by averaging over all possible interleavers. The result 

of this averaging can be thought of as the traditional union upper bound, but with an 

average weight distribution. As in [62], the average weight distribution can be written as 

K � K � 
A(d ) = � � �P(d i)  (2-29)

i=1Ł i ł 

� K �
where � � is the number of input words with Hamming weight i and P(d/i) is the

Ł i ł 

probability that an input word with Hamming weight i produces a codeword with 

Hamming weight d. Substituting into Equation 2-29, the average upper bound for word 

and bit error can be expressed as: 

N 
Pe £ � A(d ) P2 (d )

d =d free 

N K 

= � � P(d | i)P2 (d ) 
d =d free i=1 
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K � K � 
= � � � Ed i [P2 (d )]  (2-30)

i=1 Łi ł 

Then, the probability of bit error can be written as follows: 

Pbit = 
K i �

� 
K �

�Ed i [P2 (d )]  (2-31)
i=1 K Ł i ł 

In Equations 2-30, Ed i [.] is an expectation with respect to the distribution P(d/i). 

This average upper bound is attractive because relatively simple schemes exist for 

computing P(d/i) from the state transition matrix of the RSC [62]. The performance of 

turbo codes can be studied on various statistical channels by formulating the two­

codeword probability P2(d) for the channel of interest and using Equation 2-30 or 2-31. 

Examining the analytical bound of turbo codes in the Additive White Gaussian 

Noise (AWGN) channel yields the following conclusions. The region where the turbo 

codes have offered astounding performance is below the computational cutoff rate 

threshold. So at first glance, the bounds appear to be of dubious utility. For Eb/N0 above 

the computational cutoff rate threshold, the bound is not only meaningful but it 

essentially tells the whole story (i.e., the bit-error rate predicted by the bound is 

accurately achieved both by a maximum-likelihood decoder and by a turbo decoder) [62]. 

In [64], the performance of turbo codes is addressed by examining the code’s 

distance spectrum. The “error floor” that occurs at moderate signal-to-noise ratios is 

shown to be a consequence of the relatively low free distance of the code. It is also 

shown that the “error floor” can be lowered by increasing the size of the interleaver 
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without changing the free distance of the code. Alternatively, the free distance of the 

code may be increased by using primitive feedback polynomials. The excellent 

performance of turbo codes at low signal-to-noise ratios is explained in terms of the 

distance spectrum. Thus it can be concluded that the outstanding performance of turbo 

codes at low signal-to-noise ratios is a result of the dominance of the free-distance 

asymptote. This is a consequence of the sparse-distance spectrum of turbo codes, as 

opposed to spectrally dense convolutioal codes. Finally, the sparse-distance spectrum of 

turbo codes is due to the structure of the codewords in a parallel concatenation and the 

use of pseudorandom interleaving. The theory of spectral thinning is introduced and 

formulated in [64] and used to explain the performance of turbo codes at low SNR’s. 

From the above discussion, it is seen that the two main tools for the performance 

evaluation of turbo codes are computer simulation and union bound. The union bound 

diverges for very low signal-to-noise ratios and is useless below the channel cutoff rate. 

Computer simulation is, therefore, the only method for the performance evaluation of 

turbo codes below channel cutoff rate. In [62], the authors stated the possibility of 

applying the Gallager bound (tight bound) to improve the union bound. In [65], the 

authors derive a new upper bound on the word and the bit error probabilities for turbo 

codes with maximum likelihood decoding. The new bound is tight for the large range of 

signal-to-noise ratios extending below the channel cutoff rate, which is the region where 

the union bound diverges. The derivation of this bound is based on the application of the 

Gallager bound [63]. 
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2.4.4 Turbo Codes in Wireless Communication Systems 

In a multiple-access scheme like CDMA, the capacity (maximum number of users 

h
per cell) can be expressed as C = + 1, where h  is the processing gain and Eb/N0 is 

Eb N 0 

the required signal-to-noise ratio to achieve a desired bit error rate (BER) performance 

[38]. For a given BER, a smaller required Eb/N0 implies a larger capacity. 

Unfortunately, to reduce Eb/N0 it is necessary to use very complex codes (e.g., large 

constraint length convolutional codes). Turbo codes promise to achieve superior 

performance with limited complexity in mobile communication systems. For example, if 

a (7, 1/2) convolutional code is used at BER = 10-3, the capacity is C = 0.5h . However, 

if two (5, 1/3) punctured convolutional codes or three (4, 1/3) punctured codes are used in 

a turbo encoder structure, the capacity can be increased to C = 0.8h  (with 192-bits and 

256-bits interleavers which correspond to 9.6 Kbps and 13 Kbps with roughly 20 ms 

frames) [38]. 

Turbo codes are based on the encoding of finite data frames. The error 

performance of turbo codes is mainly determined by the number of bits per data frame. 

In order to successfully use turbo codes in mobile radio, the following two main 

requirements must be met [66]. First, restrictions apply to the maximum delay in speech 

transmission introduced by the interleavers. In speech transmission, which is typically 

based on finite frames, the speech frames contain less than 200 bits to be processed by 

the channel encoder. For instance, the speech frames contain 189 bits in the case of the 

pan-European Global System for Mobile Communications (GSM) and Digital Cellular 
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System (DCS) 1800 [20], and 192 bits in the uplink of the recently introduced joint 

detection code division multiple access (JD-CDMA) mobile radio system mobile radio 

system [67]. JD-CDMA represents an evolution of time division multiple access 

(TDMA) based mobile radio systems such as GSM, DCS 1800 and the third generation 

proposal advanced TDMA (ATDMA) [68]. Mobile radio systems suffer from such 

delays caused by the interleavers. In order not to introduce a further delay penalty, turbo 

codes must take into account the size of the speech frames. For large frame sizes (>200 

bits), the random interleavers are preferred [69]. Unlike large frame systems, block 

interleavers seem to be suitable for turbo code encoders in short frame transmission 

systems. However, for speech transmission requiring a BER of ~ 10-3, apparently any 

interleaver appears to be applicable [70]. In [71], it has been shown that, by using a 

structured interleaver, instead of a random interleaver, an increased minimum Hamming 

distance can be obtained. In [71], the author showed that the short interleaver introduces 

a short decoding delay where, in the case of a turbo code, a short interleaver may have an 

additional advantage. Since a soft-in/soft-out decoding algorithm should be implemented 

for the constituent codes, short interleavers may reduce the decoding complexity in terms 

of the required memory. 

The application of turbo codes to a TDMA/CDMA mobile radio system was 

investigated in [72]. Gains of 0.4 to 1.2 dB over non-systematic convolutional codes can 

be achieved by using turbo codes for the considered mobile radio system using joint 

detection with coherent receiver antenna diversity. High spectral efficiency modulation 

schemes using turbo codes for AWGN and Rayleigh channels were presented in [73]. An 

AWGN channel was assumed with an encoder using a non-uniform interleaver (64 · 64) 
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and 16 QAM modulation. Three iterations were used in the decoder. A BER of 10-6 was 

achieved at an Eb/N0 = 4.35 dB for 2 bit/s/Hz spectral efficiency and at an Eb/N0 = 6.2 dB 

for 3 bit/s/Hz spectral efficiency. For a Rayleigh channel with four decoder iterations, a 

BER of 10-5 was achieved at an Eb/N0 = 6.5 dB for 2 bit/s/Hz spectral efficiency and an 

Eb/N0 = 9.6 dB for 3 bit/s/Hz spectral efficiency. 

In [36], it was concluded that for BER > 10-3 and a large frame error rate (FER) of 

10-2, the effect of the chosen interleaver on the performance of the corresponding turbo 

code is almost negligible in the case of short transmission (192 bits). However, for a 

slightly larger block size (399 bits), the interleaver type can be optimized to double the 

performance of the turbo code [69]. 

In [74], the BER and the FER for short frame transmission (192 bits) over an 

AWGN channel was investigated. The best pseudo-random interleaver from about 800 

tested was selected, and a MAP estimator as in [2] was used with proper termination of 

the second code. A BER of 1.2 · 10-3 and a FER of 2.5 · 10-2 was achieved at an Eb/N0 = 

2.0 dB after 10 iterations. These results are reported to be 1.2 to 1.7 dB better than the 

performance achieved with a non-systematic convolutional code with the same memory 

order. 

Besides the short frames that characterize the speech transmission in mobile radio 

systems, the propagation channel characteristics have an important role in the 

performance and design of the turbo codes. The mobile radio propagation channel, as 

mentioned before, is a hostile environment. Multipath, interference, and noise all 

contribute to degrade signal quality at the receiver. To date, only limited attention has 
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been given to the performance of turbo codes on fading channels [73-75]. In [73], the 

authors presented a simulation of a new coding scheme, using the association of a turbo 

code with a quadrature amplitude modulation for both Gaussian and Rayleigh channels, 

using 64 · 64 nonuniform interleaver. The authors reported that the performance of the 

turbo code with QAM is always better than the 64-state Trellis Code Modulation (TCM) 

at BER values less than to 10-3. In [74], the author discusses a typical turbo code with 

rate 1/2 using two identical component codes with octal generators 15, 17 and constraint 

length 4 (memory 3), and structured 12 · 16 block interlever (192 bit-frames). 

Furthermore, a novel low complexity turbo-code decoder which uses a simplified and 

thus suboptimum version of the MAP, was introduced in [74]. In the simulation, the 

second RSC code was terminated. This allows for better error performance at Eb/N0 than 

the case of termination for the first RSC code [32, 36]. The author compared the 

proposed new decoder with other decoders [2, 35], in AWGN and fully interleaved 

Rayleigh fading channels. It was shown that the application of the novel low complexity 

turbo-code decoder is attractive. The author again used the same typical turbo code 

proposed in [74] to apply it to JD-CDMA Mobile Radio system using coherent receiver 

antenna diversity [67]. In [75], a typical turbo code was considered with rate 1/3 using 

the 16-state RSC (memory 4) with generator in octal form (21/37)8. In the simulation, 

the authors use different block sizes of 420, 5000, and 50 000 bits. In all simulations, the 

turbo decoder uses the MAP algorithm with modifications found in [32]. For N = 420, a 

helical interleaver was used which has been shown to be effective on the AWGN channel 

[33]. The performance and design of turbo codes using coherent BPSK signaling on the 

Rayleigh fading channel has also been considered. In low signal-to-noise regions, 
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performance analyses use simulations of typical turbo coding systems. For higher signal-

to-noise regions, an average upper bound is used in which the average is over all possible 

interleaving schemes. Fully interleaved and exponentially correlated Rayleigh channels 

are explored. 

Application of turbo code combined with the bandwidth efficient method, Trellis-

Coded Modulation (TCM), has been presented in [76]. This combination has been 

implemented as a simple modification of pragmatic TCM. This new system achieved 

coding gains of 1-2 db in simulation results relative to pragmatic TCM. These gains were 

achieved with comparable complexity but with greater delay than with pragmatic TCM. 

Trellis coded modulation is a standard method to prevent bandwidth expansion 

and achieve relatively high coding gains. The authors in [77] combine the power of turbo 

coding techniques with the bandwidth of trellis coded modulation to obtain the turbo 

code modulation scheme. In [77], the authors provide a method for applying the standard 

union bound for turbo code modulation systems. In particular, they explicitly derive the 

bound for a 2-bits/s/Hz 16 QAM turbo code modulation system. The suggested method 

can easily be adopted for other turbo code modulation systems. The derived bound 

provides a tool for comparing coded modulation schemes having different component 

codes, interleaver lengths, mapping, using maximum likelihood decoding. It is also 

useful in studying the effectiveness of various suboptimal decoding algorithms. The 

authors in [77] have extended their methodology to the fading channel in [78]. 

Turbo codes can also offer unequal error protection (UEP). The Rate Compatible 

Punctured Convolutional (RCPC) [79] can be extended to turbo codes to achieve unequal 
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error protection. Rate Compatible Turbo Codes have been considered to achieve unequal 

error protection in [80]. This allows turbo codes to be used for channels where some 

information bits are more sensitive to errors than the others at the same time, where 

powerful codes are required like speech or image in the mobile environments. Rate 

Compatible Punctured turbo code (RCPTC) has been introduced in [80-84] to be used in 

FEC/ARQ systems for data transmission. 

2.5 Summary 

In this chapter the parameters and types of fading in wireless communication 

systems were reviewed. The channel coding techniques deployed in wireless 

communication systems; block codes, convolutional, and concatenated codes have been 

presented. 

The performance of turbo code is sensitive to its code structure, which comprises 

the code rate, constraint length, tap connection, block size, interleaving pattern, and 

number of decoding iterations. This chapter also addressed the problem of choosing the 

different components of turbo codes and how this choice can affect the performance of 

turbo codes. The problem of the application of turbo codes to cellular mobile 

communication systems was also addressed 

From this discussion, a conclusion can be made that the optimizing of different 

components of turbo codes are very related to the application. Choosing the constituent 

encoder depends on its distance spectrum. If the quality of service needed requires low 

bit error rate (like data transmission), then the focus is on choosing a constituent encoder 

with sparse spectrum at the first few low weight codewords. Here, the termination of 

55




both encoders is important. In cases where lower signal-to-noise ratios or higher bit error 

rates are permissible (like speech transmission), the distance spectrum of constituent 

encoders plays a very important role in choosing this component. In this region, the 

number of multiplicity of low and moderate weight codewords is required to be as 

minimal as possible. Also choosing the length of the interleaver is restricted by the 

application sensitivity to the time delay. This restricts the performance in such cases 

(like speech transmission). Performance of the interleaving map depends on the length of 

the interleaver. For short frames, the structured interleaver do better than the 

nonstructured one, but for longer interleaver the random interleavers are the best. 

Also the sensitivity to the delay will restrict the number of iterations in the 

decoder. In addition, the complexity and the size of the memory available will restrict 

the component decoder type used. 

In the next chapter, the principle of the iterative decoding process of turbo code 

decoder will be presented. The Viterbi algorithm and its modified version Soft Output 

Viterbi Algorithm (SOVA) will be presented. 
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3 Turbo Decoder


3.1 Introduction 

In the previous chapter, the background of turbo code with two parallel 

concatenated covolutional codes and its related components were presented. In this 

chapter, the principle of the iterative decoding process of the turbo code decoder is 

presented. Turbo code decoder consists of two soft-input/soft-output constituent 

convolutional decoders that works together in an iterative fashion. Both constituent 

decoders accept soft input and deliver soft output. Section 3.2 presents the principle of 

the iterative decoding process of two-dimensional systematic convolutional codes using 

any soft-input/soft-output constitute decoder. Section 3.3 addresses the problem of 

estimating the state sequence of a Markov process observed through noise using the 

trellis based decoding algorithms. Section 3.4 presents the Viterbi Algorithm and its 

modified version to yield soft output decoding algorithm that deliver soft outputs. This 

algorithm is known as Soft Output Viterbi Algorithm (SOVA).  Section 3.5 summarizes 

the chapter. 
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3.2 Iterative Decoding Principles 

The problem of decoding turbo codes involves the joint estimation of two Markov 

processes, one for each constitute encoder. Present theory of turbo codes uses a single 

Markov process model. Turbo decoders use two trellis-based soft-input/soft-output 

decoding algorithms. The two Markov processes are linked by an interleaver. Additional 

coding gain can be achieved by sharing information between the two decoders in an 

iterative fashion. This is achieved by allowing the output of one decoder to be used as a 

priori information by the other decoder. 

3.2.1 Log-Likelihood Algebra 

To best explain the iterative feedback of soft decisions, the idea of log-likelihood 

algebra is used [56]. Let U be a binary random variable in the GF(2) with elements {+1,-

1}, where +1 is the null element under the ¯ addition. The log-likelihood ratio of a 

binary random variable U is L(u) and it is given as following: 

L(u) = log 
P(u = +1)

 (3-1)
P(u = -1) 

where P(u) denotes the probability that the random variable U takes the value u. Unless 

otherwise stated, the logarithm is the natural logarithm. L(u) denotes the soft value or L-

value of a binary random variable. The sign of L(u) corresponds to the hard decision, 

while the magnitude, |L(u)|, gives the reliability of the decision. 

If the binary random variable X is conditioned on a different random variable Y, 

then we have a conditional log-likelihood ratio L(x|y) defined as follows: 
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P(x = +1 y)
L(x y) = log 

P(x = -1 y) 

= log 
P(x = +1) 

+ log 
P( y x = +1) 

P(x = -1) P( y x = -1) 

= L(x) + L( y | x)  (3-2) 

For completeness, the three different types of addition used in this analysis are 

described. Ordinary addition is defined by the plus sign (+), modulo-2 addition is 

defined by the circled plus sign (¯). Log-likelihood addition is defined by the bracketed 

plus sign [+] [49]. The sum of two log-likelihood ratios (LLR) is denoted by the operator 

[+], where such an addition is defined as the LLR of modulo-2 sum of the underlying 

data bits. This addition can be expressed mathematically as following: 

D 

L(x1) [+] L(x2) = L(x1 ¯ x2) (3-3) 

And L(x1 ¯ x2) is given as following: 

L(x1 ¯ x2 ) = log 
P(x1 ¯ x2 = +1) 

P(x1 ¯ x2 = -1) 

= log 
P(x1 ¯ x2 = +1)

 (3-4)
1 - P(x1 ¯ x2 = +1) 

59




For statistically independent random variables x1 and x2, P(x1 ¯  x2=+1) is given by the 

following: 

P(x1 ¯ x2 ) = P(x1 = +1)P(x2 = +1) + P(x1 = -1)P(x2 = -1) 

= P(x1 = +1)P(x2 = +1) + [1 - P(x1 = +1)][1 - P(x2 = +1)]  (3-5) 

Using the definition of L(x) given in Equation 3-1, P(x) is obtained by taking the 

exponential of both sides: 

eL( x) = 
P(x = +1) 

= 
P(x = +1)

 (3-6)
P(x = -1) 1 - P(x = +1) 

eL( x) 

Then, P(x = +1) = 
1 + eL( x)

 (3-7) 

Using Equations 3-5 and 3-7 and substituting into Equation 3-4: 

L(x1 ¯ x2 ) = log 
P(x1 ¯ x2 = +1) 

= log 
P(x1 ¯ x2 = +1)

 (3-8)
P(x1 ¯ x2 = -1) 1 - P(x1 ¯ x2 = +1) 

Substituting the results of Equation 3-5 into Equation 3-8 yields: 

L(x1 ¯ x2 ) = log 
P(x1 = +1)P(x2 = +1) + [1 - P(x1 = +1)][1 - P(x2 = +1)]

 (3-9)
[1 - P(x1 = +1)P(x2 = +1)] - [1 - P(x1 = +1)P(x2 = +1)] 
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Using the results from Equation 3-7 to substitute into Equation 3-9. The result can then 

be multiplied by 
(1 + eL( x1 ) )(1 + eL( x2 ) )

 to produce:
(1 + eL( x1 ) )(1 + eL( x2 ) )

1 + eL( x1) eL( x2 ) 

L(x1 ¯ x2 ) = log 
eL( x1 ) + eL( x2 )

 (3-10) 

The right hand side of Equation 3-10 can approximated as in [56] by: 

L(x1 ¯ x2 ) » sign(L(x1 )) sign(L(x2 )) min( L(x1 ) , L(x2 ) )  (3-11) 

The approximation in Equation 3-11 yields the following interesting results when one of 

the LLRs is very large or very small: 

L(x) [+] � = L(x) (3-12) 

L(x) [+] -� = -L(x) (3-13) 

and, L(x) [+] 0=0  (3-14) 

By induction, for any integer number J, further results can be proved as following: 

J D J 

�[+]L(x j ) = L(�¯ x j )  (3-15) 
j =1 j =1 

Using the approximation in Equation 3-11, Equation 3-15 can be written as: 
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J � J �
�[+]L(x j ) » ��� sign(L(x j )) �� min L(x j )  (3-16) 
j =1 Ł j =1 ł j 

3.2.2 Soft Channel Outputs 

If a set of binary bits x is transmitted with soft values L(x) over an additive white 

Gaussian noise (AWGN) channel with fading, the log-likelihood ratio of x conditioned on 

the matched filter output y can be shown as: 

P(x = +1 y)
L(x y) = log 

P(x = -1 y) 

= log 
P( y x = +1) 

+ log 
P(x = +1)

 (3-17)
P( y x = -1) P(x = -1) 

In the case of an additive white Gaussian channel with fading, the probability density 

function of y given x with a fading depth a is: 

1 -
( y-ax )2 

p( y x) = 
2 s p 

e 2s 2 
(3-18)

2

N
where s 2 = 0  is the noise variance. Using Equation 3-18 further simplification of

2Es

Equation 3-17 can be achieved: 

L(x y) = Lc y + L(x)  (3-19) 

4Eswhere Lc = a is the reliability of the channel. For Gaussian channel, a = 1. 
N 0 
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3.2.3 Iterative Decoding 

Having the L-values, a priori and soft channel values, the iterative decoding of 

turbo codes can be formulated, Figure 3-1 illustrates a half iteration of turbo code 

decoder which is represented by a soft-input/soft-output decoder. 

The soft-input/soft-output decoder accepts a priori values L(m) for all information 

bits m, and channel values Lcy for all coded bits. It delivers soft outputs L(m̂ ) on all 

information bits and an extrinsic information Le (m̂ ) which contains the soft output 

information from all the other coded bits in the code sequence. The extrinsic information 

is not influenced by the L(m) and Lcy values of the current bit. 

Channel values for 
all code bits 

Input log-likelihoods Output log-likelihoods 

Soft-In 
Soft-Out 
Decoder 

A priori values for 
all information buts 

extrinsic values for 
all information buts 

A postriori values for 
all information butsLcy 

L(m) 

)ˆ(m e L 

)ˆ(mL 

Channel values for 
all code bits 

Input log-likelihoods Output log-likelihoods 

Soft-In 
Soft-Out 
Decoder 

A priori values for 
all information buts 

extrinsic values for 
all information buts 

A postriori values for 
all information butsLcy 

L(m) 

) ˆ(m e L 

)ˆ(m L

Figure 3-1 Soft-Input/Soft-Output Decoder [56]. 
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For systematic codes, the soft output for the information bit m is represented by 

three additive terms as follows: 

L(m̂) = Lc y + L(m) + Le (m̂ )  (3-20) 

This means that there are three independent estimates for the log-likelihood ratio of the 

information bits: the channel values Lcy, the a priori values L(m), and the extrinsic values 

of Le (m̂ ) . Assuming no a priori information is available for the first iteration, L(m) is 

initialized to zero. Decoding of the first component of the turbo code decoder starts by 

using the corresponding Lcy. The first component decoder can be denoted by the 

- -horizontal decoder, C . The extrinsic information, L e (m̂ ) ,obtained from the horizontal 

-code decoder C for the information bit m is given by: 

- -L e (m̂) = L (m)- Lc y  (3-21) 

This independent estimate on m is now used as the a priori values for decoding the 

second component decoder. This second component can be denoted by the vertical 

decoder C | . After the second half of the iteration, the vertical extrinsic information is: 

-L| 
e (m̂) = L| (m)- Lc y - Le (m̂ )  (3-22) 

This vertical extrinsic information is used as a new a priori value in the subsequent 

-decoding of code C in the next iteration step. This process is shown in Figure 3-2. Note 

that for the first horizontal and the first vertical iteration, the L-values are statistically 

independent. Later iterations use the same information indirectly and as such become 

more and more correlated. As the number of iterations increase, the improvement 
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becomes marginal. Following the last vertical iteration, the final decision is obtained by 

combining the last two extrinsic pieces of information with the received values. This 

yields: 

-L(m̂) = Lc y + Le (m̂) + L| 
e (m̂ )  (3-23) 

0)( =mL 

At the 
final 
iteration 

)ˆ(mL 
yLc 

0 ) ( =mL

At the 
final 
iteration 

)ˆ(| m Le

y Lc 

)ˆ(| m L

)ˆ(m L) ˆ(m L -

)ˆ(m L e
-

y Lc 

Feedback for the next iteration 

Soft-In/Soft-out 
Decoder for the 
vertical Code C| 

Soft-In/Soft-out 
Decoder for the 
horizontal Code C-

Figure 3-2 Iterative decoding procedure with two “soft-in/soft-out” decoders [56]. 
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3.3 Trellis Based Decoding 

A binary convolutional encoder with rate 1/N and constraint length K (number of 

shift registers) is a finite memory system that outputs N binary digits for each information 

digit presented at its input. Figure 3-3 shows a typical convolutional encoder [11]. The 

state of the convolutional encoder is determined by the contents of the right most (K-1) 

elements of the shift register. There are then 2K-1 possible states for the encoder. Given 

possible the encoder receives a new input, it can only make a transition to one of the two 

other states, depending on whether the input bit is “1” or “0”. When the encoder makes a 

transition from one state to another, a particular sequence of N bits is output. When the 

input bits are grouped in frames of length L, the encoder makes L transitions to produce a 

sequence of LN output bits. 

Output branch 
word 

Input bit 
m 

u1 

u2 

Output branch 
word 

Input bit 
m 

u1 

u2 

Input bit 
m 

u1 

u2 

Figure 3-3 Convolutional encoder (rate1/2, K = 3) [11]. 
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An alternative approach can be taken to produce an algebraic description of the 

convolutional encoder. This alternative is based on the observation that the convolutional 

encoder is a finite memory system.  Its output sequence depends on the input sequence 

and the state of its shift registers. One description is obtained from the state diagram of 

the convolutional encoder. This representation is shown in Figure 3-4 for the encoder in 

Figure 3-3. The states, shown in the boxes of the diagram, represent possible contents of 

the right most (K-1) shift registers. The paths between the states represent the output 

branch words resulting from such state transitions. The register states are designated a = 

00, b = 10, c = 01, and d = 11. Figure 3-4 illustrates all state transitions that are possible 

for the encoder in Figure 3-3. 

11 

01 
01 

11 

b=10 

a=00 

c=01 

d=11 

10 

00 

10 

00 

Output branch wordEncoder state 

Input bit 0 

Input bit 1 

11 

01 
01 

11 

b=10 

a=00 

c=01 

d=11 

10 

00 

10 

00 

Output branch wordEncoder state 

Input bit 0 

Input bit 1 

Figure 3-4 Encoder state diagram (rate 1/2, K=3). 
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There are only two possible transitions from each state, corresponding to two 

possible input bits. Next to each path connecting states is written the output branch word 

associated with the state transition. The following example [11] illustrates the transition 

sequence of the convolutional encoder as if responds to an arbitrary input sequence. 

Example 3-1: For the encoder shown in Figure 3-3, show the state changes and resulting 

output codeword sequence U for the message m = 11011, followed by K-1 = 2 zeros to 

flush the register. Assume the initial contents of the shift registers are zeros. 

Solution: The output branch words are shown below in Table 3-1 for the message input m 

= 1101100. 

Table 3-1. Output branch words according to the input bits and the contents of the registers [11]. 

Input bit 
mi 

Register contents State at time i State at time 
i+1 

Branch word at time i 

u1 u2 

-

1 

1 

0 

1 

1 

0 

0 

0 0 0 

1 0 0 

1 1 0 

0 1 1 

1 0 1 

1 1 0 

0 1 1 

0 0 1 

0 0 

0 0 

1 0 

1 1 

0 1 

1 0 

1 1 

0 1 

0 0 

1 0 

1 1 

0 1 

1 0 

1 1 

0 1 

0 0 

-

1 

0 

0 1 

0 

0 

0 

1 

1 

1 

0 

1 

1 

1 
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The output sequence: U = 1 1 0 1 0 1 0 0 0 1 0 1 1 1 

Although the state diagram completely characterizes the encoder, one cannot 

easily use it for tracking the encoder transitions as a function of time since the diagram 

cannot represent time history. By adding the dimension of time to the state diagram, the 

dynamic description of the encoder as a function of a particular input sequence can be 

achieved. The state diagram can be expanded into a trellis diagram which explicitly 

shows the passage of time. The trellis diagram for the convolutional encoder of Figure 3-

3 is shown in Figure 3-5. In the trellis diagram, as in the state diagram, the solid lines are 

denote the output generated by an input bit zero and dashed lines denote the output 

generated by an input bit one. The trellis nodes characterize the encoder states. The first 

row nodes correspond to the state a = 00, while the second and subsequent rows 

correspond to the states b = 10, c = 01, and d = 11. At each unit of time, the trellis 

requires 2K-1 nodes to represent the 2K-1 possible encoder states. The output branch words 

corresponding to the state transitions appear as labels on the trellis branches in Figure 3-

5. At the receiving end, the decoder needs to estimate the state sequence of the 

convolutional encoder output observed through noise. 

Problem Statement: Given a sequence Y, representing observations of a discrete-time 

finite-state Markov process in memoryless noise, estimate the state sequence of the 

Markov process. 

There are two well-known trellis-based solutions to this problem. One is called 

the Viterbi Algorithm [46] and is based on minimizing the sequence error probability. 

The other one is called the Maximum a Posteriori (MAP) algorithm and is based on 
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minimizing the bit error probability (symbol-by-symbol) [47].   

attempts to maximize the a posteriori probabilities (APP) of each individual bit in the 

sequence.   

computational complexity exceeds the Viterbi algorithm and provides little advantage in 

bit error rate performance. 

 

 

Figure 3-5 Encoder trellis diagram (rate 1/2 , K = 3). 

 

The Viterbi algorithm performs the maximum likelihood estimation of the 

transmitted sequence.   
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The MAP algorithm

Until recently, this algorithm received little attention because its

Its output represents the code sequence closest (Hamming or



Euclidean distance) to the received one. The MAP algorithm differs from maximum 

likelihood decoding in that it does not assume equally likely information symbols. The 

big difference between the Viterbi and MAP algorithms lie in their output. The Viterbi 

algorithm outputs a hard decision of transmitted digits, whereas, the MAP algorithm 

provides a posteriori probabilities which may be interpreted as a soft estimate of 

transmitted digits. When convolutional codes are employed in concatenating codes, e.g., 

turbo coding, this difference becomes fundamental and explains the great revival of 

interest in MAP algorithm implementation. 

Turbo coding research has used both algorithms for the constituent decoder in the 

iterative stages of turbo code decoding. One direction lets the Viterbi algorithm provide 

a soft output for each symbol and is known as the Soft-Output Viterbi Algorithm (SOVA) 

[50-52]. The other direction simplifies the complexity of the MAP algorithm for 

implantation [53-57]. 

3.4 Viterbi Algorithm with Soft decision 

The Viterbi Algorithm (VA) was originally proposed in 1967 for decoding 

convolutional codes [85]. This algorithm is a recursive optimal solution to the problem 

of estimating the state sequence of a discrete-time finite state Markov process observed in 

memoryless noise. In 1969, Omura [86] demonstrated that the Viterbi algorithm provides 

a maximum likelihood solution. 

The original VA produced only hard decisions and is not suitable for turbo code 

decoder implementation. A modified VA is used to deliver the most likely path sequence 

and the either a posteriori probability for each bit or a reliability value. With the 
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reliability indicator, the modified VA produces soft decisions for use by subsequent 

decoding and is called the Soft-output Viterbi Algorithm (SOVA). This algorithm 

accepts and delivers soft sample values. 

3.4.1 Viterbi Algorithm (VA) 

In its most general form, the Viterbi algorithm may be viewed as a solution to the 

problem of maximum a posteriori probability (MAP) estimation of the state sequence. 

This solution is defined in a finite-state discrete-time Markov process as observed in 

memoryless noise. 

Let S (m) = (s0
(m) ,K, sL 

(m) )  denote the state sequence beginning at time to and terminating at 

time tL, the mth codeword. Given observation sequence Y of a discrete-time finite-state 

Markov process in memory less noise, the VA finds the state sequence, S(m), for which 

the a posteriori probability P(S ( m) | Y )  is maximum. 

Let S (m¢)  denote the state sequence solution, written as: 

S (m¢) = arg�
�max P(S (m) Y )�

� (3-24)
� m � 

Using Bayes theorem, 

S (m¢) = arg�
�� 
max 

P(Y S ( m) ) P(S (m) ) 
�
��

 (3-25) 
� 

m P(Y ) � 

Noting that P(Y) is the same for all state sequence estimations, then: 
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S (m¢) = arg�
�max P(Y S (m) ) P(S (m) )��  (3-26)
� m � 

S (m¢) = arg�
�max P(S (m) ,Y )�

� (3-27)
� m � 

For L length sequences, a brute force method could calculate the joint probability 

P(S ( m) ,Y ) for all possible state sequences m (codewords or paths), the state sequence 

(path) with the largest value would then be selected and information bits corresponding to 

that state sequence (path) would form the decoder output. Unfortunately, the number of 

paths for an L-bit information sequence is 2L . Thus, the brute force decoding approach 

quickly becomes computationally impractical as L increases. 

The Viterbi algorithm uses the advantage of the underlying trellis structure to 

greatly reduce the required number of computations. Since the process is Markovian, the 

probability that the process is in a particular state, given all past states, only depends on 

the previous state: 

P(si 
( 
+ 
m 
1
) s0

(m) ,K, si 
(m) ) = P(si 

( 
+ 
m 
1
) si 

(m) )  (3-28) 

The probability of a particular observation, yi, given the entire state sequence, S(m), is the 

probability of the observation given the previous state transition si 
(m) fi si 

( 
+ 
m 
1
)  : 

P( yi S (m) ) = P( yi si 
(m) fi si 

( 
+ 
m 
1
) )  (3-29) 

Assuming the channel affects channel symbols independently, the P(S ( m) ,Y ) given in 

Equation 3-27 can be expressed as: 
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L-1 L-1 

P(S (m) ,Y ) = � P( yi si 
(m) fi si 

( 
+ 
m 
1
) ) � P(si 

( 
+ 
m 
1
) si 

( m) )  (3-30) 
i=0 i=0 

To avoid multiplication (i.e., simplify computations), the logarithm of the multiplicand 

values provides a preferable path metric given by: 

M (m) = log P(S (m) ,Y ) 

L-1 L-1 

= � log P( yi si 
(m) fi si 

( 
+ 
m 
1
) ) + � log P(si 

( 
+ 
m 
1
) si 

(m) )  (3-31) 
i=0 i=0 

where M(m) is the accumulated metric of state sequence m. In most cases, the natural 

logarithm is used. If we denote the branch metric associated with the transition 

si 
(m) fi si 

( 
+ 
m 
1
)  by G(si 

(m) fi si 
( 
+ 
m 
1
) ) , then 

G(si 
(m) fi si 

( 
+ 
m 
1
) ) = log P( yi si 

( 
+ 
m 
1
) ) + log P(si 

( 
+ 
m 
1
) si 

(m) )  (3-32) 

For a rate 1/N convolutional code, the observation yi = ( yi,0 ,..., yi,N -1 ) is a noisy 

(and possibly faded) observation of the encoder output (or the channel input) 

xi 
(m) = (xi ,0 ,..., xi ,N -1 ) of the Markov process, and not a direct observation of the states. 

Also, for every state transition si 
(m) fi si 

( 
+ 
m 
1
) , there is a message mi  producing the state 

transition. There is also a one-to-one correspondence between both of them. Thus, it is 

more convenient to write the branch metric in terms of transmitted symbols and 

underlying message rather than the state sequence. Using this fact, Equation 3-32 can be 

rewritten as: 

G(si 
(m) fi si 

( 
+ 
m 
1
) ) = log P( yi xi 

(m) ) + log P(mi 
(m) )  (3-33) 
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For a rate 1/N convolutional code, G(si 
(m) fi si 

( 
+ 
m 
1
) ) in Equation 3-33 can be written as: 

N -1 
( m)G(si 

(m) fi si 
( 
+ 
m 
1
) ) = � log P( yi ,n xi,n ) + log P(mi 

(m) )  (3-34) 
n=0 

(m) is the nth coded symbol(s) corresponding to information mi in the m messagewhere xi ,n 

sequence. If message bits are assumed to be equiprobable, the term P(mi 
(m) ) is the same 

for all hypotheses and can be omitted from Equation 3-34. The Viterbi algorithm only 

calculates P( yi ,n xi ,n 
(m) ) terms in its search. For this case, the Viterbi algorithm is said to 

be a maximum likelihood estimator, and the branch metric is: 

N -1 
( m) )  (3-35)G(si 

(m) fi si 
( 
+ 
m 
1
) ) = � log P( yi ,n xi,n 

n=0 

(m) )  only, the VA calculates theUsing the channel transition probabilities P( yi ,n xi ,n 

accumulated branch metric, M(m) 
, for all possible paths using the following equation: 

L-1 

M (m) = �G(si 
(m) fi si 

( 
+ 
m 
1
) ) 

i=0 

L-1 N -1 
(m)= � � log P( yi,n xi,n )  (3-36) 

i=0 n=0 

Substituting Equation 3-36 to Equation 3-27, yilds: 

S (m¢) = arg	�
�max M ( m) �

�
� m � 
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� � 

� 

� L-1 N -1
( m) � = arg�max �� log P( yi,n xi,n )� (3-37) 

m� i=0 n=0 �� 

The Viterbi algorithm calculates a measure of similarity, or distance, between the 

received signal at time i and all trellis paths entering each state at time i. The VA 

removes from consideration those trellis paths that can not possibly be candidates for the 

maximum likelihood choice. When two paths enter the same state, the one having the 

best metric is chosen and is called the surviving path. The selection of surviving paths is 

performed for all states. The decoder continues in this way, advancing deeper into the 

trellis and making decisions by eliminating least likely paths. The early rejection of 

unlikely paths reduces the decoding complexity. Since the channel transition 

(m)probabilities P( yi ,n xi ,n ) only depend on paths under consideration. 

A Binary Systematic Channel (BSC) is a discrete memoryless channel that has 

binary input and output alphabets and symmetric transition probabilities. It can be 

described by the following conditional probabilities: 

P(01) = P(10) = p  (3-38) 

P(11) = P(0 0) = 1 - p  (3-39) 

where p is the probability that the output symbol from the channel is different from the 

input symbol. Let X (m) be a transmitted codeword over a BSC with symbol error 

probability p, and let Y be the corresponding received word. Suppose that X (m) and Y are 

each NL-bit length sequences and that they differ in dm positions (i.e., the Hamming 
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distance between them is dm). Since the channel is memoryless, the probability that this 

X (m) was transformed to the specific received word Y at distance dm can be written as: 

L-1 

P(Y X ( m) ) = � p( yi xi 
(m) )  (3-40) 

i=0 

As mentioned before if the output symbols of the channel, Y, are different from a specific 

code word X (m) in dm positions, then 

P(Y X ( m) ) = p dm (1 - p)L-dm  (3-41) 

From Equation 3-41, the log-likelihood function is: 

log P(Y X (m) ) = dm log p + (L - dm ) log(1 - p) 

= -dm log(
1 - p 

) + L log(1 - p)  (3-42) 
p 

When computing this quantity for each possible transmitted sequence, X (m) , the second 

term is constant in each case. Assuming that p < 0.5 , we can express Equation 3-42 as 

following: 

log P(Y X (m) ) = -A dm - B  (3-43) 

where A and B are positive constants. Substituting the log-likelihood of the received 

codeword in Equation 3-43 into Equation 3-37. Accordingly, maximum likelihood 

decoding chooses codeword X (m) , or message m, that maximizes the log-likelihood 

function which in-turn minimizes the Hamming distance, dm. 
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For a faded Gaussian channel with Binary Phase Shift Key (BPSK) modulation, 

the output of the channel (demodulator) corresponding to the ith bit may be expressed as: 

yi,n = ai,n xi ,n sE + ni¢ ,n  (3-44) 

where ni¢ ,n  denotes Additive White Gaussian Noise at the receiver output with variance 

N 0 2 . The parameter xi ,n  denotes the transmitted symbol taking on values of – 1. The 

fading depth is denoted by ai,n while yi ,n  is a Gaussian random variable with mean 

ai,n xi,n sE . The energy per symbol for this relationshipo is denoted by Es. This 

relationship assumes perfect side information (i.e., at each symbol the fading depth ai,n  is 

known) is provided to the decoder. When ai,n = 1 , the channel is said to be an Additive 

White Gaussian Noise (AWGN) channel, otherwise the channel is said to be faded. An 

alternate and more convenient expression for Equation 3-44 is: 

yi ,n = ai ,n xi ,n + ni ,n  (3-45) 

N
where the noise variance now s i 

2
,n = 0  and the probability density function of y i , n2Es 

given xi ,n  and ai,n  is: 

2( yi ,n -ai ,n xi ,n ) -

p( yi ,n xi,n , ai,n ) = 
2 s p 

1
2 

e 2s i 
2
,n  (3-46) 

i ,n 

2 2Since each symbol is affected independently by the AWGN, s i ,n = s . The likelihood 

function of the path sequence, m, can be expressed as: 
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( m ) )2 
L-1 N -1 ( yi ,n -ai ,n xi ,n -

p( y X (m) , a) = �� 
2 s p 

1 
e 2s 2 

(3-47)
2 

i=0 n=0 

Taking the natural logarithm of both sides of Equation 3-47, the log-likelihood function 

of p( y X (m) , a)  becomes: 

L-1 N -1 (m) )2 

ln p( y X ( m) , a) = �� ln 
2 s p 

1
2 

-
(yi ,n - ai ,n 

2 

xi ,n  (3-48) 
i=0 n=0 2s 

Eliminating all components that are independent of message, m, and substituting into 

Equation 3-37: 

L-1 N -1 
(m) 2 �S (m¢) = arg�

� 
max �� ( yi ,n - ai ,n xi ,n ) � (3-49) 

m� i=0 n=0 � 

From Equation 3-49, the branch metric in this case becomes: 

G(si 
(m) fi si+1

(m) (m) )2  (3-50)) = ( yi ,n - ai,n xi,n 

which can be further simplified to: 

( yi,n - ai ,n xi ,n 
(m) (m) )2  (3-51)(m) )2 = yi 

2
,n - 2ai ,n xi ,n yi ,n + (ai,n xi,n 

(m)is independent of any specific message, m, and (ai ,n xi ,n )2
Note that yi 

2
,n  is the same for 

all transitions (or branches) occuring at the same time. Therefore, the branch metric can 

be rewritten as: 

(m)G(si fi si+1 ) = -ai ,n xi ,n yi,n  (3-52) 
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By maximizing the accumulated branch metric, M(m) 
, the maximum likelihood codeword 

(or message) can be chosen according to the following equation: 

L-1 N -1 
(m) �

S (m¢) = arg�
� 
max ��- ai ,n xi ,n yi,n � 

m� i=0 n=0 � 

� L-1 N -1
(m) � 

= arg�min �� ai,n xi,n yi,n � (3-53) 
m� i=0 n=0 � 

This is equivalent to choosing the codeword (or message) that is closest in Euclidean 

distance to Y. Even though the hard and soft decision channels require different metrics, 

the concept of choosing the message m¢ that is closest to the received sequence, Y, is the 

same in both cases. To implement the maximization of Equation 3-37 exactly, the 

decoder has to be able to handle analog valued arithmetic operations. This is impractical 

because the decoder is generally implemented digitally. Thus, it is necessary to quantize 

the received symbols, yi,n. 

To understand Viterbi’s decoding algorithm, it is convenient to illustrate the 

algorithm by an example [11]. The encoder for this example is shown in Figure 3-3, and 

the encoder trellis diagram is shown in Figure 3-5. A similar trellis can be used to 

represent the decoder as shown in Figure 3-6. For simplicity, a Binary Systematic 

Channel (BSC) is assumed, and thus the Hamming distance is a proper distance measure. 

For the decoder trellis shown in Figure 3-6, it is convenient to label each trellis branch at 

time i with the Hamming distance between the received code symbols and the 

corresponding branch word from the encoder trellis. The example in Figure 3-6 shows a 

message m = 11011. The corresponding codeword sequence U = 11 01 01 00 01 and a 
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noise corrupted received modulated sequence, Y = 11 01 01 10 01. The branch words 

seen on the encoder trellis branches characterize the encoder in Figure 3-3 and are known 

a priori to the both the encoder and the decoder. These encoder branch words are the 

code symbols that would be expected to come from the encoder output as a result of each 

of the transitions. The labels on the decoder trellis branches are accumulated by the 

decoder as they are calculated. That is, as the code symbols are received, each branch of 

the decoder trellis is labeled with a metric of similarity (Hamming distance) between the 

received code symbols and each of the branch words for that time interval. From the 

received sequence, Y, in Figure 3-6, the code symbols received at time i = 1 are 11. In 

order to label the decoder branches at time i = 1 with the appropriate Hamming distance 

metric, Figure 3-5 is used. Here, a state 00 fi 00  transition yields an output branch word 

of 00, but a 1 was received. Therefore, on the decoder trellis the state 00 fi 00  transition 

is labeled with the Hamming distance of two. The decoder trellis branches are labeled in 

this way as the symbols are received at each time. The decoding algorithm uses these 

Hamming distance metrics to find the most likely (minimum distance) path through the 

trellis. The cumulative Hamming path metric of a given path at time i is the sum of the 

branch Hamming distance metric along that path up to time i. 

In the Viterbi decoding, if any two paths in the trellis merge to a single state, one 

of them can be always be eliminated in the search for an optimum path. For example, 

Figure 3-7 shows two paths merging at time i = 5 to state 00, the upper path has metric 4 

the lower has metric 1. The upper path cannot be a portion of the optimum path because 

the lower path, which enters the same state summarizes the encoder history in the sense 

that the previous states cannot affect the future states or future output branches. 
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Figure 3-6   K=3) [11]. 
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Figure 3-7 Path metric for two merging paths [11]. 

The first few steps in this decoding example are shown in Figure 3-8. In Figure 

3-8, Ma, Mb, Mc, and Md, represent the cumulative metrics of the paths that terminate at 

the corresponding states. Assume the input data sequence m, codeword U, and the 

received sequence Y are given as in the previous example. 
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Figure 3-8  t2.  (b) Survivors at t3. 

(c) Metric comparisons at t4.  (d) Survivors at t4.  (e) Metric comparisons at t5. 

(f) Survivors at t5 [11]. 
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3.4.2 Viterbi Algorithm with Soft Decision Outputs 

The Viterbi algorithm (VA) has become a standard tool in communication 

receivers. Recently, the number of applications that use two VA’s in a concatenated way 

has been increasing. When using these concatenation schemes (serial or parallel), there 

are two draw backs: first, the VA produces burst of errors; and second the VA produces 

hard decisions prohibiting the other concatenated decoder from using its capability to 

accept soft decisions. The first drawback can be eliminated by using some interleaving 

between the two concatenated decoders. To eliminate the second drawback, the first VA 

decoder needs to output soft decisions; i.e., reliability information. This should improve 

the performance of the other decoder. 

The VA is modified in [51] to deliver not only the most likely path sequence, but 

also either the a posteriori probability for each bit or a reliability value. This modified 

algorithm of VA is known as the Soft Output Viterbi Algorithm (SOVA). 

The VA algorithm is usually derived as a maximum likelihood sequence 

estimator. By re-deriving a more general VA that includes the a priori information to 

maximize the a posteriori probability, the metrics used in the previous section to 

incorporate the a priori or a posteriori information about the probabilities of the 

information bits can be modified accordingly. The modified metric of the VA can be 

derived in its MAP form. Recall from Equation 3-26 that the algorithm search for the 

state sequence, m¢ , satisfies the following equation up to time j: 

S (m¢) = arg�max M ( j
m) � (3-54)

� m � 
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where M ( j
m)  represent the accumulated branch metric up to time j and it is given by: 

M ( j
m) = P(Y S (m) ) P(S (m) )  (3-55) 

We can write P(Y S (m) )  in terms of its individual components up to time j: 

j 

P(Y S ( m) ) = � P( yi si 
( 
-
m 
1
) , si 

(m) ) 
i=0 

j -1 
(m)= P( y j s j -1 , s ( j

m) ) � P( yi si 
( 
-
m 
1
) , si 

( m) )
i=0 

j-1 

= P( y j x ( j
m) ) � P( yi xi 

(m) )  (3-56) 
i=0 

Similarly, P(S ( m) )  can be written as: 

j 

P(S (m) ) = � P(si 
(m) si 

( 
-
m 
1
) ) 

i=0 

j -1 
( m)= P(s ( j

m) s j -1 ) � P(si 
(m) si 

( 
-
m 
1
) ) 

i=0 

j -1 

= P(m ( 
j
m) ) � P(mi 

(m) )  (3-57) 
i=0 

Substituting Equations 3-56 and 3-57 into Equation 3-54 yields: 

� j -1 j -1 �
S (m¢) = arg�max � P( yi xi 

(m) ) � P(mi 
(m) ) P(m ( 

j
m) ) P( y j x ( j

m) )� (3-58) 
m� i=0 i=0 � 

In Equation 3-58, the maximum is not changed if: 
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1. Take the logarithm; 

2. Multiply by 2; 

3. Add two constants which are independent on the message, m. 

By taking the logarithm of the right hand side of Equation 3-58 this yields: 

j -1 j -1 

M ( j
m) = � log P( yi xi 

(m) ) + � log P(mi 
(m) ) + log P(m ( 

j
m) ) + log P( y j x ( 

j
m) )  (3-59) 

i=0 i=0 

In the case of a 1/N coded scheme, Equation 3-59 can be written as: 

j -1 N -1 j -1 N -1 
(m) (m)M ( j

m) = �� log P( yi,n xi,n ) + � log P(mi 
(m) ) + log P(m ( 

j
m) ) + � log P( y j ,n x j ,n )  (3-60) 

i=0 n=0 i=0 n=0 

(m)The accumulated branch metric up to time (j-1) can be defined by M j -1 2  and it is given 

by: 

j -1 N -1 j -1 
(m) (m)M j -1 2 = �� log P( yi ,n xi ,n ) + � log P(mi 

(m) )  (3-61) 
i=0 n=0 i=0 

Substituting Equation 3-61 into Equation 3-60, multiplying by 2, and adding two 

constants -Cm and -Cy, gives: 

(m) ( m)M ( j
m) = M j -1 + [2 log P(m ( 

j
m) ) - Cm ] + [� 2log P( y j ,n x j ,n ) - C y ]  (3-62) 

where Cm and Cy are independent of message m and are defined by: 

Cm = log P(m j = +1) + log P(m j = -1)  (3-63) 
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C y = log P( y j ,n x j ,n = +1) + log P( y j ,n x j ,n = -1)  (3-64) 

Further simplification of the individual components of Equation 3-62 produces: 

2 log P(m ( 
j
m) ) - Cm = 2log P(m ( 

j
m) ) - log P(m j = +1) - log P(m j = -1)  (3-65) 

Note that in the analysis, m ( 
j
m)  can take on +1or -1 values: 

•  In the case of m ( 
j
m) = +1, Equation 3-65 simplifies to: 

2 log P(m ( j
m ) ) - C m = 2 log P (m j = +1) - log P (m j = +1) - log P(m j = -1) 

= log P(m j = +1) - log P(m j = -1) 

= log 
P(m j = +1)

 (3-66)
P(m j = -1) 

•  In the case of m ( 
j
m) = -1, Equation 3-65 simplifies to: 

2 log P(m ( 
j
m) ) - Cm = 2log P(m j = -1) - log P(m j = +1) - log P(m j = -1) 

= log P(m j = -1) - log P(m j = +1) 

= - log 
P(m j = +1)

 (3-67)
P(m j = -1) 

From Equations 3-66 and 3-67, Equation 3-65 is generalized by: 

2 log P(m ( 
j
m) ) - Cm = m ( 

j
m) log 

P(m j = +1)
 (3-68)

P(m j = -1) 
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Similarly, 

N -1 
(m)� 2log P( y j ,n x j ,n ) - C y 

n=0 

N -1 
(m)= � 2 log P( y j ,n x j ,n ) - log P( y j,n x j ,n = +1) - log P( y j ,n x j ,n = -1)  (3-69) 

n=0 

(m)Note that x j ,n  can take on +1or -1 values: 

• In the case of x ( j
m) = +1 , Equation 3-69 becomes: 

N -1 
(m)� 2log P( y j ,n x j ,n ) - C y 

n=0 

N -1 

= � 2 log P( y j ,n x j ,n = +1) - log P( y j ,n x j ,n = +1) - log P( y j ,n x j ,n = -1) 
n=0 

N -1 

= � log P( y j ,n x j ,n = +1) - log P( y j ,n x j ,n = -1) 
n=0 

N -1 

= � log 
P( y j ,n x j ,n = +1)

 (3-70) 
n=0 P( y j ,n x j ,n = -1) 

• In the case of x ( j
m) = -1 , Equation 3-69 becomes: 

N -1 
(m)� 2log P( y j ,n x j ,n ) - C y 

n=0 

N -1 

= � 2 log P( y j ,n x j ,n = -1) - log P( y j ,n x j ,n = +1) - log P( y j ,n x j ,n = -1) 
n=0 
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N -1 

= � log P( y j ,n x j ,n = -1) - log P( y j ,n x j ,n = +1) 
n=0 

N -1 

= -� log 
P( y j ,n x j ,n = +1)

 (3-71) 
n=0 P( y j ,n x j ,n = -1) 

From Equations 3-70 and 3-71, a general form of Equation 3-69 is derived: 

N -1 N -1 
(m) (m)� 2log P( y j ,n x j ,n ) - C y = � x j ,n log 

P( y j ,n x j ,n = +1)
 (3-72) 

n=0 n=0 P( y j ,n x j ,n = -1)

Substituting Equations 3-68 and 3-72 into Equation 3-62 yields: 

( m) 
N -1

(m) 
P( y j ,n x j ,n = +1) P(m j = +1)

M ( j
m) = M j -1 + � x j ,n log 

P( y j ,n x j ,n = -1) 
+ m ( 

j
m) log 

P(m j = -1)
 (3-73) 

n=0 

For the Additive White Gaussian Noise channel with fading, Equation 3-73 is simplified 

further by: 

1 -
( y j ,n -a j ,n )2 

p( y j ,n x j ,n = +1, a) = 
2 s p 2 

e 2s 2 
(3-74) 

1 -
( y j ,n +a j ,n )2 

p( y j ,n x j ,n = -1, a) = 
2 s p 2 

e 2s 2 
(3-75) 

N
with s 2 = 0 ,

2Es
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P( y j ,n x j ,n = +1) Eslog 
P( y j ,n x j ,n = -1) 

= 4 
N 0 

a j ,n y j ,n 

= Lc y j ,n  (3-76) 

where Lc j ,n
 is known as the reliability of the channel and it is given by: 

EsLc j , n 
= 4 

N 
a j ,n  (3-77) 

0 

Also, the log-likelihood of the a priori information mj is defined by L(mj) and it is given 

by: 

P(m j = +1)
L(m j ) = log 

P(m j = -1)
 (3-78) 

Substituting Equations 3-76 and 3-78 into Equation 3-73, allow for the simplification of 

the accumulated branch metric using the soft values of the information channel as [87, 

88]: 

N -1 
(m) (m)M ( j

m) = M j -1 + � x j ,n Lc j , n
y j ,n + m ( 

j
m) L(m j )  (3-79) 

n=0 

The final accumulated metric given in Equation 3-79 represents the path metric up 

to time j. From here, the regular process of the VA terminates and the process of 

reliability calculation in the SOVA version begins. At time j, the probability of path m is 

proportional to the exponential of the accumulated branch metric. The relation is given 

by: 
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P( path m) a eM ( j
m ) 2 (3-80) 

The VA algorithm proceeds in the usual way by calculating the metrics for the 

path m using Equation 3-79 with or without L(m). For each state, it selects the path 

with the largest metric M ( j
m) . Figure 3-9 shows a trellis example where the VA has 

selected the maximum likelihood sequence, m¢ , and has discarded the sequence m at 

time j. In Figure 3-9, Dl
j denotes the metric difference at time j in l nonsurvivor 

paths, and d + 1 is the number of nonsurvivor paths. 

m `  

m 

jj-1j-

j 
l j 

0 
j 

m `  

m 

j j-1 j-

j
l j 

0 
j 

Figure 3-9 Example with two metric differences for the derivation of the 
traceback SOVA [51]. 
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The probability of choosing m¢ is the probability of choosing the correct 

sequence. It also holds that P(correct) + P(incorrect) = 1. Normalizing P( path m) and 

P( path m¢) yields: 

P( path m¢)
P(correct) = 

P( path m) + P( path m¢) 

e M ( j
m¢ ) 2 

= 
eM ( j

m¢ ) 2 + eM ( j
m ) 2 

e D j 

= 
1 + e D j 

(3-81) 

where D j  denotes the metric difference and it is given by: 

D j = 
1 (M ( j

m¢) - M ( j
m) )  (3-82)

2 

The likelihood ratio or soft value of this binary path decision is: 

log 
P(correct) 

= logŒ
Ø

Œ

(eDj + 1)
D j

e Dj ø
œ (3-83)

1 - P(correct) 1 + e œ
ßº 

By taking the logarithm in Equation 3-83 for the base e, then: 

P(correct)
log

1 - P(correct) 
= ln[eDj ] 

= D j  (3-84) 
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Then, along the maximum likelihood path m¢ , which decides the bit m̂ j -d , d + 1 

non-surviving paths with indices l = 0,...,d  have been discarded. The difference 

between their metrics is Dl
j ‡ 0 . If the bit m̂ lj -d  on the discarded path equals the decided 

bit m̂ j -d , then no bit error is made if the discarded path was selected. Thus, the reliability 

of this bit is infinite. Otherwise, if the bits differ, i.e., el
j -d = ml

j -d ¯ m̂ j-d = -1, the log-

likelihood value of the bit error el
j -d equals Dl

j . Consequently, we have: 

l 
l 

L(el
j -d ) = log 

P(e
l

j -d = +1) 
= 

�

�
�¥ m j -d = m̂ j -d 

(3-85)
P(e j -d = -1) 

�
�Dl

j ml
j -d „ m̂ j -d 

The total error resulting from all possibly discarded paths for bit m̂ j -d  is given by: 

d 
le j -d = �¯ e j -d  (3-86) 

l =0 

If the Dl
j and the ej

l are statistically independent with respect to the indices, then 

the log-likelihood ratio of the decisions (the soft output of the VA (SOVA)), is the 

decision m̂ j -d  times the L-values of the errors. This is shown by: 

d 

L(m̂ j -d ) = m̂ j -d �[+] L(el
j -d ) 

l =0 

» m̂ j -d min Dl
j  (3-87)

l =0,...,d 

The minimum in Equation 3-87 has to be taken only over those indices l where 

the bits differ. Therefore, we have the same decisions as with the classical VA. The 
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reliability of these decisions is obtained by taking the minimum of the metric differences 

lalong the maximum likelihood path whenever the update sequences e j -d  indicate this. 

As a result, the modified VA accepts log-likelihood (soft) L-values from both the a priori 

information and from the channel and delivers such values for the output bits. 

3.5 Summary 

In this chapter, the principle of the iterative decoding process of the turbo code 

decoder was presented. The turbo code decoder mainly depends on the soft-input/soft-

output constitute decoders. The chapter also described how to apply the soft-in/soft-out 

constituent decoder to the iterative turbo decoder. The information transfer from one 

decoder to another is essential for improving the performance from one step to the next 

step in the iterative decoding process. The Viterbi algorithm was also reviewed, along 

with its modified version that delivers soft decisions used by a constituent soft-input/soft-

output decode in the iterative decoding. All related mathematics associated with 

implementing the iterative decoding process were presented. This was done to provide a 

better understanding of the process and how information is passed through iterations. 
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4 Methodology


4.1 Introduction 

The research methodologies applied throughout this dissertation are mathematical 

analysis and computer simulations. This chapter presents the methodology used to 

develop the mathematical models of the analytical bound for turbo code performance. 

This chapter also covers the development for the simulation model of the proposed turbo 

code. The algorithm use to build a simulation model of the channel under consideration 

is also discussed. 

The software packages MathCAD® and MATLAB® are used to accomplish 

complicated calculations. The simulation models are implemented using the software 

package MATLAB®. The results of the mathematical analysis and computer simulation 

are displayed using graphs in which the bit error rate is plotted versus signal-to-noise 

ratio (Eb/N0) in decibels. Tables are also used to display results. 

Section 4.2 presents the development of the analytical model to evaluate the 

performance of turbo codes using the union bound. Application of the uniform 

interleaver to the union bound to facilitate its calculations is presented. A discussion of 

the calculation of the average weight enumerating function of the parallel concatenation 
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is also presented. Section 4.3 presents the development of the simulation model used to 

implement the turbo encoding, the channel, and the turbo code decoding. The models 

that describe the behavior of the Rayleigh fading channel are also presented. The 

algorithm to implement the soft out Viterbi algorithm (SOVA) and the practical 

consideration is discussed. Section 4.4 summarizes the contents of this chapter. 

4.2 Analytic Model 

Turbo code performance in high signal-to-noise ratio regions is best evaluated 

using the analytical bound. This is due to the long execution times of computer 

simulations. It is useful to consider turbo codes as block codes. The input sequences are 

restricted to length N, where N corresponds the interleaver size in the turbo code encoder. 

The union upper bound is a popular method of bounding block code performance given 

the code weight distribution. For turbo codes, deriving the weight distribution for a 

particular interleaving scheme is very difficult. The authors in [61, 62] introduced the 

idea of averaging the weight enumerating function using a uniform interleaver. In this 

section, the average bound calculation details, as applied to turbo codes, is presented. For 

discussion, it is assumed that the component codes are fixed convolutional codes with 

certain memory. 

4.2.1 Union Bound 

For a (N, 3N) turbo code with an interleaver of length N bits, without loss of 

generality, it is assumed that the all-zero codeword is sent. For discussion, consider a 

traditional union upper bound with maximum likelihood decoding of the probability of 

bit error [63]: 
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w cPbit £ �� N 
Aw, j P2 ( j)  (4-1) 

j w 

c denotes the number of codewords of the parallel concatenation (turbo code)where Aw, j

with weight j generated by a word of information weight w. Parameters d1 and d2 

represent the parity weights of the first and second encoders respectively. The weight 

j = d1 + d 2 + w  and P2 ( j)  is the pair-wise error probability of error between the zero­

codeword and the codeword with weight j.  The conditional weight enumerating 

function, Ac (Z ) , enumerates all the codewords of weight j generated by a word withw 

information weight w.  It is given by: 

c c Z j (4-2)Aw (Z ) = � Aw, j 
j 

where Z is dummy variable. For turbo codes with a fixed interleaver, the construction of 

Ac (Z )  requires an exhaustive search. Due to the complexity involved in this search, thew 

authors in [2] introduced the concept of the uniform interleaving to reduce search 

overhead. Using this approach, an average upper bound on performance can be 

constructed by averaging over all possible interleavers. 

An N length uniform interleaver is a probabilistic device representing the average 

behavior of all deterministic bit interleavers. For each input sequence having information 

weight w and length N, the uniform interleaver maps the input sequence to all its distinct 

sequences, Ncw, of weight w and length N with equal probability 1/Ncw. 
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��

From this, the average conditional WEF of the parallel concatenation (turbo code) 

can be obtained from the WEF of the constituent codes, AC1 (Z )  and AC2 (Z ) :w w 

c1 c2 
cAw

p (Z ) = 
Aw (Z ) Aw (Z ) 

, Ncw = 
�
� 

N �
� = 

N! 
(4-3)

Ncw Ł w ł (N - w)!w! 

Example: For an input frame m = 0101 of length N = 4 and weight w = 2, all distinct 

possible mappings of this input frame are given in Figure 4-1. As shown in Figure 4-1, 

there are Ncw = 6 possible interleaving maps. The uniform interleaver would map this 

input sequence to all of these distinct sequences with probability P = 1/Ncw = 1/6. 

Using the uniform interleaver, each input word of weigh w at the input of the first 

encoder C1 is mapped into all its distinct permutations, which, through the second 

encoder C2, generates all codewords corresponding to the input weight w. As a 

consequence, all input words of the same weight generate the same set of codewords. 

From this, the conditional weight enumerating functions of C1 and C2 become 

independent and can be multiplied to yield the overall conditional weight enumerating 

function of the parallel concatenated code using Equation 4-3. 
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p=1  /6 

p=1  /6 

Figure 4-1 All possible interleaved versions of the input frame, m = 0101. 

4.2.2 Computation of the Conditional Weight Enumerating Function 

Like the probability of bit error calculations for convolutional codes using the 

transfer function bound technique, it is assumed here the all-zero codeword is transmitted 

and the probability the decoder selects some alternative codeword is calculated. 

Calculating this bound assumes that the weight enumerating function (WEF) of the turbo 

code is known. The transfer function bound and the WEF for turbo codes differ from 

those of convolutional codes in four aspects [62]: 
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1.	 Turbo code bounds (and then WEF) require a term-by-term joint 

enumerator for all possible combinations of input weight and output 

weights of both encoders. 

2.	 Because turbo codes are block codes, it is necessary to accurately 

enumerate compound error events that can include more than one 

excursion from the all-zero state during the fixed block length. 

3.	 Since using one specific interleaver is intractable, the bound is developed 

as a random coding bound using the uniform interleaver. 

4.	 Turbo code bound calculations assume maximum likelihood decoding, 

whereas the iterative decoding procedure used in practice is not 

guaranteed to converge to the maximum likelihood decoder. 

From the knowledge of the individual terms of each convolutional weight 

enumerating function for the two convolutional codes, AC1 (Z ) and AC2 (Z ) , the WEF ofw w 

the parallel concatenation can be enumerated jointly term-by-term for all possible 

combinations of input and output weights using Equation 4-3. Using this information, a 

recursive algorithm to compute the weight enumerating function of a convolutional code 

can be explained in detail. 

The operation of any convolutional code can be completely described by its state 

diagram. For illustration, a convolutional code with octal notation (5/7)8 is used. This 

convolutional encoder is shown in Figure 4-2 and its state diagram is shown in 

Figure 4-3. 
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Figure 4-2 Convolutional encoder with (5/7)8. 
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Figure 4-3 State diagram of (5/7)8 convolutional encoder. 
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In Figure 4-3, each transition between states is labeled by the input information 

bit and the corresponding output encoded bit. It is convenient to replace each edge label 

in Figure 4-3 with a monomial LlIiDd, where l is always equal to 1 (represents the 

accumulated length), and i and d are either 0 or 1 (each represent the input and output 

weights, respectively), depending on whether the corresponding input and output are 0 or 

1, respectively. Then, the information in the state diagram can be summarized by the 

state transition matrix, S(L, I, D), as given below: 

� L LID 0 0 � 

� 0 0 LI LD �
S (L, I , D) = � LID L 0 0 � (4-4) 

Ł 0 0 LD LI ł
�� 

where each entry LlIiDd shows an l step transition from the state “row number” to the 

state “column number” with an input weight of i that results in an output weight of d. A 

“0” as the entry means the transition is not possible. In writing the one-step transition 

matrix above, the states are arranged as the state “00” is the first state, the state “01” is 

the second state, the state “10” is the third state, and the state “11” is the last state.  If we 

denote the transfer function of the code by T(L, I, D), where T(L, I, D), is given by: 

T (L, I , D) = ��� Ll I i D d t(l, i, d )  (4-5) 
l ‡0 i‡0 d ‡0 

where t(l, i, d) denotes the number of paths (codewords) of length l, input weight i, and 

output weight d, starting and ending in the zero state. Using the method described in [89] 

and the approximation made in [62] about ignoring the termination term, the transfer 
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function of the of the code T(L, I, D) is the first row and first column entry of the inverse 

of this matrix [I - S(L, I, D)]: 

T(L, I, D)= [ I - S(L, I, D) ] (4-6)
00,00 

where I denotes the identity matrix. Using the MathCAD® software package, Equation 

4-6, can be calculated. From [62], the first row first column element represents the 

transfer function of the code and is given by: 

1 - LI - L2 I - L3 (D 2 - I 2 )

T (L, I , D) » 

1 - L(1 + I ) - L3 (D 2 - I - I 2 + I 3 D 2 ) + L4 (D 2 - I 2 - I 2 D 4 + I 4 D 2 )
 (4-7)


Multiplying both sides of Equation 4-7 by the denominator of the right-hand side and 

substituting into Equation 4-5 yields: 

��� Ll I i D d t(l, i, d )[1 - L(1 + I ) - L3 (D 2 - I - I 2 + I 3 D 2 ) + L4 (D 2 - I 2 - I 2 D 4 + I 4 D 2 )] 
l i d 

= 1 - LD - L2 D + L3 (D 2 - I 2 ) (4-8) 

Equating the coefficients of t(l, i, d) of both sides of Equation 4-8, the following 

recursion is formed for t(l, i, d), for l ‡ 0 , i ‡ 0 , d ‡ 0 : 

t(l, i, d ) = t(l -1, i -1, d ) + t(l -1, i, d ) 

+ t(l - 3, i - 3, d - 2) - t(l - 3, i - 2, d ) - t(l - 3, i -1, d ) + t(l - 3, i, d - 2) 

- t(l - 4, i - 4, d - 2) + t(l - 4, i - 2, d - 4) + t(l - 4, i - 2, d ) - t(l - 4, i, d - 2) 

+ d (l, i, d ) - d (l -1, i -1, d ) - d (l - 2, i -1, d ) - d (l - 3, i, d - 2) + d (l - 3, i - 2, d )  (4-9) 
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where d (l, i, d ) = 1if l = i = d = 0  and d (l, i, d ) = 0 otherwise. The initial conditions hold 

that t(l, i, d ) = 0 if any index is negative. Note that all the terms in Equation 4-9 assume 

that the starting and ending state is the zero state. By taking the first row, first column 

entry of the matrix [I - S]-1 as the proper choice, we terminate both encoders in the 

simulation model. 

Using the recursion formula in Equation 4-9, the terms of the weight enumerating 

Cfunction, Aw,d , of the convolutional code C with codeword of length N is given by the 

following: 

w,d = t(l = N , I = w, D = d )  (4-10)AC 

From Equations 4-2, 4-3, and 4-10, the average weight enumerating function of the 

parallel concatenation can be calculated. 

4.2.3 Analytical Bound Calculations and Validation 

In computing the union bound given in Equation 4-1, there is an observation 

about the convergence of the bound at low signal-to-noise ratios (Eb/N0 less than R0, 

where R0 is the computational cut off rate). The bound suddenly diverges to a useless 

bound greater than 1. On the other hand, when Eb/N0 is above R0, the false convergence 

is not a problem. Only a small number of terms in the summation are needed for 

convergence of the bound (i less than 10 is good) and this is almost independent of the 

value of N. 
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The method explained in the previous section is used to evaluate the upper bound 

for turbo codes. Figure 4-4 shows the bound Pbit  for turbo code (1, 5 7, 5 7)  in the 

Additive White Gaussian Noise (AWGN) channel for various block length N . Note that 

the transition from a well-behaved, useful (below 2.03 dB), low- Pbit  bound into a 

diverged, useless bound greater than 1 occurs if the block length N  becomes larger (the 

same as observed in [62], which validates our model). The abrupt transition occurs 

roughly when the information bit signal-to-noise ratio (Eb/N0) drops below the threshold 

determined by the computational cutoff rate R0  (i.e., when 

Es N 0 = r Eb N 0 < - ln(21-r - 1) for a code rate r [90]). 

1.E+00 

1.E-02 

1.E-04 

B
E

R
 

N=50 

N=100 

N=200 

1.E-06 

1.E-08 

1.E-10 

0 1 2 3 4 5 6 

Eb/N0 

Figure 4-4 Bounds on Pbit  for various block lengths N for the (1, 5 7, 5 7)  turbo code. 
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To validate the analytic model with the simulation model, simulation results have 

been compared with the computed bound in Figure 4-5 for a frame length of 256 bits. 

The simulated model is based on two identical RSC with generators (5/7)8 and rate 1/3. 

The SOVA algorithm in [51] is used as a component decoder with 8 iterations. From the 

graph, as also observed in [62], it is observed that above the R0  threshold of 2.03 dB, the 

simulated turbo decoder bit-error rate closely matches the error predicted by the bound. 

Below this threshold, the turbo decoder experiences its own region of “divergence” 

wherein its performance deteriorates rapidly because its iterative decoding algorithm 

frequently fails to converge. However, this “divergence” is far less steep than that 

experienced by the bound. It occurs well below the R0  threshold, allowing turbo 

decoders to operate in the region between the limit determined by channel capacity and 

the limit determined by R0 . 

Unfortunately, the region where the turbo codes have offered astounding 

performance is below the computational cutoff rate threshold, so at first glance the 

bounds appear to be of dubious utility. For Eb N 0 above the computational cutoff rate 

threshold, the bound is not only meaningful, but essentially tells the whole story (i.e., the 

bit-error rate predicted by the bound is accurately achieved both by a maximum-

likelihood decoder and by a turbo decoder). This is demonstrated by the confluence of 

the simulation and bound performance curves in Figure 4-5 at high Eb N 0 . In this 

region, evaluation of the bound requires only a few terms in the summation. The bound’s 

behavior is predictable from the heuristics analysis about the relationships of weight 

distribution, permutation, and the number of codes reported in [41]. 
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Figure 4-5 Analytical error bounds versus simulated bit error rates for frame length of 
256 bits. 

4.3 Simulation Model 

The simulation of communication systems requires a representation of the system. 

The standard description of the system is the block diagram, where each block represents 

a signal-processing operation. The block diagram of the simulation model used in this 

investigation is shown in Figure 4-6. 
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Figure 4-6 Block diagram of the simulation model. 

Each block shown in Figure 4-6 contains the algorithms and equations needed to 

implement the block functions within the simulation. These individuals blocks represent 

subsystems of the overall system. 

Using a hierarchical modeling approach, a simulation-based analysis of 

communication systems is possible. This hierarchical modeling allows a complex system 

to be modeled. In a hierarchical modeling environment, complex models can be built up 

from very simple building blocks. This modularity allows for ease of code testing and 

evaluation. Figure 4-7 shows the implementation flow of the system model. 

109




Generate frame 
of information 

Interleave 

Encoding 1 Encoding 2 

Multiplexing 

Puncturing 

Modulating 

Channel 

Demodulation 

Turbo code 
Decoder 

Generate frame 
of information 

Interleave 

Encoding 1 Encoding 2 

Multiplexing 

Puncturing 

Modulating 

Channel 

Demodulation 

Turbo code 
Decoder 

Generate frame 
of information 

Interleave 

Encoding 1 Encoding 2 

Multiplexing 

Puncturing 

Modulating 

Channel 

Demodulation 

Turbo code 
Decoder 

Figure 4-7 Steps of implementation of the simulation model. 

110




As shown in Figure 4-7, the generation of information bits begins the process. 

The two encoders receive the same information bits, with the second encoder receiving 

the information bits after being permuted by an interleaver. The output of both encoders 

are multiplexed and punctured. Note that puncturing is an optional operation determined 

according to the required rate. The binary symbol outputs are used to modulate an RF 

carrier sinusoid. For this investigation, Binary Phase Shift Key (BPSK) modulation is 

used. Each code symbol results in the transmission of a pulse of carrier at either of two 

1800 separation phases. At the receiving end, the transmitted signal is faded and added to 

white Gaussian noise. It assumed that perfect synchronization occurs. The output of the 

front-end receiver (matched filter) at time i is given by: 

yi = ai xi sE + ni  (4-11) 

where yi is the output of the matched filter, xi is the transmitted symbol, xi=–1 depending 

on whether the ith code symbol is 0 or 1, Es is the energy per symbol, and ni is a zero-

2mean Guassian noise with variance, s = 2 0 N . When coding is used, hard 

quantization of the received data usually entails a loss of about 2 db in Eb/N0, where Eb is 

the energy per information bit, compared with infinitely fine quantization [91, 92]. Much 

of this loss can be recouped by quantizing yi to 4 or 8 levels instead of merely 2. In the 

simulation model, the availability of high precision floating point arithmetic is assumed. 

In a real-time decoder, it is likely that the decoding algorithms would be implemented 

using fixed point arithmetic. The influence of quantization and fixed-point arithmetic for 

the implementation in turbo code decoder is presented in [93]. In [93], the authors 

111




compared different decoder types and they concluded that the SOVA is the most 

computationally stable. 

Now, the output of the matched filter is used as input to the turbo decoder. The 

turbo code decoder is implemented using two constituent decoders. Each decoder uses 

the SOVA algorithm. The entire procedure, from the generation of information bits until 

the decoder makes the decision, is repeated frame-by-frame according to the number of 

frames needed to be simulated or according to a predetermined number of accumulated 

errors needed. 

4.3.1 Channel Model 

A statistical model for the received signal envelope fading encountered on the 

wireless communication channel is useful for predicting the communication system 

performance. Signal fading can result from multipath, scattering, or diffraction. In 

general, fading is a time varying stochastic process. Its effect can be extended over a 

number of channel symbols. Coherence time, t c , is used to characterize a fade 

phenomenon and is intuitively regarded as the average time span that fading correlation 

lasts. In other words, any two bits that are separated by more than t c  can be considered 

to be somewhat uncorrelated. 

Under normal conditions, where all of the received multipath components of a 

symbol arrive within the symbol time duration, identical behavior in time is exhibited by 

the random fluctuations caused by fading to each spectral component of the signal. This 
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kind of fading is flat, or non-frequency selective, over the signal bandwidth. Therefore, it 

is called flat fading. In this thesis, flat fading is considered. 

In wireless communication systems that adopt forward error correction (FEC) 

codes, this correlated property of a fading channel propagates a decoded bit error to 

subsequent bits, causing bursty errors and significantly degrading the performance. A 

channel interleaver is usually utilized to break the correlated channel disturbance into 

random channel symbol errors that are effectively corrected by FEC codes. As a result, 

the performance can be improved. The larger the interleaver size, the wider the 

correlated channel symbols can be separated, and consequently, the better performance. 

In typical mobile-radio situations, buildings obstruct the direct line of sight 

between the transmitter and the receiver. In these cases, the mode of propagation of the 

electromagnetic energy from transmitter to receiver will be largely determined by way of 

scattering, either by reflection from flat sides of buildings or by diffractions around such 

buildings or other obstacles. Thus, the received signal results from the interference of 

many scattered radio paths between the base station and the mobile. Rayleigh fading 

characterizes these signal fluctuations. The Rayleigh fading model is of greatest interest 

and importance in the design of communication systems operating in fading environment. 

Clarke [94] developed a random process model for the received power of random 

interfering waves. The model assumes a fixed transmitter with a vertically polarized 

antenna. The field incident on the mobile antenna is assumed to be composed of N equal 

amplitude azimuthal plane waves with arbitrary angles of arrival and arbitrary phases. 

Each incident wave undergoes a Doppler shift due to the motion of the receiver. Waves 
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arrive at the receiver at the same time, i.e., no excess delay due to multipath is assumed 

(flat fading assumption). Due to the Doppler effect, the received frequency increases if 

the receiver is advancing into the approaching wave front and decreases if the receiver is 

moving away from the wave front. The maximum Doppler shift, fd, is given by: 

v. f cf d =  (4-12)
C 

where v is the velocity of the mobile, fc is the carrier frequency, and C is the velocity of 

electromagnetic radiation. 

Let Tc(t) and Ts(t) be the summation of the received in-phase and quadrature 

components of the individual received waves, respectively. Thus, by the Central Limit 

Theorem, they are an uncorrelated zero-mean Guassian random process with equal 

variance given by: 

2 2 2E[Tc ] = E[Ts ] = E 0 / 2  (4-13) 

where E0 is the real amplitude of the local average E-field. The envelope of the received 

E-field is: 

a(t) = ( ) ( ) t Tt T s c 
2 2 + (4-14) 

Since Tc and Ts are Gaussian random variables, the received signal envelope a has 

a Rayleigh distribution. Assuming the angle of arrival to be uniformly distributed from 0 

to 2p  and an omnidirectional receiver, Clarke determined that the power spectral density 

S(f) of the in-phase and quadrature components Tc and Ts is [14]: 
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In the simulation model, the power spectrum in the baseband is implemented so 

the frequency considered is freq = f - fc . The normalized temporal correlation of the 

received amplitudes, which correspond to this spectral density given in Equation 4-15 is 

given by: 

R(t) = J 0 (2pf d t)  (4-16) 

where J0(*) is the zeroth order Bessel function of the first kind and t is the time 

separation. The power spectral density given in Equation 4-15 is used to shape the output 

fading amplitudes of the simulated channel [14]. Implementation of this fading model is 

shown in Figure 4-8. 
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Figure 4-8 Implementation of Rayleigh fading simulator at baseband [14]. 
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The steps used to implement the simulation model shown in Figure 4-8 are as follows 

[14]: 

1. Specify the number of frequency domain points, N, used to represent ) ( f S and 

the maximum Doppler frequency shift fd. The value used for N is usually a power 

of 2. 

2.	 Compute the frequency spacing between adjacent spectral lines as Df= 2fd/(N-1). 

This defines the time duration of a fading waveform, T=1/Df. 

3.	 Generate complex Gaussian random variable for each of the N/2 positive 

frequency components of the noise source. 

4.	 Construct the negative frequency components of the noise source by conjugating 

positive frequency values and assigning these at negative frequency values. 

5.	 Multiply the in-phase and quadrature noise sources by the fading spectrum 

.) ( f S 

6.	 Perform an inverse fast Fourier transform on the resulting frequency domain 

signals from the in-phase and quadrature arms to get two N-length time series, 

and add the squares of each signal point in time to create an N-point time series 

like under the radical of Equation 4-14. 

7.	 Take the square root of the sum obtained in Step 6 to obtain an N-point time 

series of a simulated Rayleigh fading signal with the proper Doppler spread and 

time correlation. 
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For the discrete model implemented, sampling of the fading process is done at the 

symbol rate 1/Ts, of the link. Therefore, flat fading channels are often characterized by a 

normalized spectrum based on the Doppler bandwidth-symbol duration products, fdTs. 

For example, a cellular link sending 10K symbols/sec through a fading channel with a 

Doppler bandwidth, fd = 20 Hz would have fdTs = 0.002. Figures 4-9 and 4-10 show 

sample functions of fading process generated using the model with values of fdTs = 0.01 

and 0.1 respectively. Note that fdTs << 1 for the flat fading conditions. 
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Figure 4-9 Sample of simulated signal envelope waveforms (mean power = 0 db and 
fdTs = 0.01). 
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Figure 4-10 Sample of simulated signal envelope waveforms (mean power = 0 db 
and fdTs = 0.1). 

This model is constructed in the frequency domain using the shaping filters 

(Doppler filter) to get the required correlation between the adjacent samples. To validate 

this model, Figure 4-11 shows the normalized autocorrelation of the output fading 

amplitudes compared with the analytic expression of this autocorrelation given in 

Equation 4-16. 
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Figure 4-11 Comparison of simulated fades autocorrelation and the analytic 
autocorrelation. 

4.3.2 SOVA Modeling 

The Soft-Output Viterbi Algorithm (SOVA) accepts soft inputs of a priori 

information and soft channel values, and produces the reliability of the estimated bits. 

The SOVA can be implemented in the trace back mode. The classical Viterbi Algorithm 

(VA) proceeds in the usual way by calculating the metrics for the mth path through the 

trellis using Equation 3-79 with or without a priori information. For any state, s, and 
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(m¢) , and saves the metric differencetime i it selects the path with the larger metric M i,s 

(m¢) (m) . Using the metric difference D i,s  the SOVA updates the reliability ofD i,s = M i,s - M i,s 

the estimated bits. Then, the SOVA algorithm performs the classical Viterbi algorithm, 

with minor modification, in a forward process followed by a trace back process that 

computes the bit reliabilities. 

The SOVA algorithm can be summarized as follows: 

1.	 Assume a trellis with 2k-1 states, where k is the constraint length of the 

convolutional encoder, and a frame with length of L bits. 

2.	 The trellis of this encoder consists of L2k-1 nodes. Assign to each node the 

variables Mi,s and Di,s which represent the accumulated branch metric and the 

difference between the competitive metrics at time i and state s, respectively. 

Also, assign to each node in the trellis the variable ri,s which represents the 

reliability of the information bit at this node. 

3.	 Initialize all Mi,s’s with - ¥ except the one at time i = 1 and the zero state 

(assuming start encoding from zero state). Initialize all Di,s,’s that contain the 

metric difference between the competitive paths with any arbitrary values. Also, 

initialize all the reliability values ri,s to ¥ . 

4.	 Starting at time i, initializing with i = 1, and starting from the state zero, compute 

the branch metric, added to the accumulated metric at the previous state according 

to Equation 3-79. 
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5.	 At each state, for the binary case, there are two branches entering this state. 

Compare both metrics and selects the larger one and assign it Mi,s of that state and 

save the difference in Di,s of the same state. Save both the survived path 

information bits and the nonsurvived path information bits. 

6.	 Compare the survived and nonsurvived bits in the previous step. For all the 

positions where the bits are different, the survived bits reliability need to be 

updated according to the old value and the value of the metric difference at this 

node, Di,s. Choose the smaller value. 

7. Do step 5 and 6 for all the states at time i. 

8. Put the time i = i +1, and repeat steps 5, 6 and 7 until the end of the trellis. 

9.	 At the end of the trellis, the survived path is determined and the corresponding 

information bits with its reliabilities are available. 

The forward stage of the SOVA is implemented using the classical Viterbi 

algorithm with a slight necessary modification [63]. When state sequences are very long 

or infinite, it is necessary to truncate survivors to manageable lengths d. In other words, 

the algorithm must come to a definite decision on nodes up to time i at time i + d. If the 

truncation depth d is chosen large enough, there is a high probability that all time i + d 

survivors will go through the same nodes up to time i. So the initial segment of the 

maximum-likelihood path is known up to time i and is the output of the algorithm’s 

decision. In this case, truncation costs nothing. 
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4.3.3 Hypothesis on The Simulation Model 

The proposed turbo coded system was simulated for punctured and unpunctured 

encoded bits. The system used Binary Phase Shift Key (BPSK) modulation. Two types 

of channels were considered: Additive White Gaussian Noise (AWGN) channel and 

Rayleigh flat-fading channel. For the Rayleigh flat-fading channel, it was assumed that 

sufficient channel interleaving existed such that the fading amplitudes were independent 

from symbol-to-symbol. Without the channel interleaver, the fading was assumed to be 

correlated. 

For the experiments (Monte Carlo simulations) a turbo code composed of two 

constituent encoders of rate 1/2 and constraint length of k = 3 with octal generators (5/7)8 

was used. Both encoders were terminated. The decoder was implemented using the 

SOVA algorithm with 8 iterations furnished with side information (perfect channel 

estimation). 

All the experiments were conducted over a wide range of signal-to-noise ratios, 

Eb/N0. At least 5000 errors were accumulated for the lowest signal-to-noise ratio Eb/N0 

£ 2  db, and 200 errors were accumulated for Eb/N0 >2 db. At high signal-to-noise ratios, 

the simulation becomes quite lengthy. It was found that 200 errors is sufficient for 

reliable results [95, 96]. 

4.4 Summary 

This chapter developed the analytical models needed to evaluate the analytical 

bound. The idea of the uniform interleaver that makes the calculation of the analytical 
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bound tractable was presented in detail. A method of calculating the average weight 

enumerating function of turbo codes through the calculation of the weight enumerating 

function of the convolutional codes that used as a constituent decoder of the parallel 

concatenation was presented. 

The second half of this chapter presented the development of the simulation 

models of turbo codes, and channel model used in this thesis along with its 

implementation issues. The Soft Output Viterbi Algorithm (SOVA) algorithm was 

discussed. The use of the SOVA as a constituent decoder of the turbo code decoder, 

along with practical implementation issues was presented. 
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5 Performance Enhancement of Turbo Codes with Short Frames


5.1 Introduction 

In wireless communication systems such as cellular systems, information is 

typically sent in short frames (less than 300 bits). The size of the transmission frame 

limits the choice of error control codes. Convolutional codes are commonly employed in 

wireless systems. One of the advantages of convolutional codes is that the performance is 

independent of the frame size as long as the frame size is much larger than the constraint 

length of the code. 

Turbo codes have been shown to approach the Shannon limit for error correcting 

capability at low signal-to-noise ratios given large sized frames. Extensive research 

efforts have been examining ways to enhance the performance of turbo codes for short 

frames (e.g., voice transmission). 

Section 5.2 presents one way of enhancing the performance by optimizing the 

energy allocated to each bitstream to achieve the best performance possible. In standard 

turbo codes, all bits are transmitted with equal energy. Changing the energy allocation 

strategy can enhance the performance of turbo codes with short frame lengths. 
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Section 5.3 presents another way of enhancing the performance of turbo codes 

with short frames by proper design of the interleaver. With proper design of the 

interleaver, the pairing of low-weight sequences to the input of the encoders can be 

avoided. Circular shift interleavers can be used to ensure that the minimum distance due 

to weight-2 input sequences grows roughly as N 2 , where N is the block length. The 

generalization of the mapping function of the circular shift interleaver to be suitable for 

both equal and unequal error protections is presented. Section 5.4 summarizes the 

contents of this chapter. 

5.2 Energy Allocation Strategies 

The output of turbo codes (shown in Figure 5-1) has three bitstreams to be 

multiplexed. One bitstream represents the systematic bits and the other two represent the 

checking bits of the first and second encoders. One way of enhancing the performance is 

to optimize the energy allocated to each bitstream to achieve the best performance 

possible. In the standard turbo codes, all systematic and parity bits are transmitted with 

equal energy. This energy allocation does not guarantee optimum performance. 

In [97, 98], two different strategies for allocating the energy are presented. In 

[97], the authors investigated improvement of the performance at very low signal-to-

noise ratios (within 0.5 db of the Shannon limit). They conclude that by allocating more 

energy to the systematic bits, better performance can be achieved. At these very low 

signal-to-noise ratios, the bit error rate is not practical for most applications (e.g., voice 

transmission). In [98], the authors investigated optimizing the energy allocation at higher 

signal-to-noise ratios. They concluded that at larger signal-to-noise ratios, the fraction of 
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2

the total energy allocated to systematic bits is usually lower than that of the parity bits. 

The authors’ results were supported for frame lengths of 1000 bits. 

dk 

kY1 

Y k2 

xk 

RSC 
Code 

RSC 
Code1 

Interleaver 

Figure 5-1 Block diagram of turbo-encoder with three output bitstreams. 

5.2.1 System Model 

The system model used in the simulation is based on a turbo code with two 

identical parallel encoders. Each encoder uses octal generators (5/7)8. Both encoders are 

terminated using the algorithm given in [38]. The encoded bits, without puncturing, (rate 

1/3) are modulated using a Binary Phase Shift keying (BPSK) modulator and transmitted 

over an Additive White Gaussian Noise (AWGN) channel. A random interleaver is also 

used. The decoder is composed of two component decoders, each implemented by the 
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Soft Output Viterbi Algorithm (SOVA) [51] with 8 iterations (note that in the previous 

papers [97, 98], the authors use the MAP [2] or modified MAP [32] algorithms). The 

decoding algorithm is modified to handle the unequal distribution of the total energy. 

This modification comes at no additional complexity. 

5.2.2 Bound Modification 

Assuming the maximum-likelihood decoding, Binary Phase Shift Keying (BPSK) 

modulation used, and an Additive White Gaussian Noise (AWGN) channel, the union 

bound is given by [61, 62]: 

w C pPb £ �� Aw, j P2 ( j)  (5-1) 
j w N 

C pwhere N is the frame length and Aw, j  denotes the number of codewords of the parallel 

concatenation (turbo code) with weight j generated by a word of information with weight 

w. Parameters d1 and d2 represent the parity weights of the first and second encoders 

respectively. The total weight, j, is j=d1+d2+w. P2(j) represents the pair-wise error 

probability between the zero-codeword and the codeword with weight j. In the case of an 

AWGN channel, P2(j) is given by [12]: 

P2 ( j) = Q�
� 

0 

2 
N 

E 
jr b 

�
� (5-2) 

Ł ł 

where r is the code rate of the code, Eb/N0 is the signal-to-noise ratio per information bit, 

and Q(*) is the tail integral of a standard Gaussian density with zero mean and unit 

variance. 
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Investigation of the performance of the turbo code bound with unequal energy 

distribution between the systematic bits and the parity bits can be viewed as changing the 

signal-to-noise ratio of the systematic bitstream while keeping the average signal-to-noise 

ratio Eb/N0 constant. If the total energy allocated per information bit is Eb, then let the 

energy allocated to the systematic bit be Es and the energy allocated to both parity bits be 

Ep1 and Ep2, such that Equation 5-3 is satisfied: 

Eb = Es + E p1 
+ E p2

 (5-3) 

In standard turbo codes (with equal energy distribution), Equation 5-4 is also satisfied. 

Es Eb = E p1 
Eb = E p2 

Eb = 1 3  (5-4) 

Denoting the ratio of the portion of the energy allocated to the systematic bit, Es, 

to the total energy per information bit, Eb, by c=Es/Eb, then Es=cEb and the energy 

allocated to each parity bit is Ep1=Ep2=(1-c)Eb/2. For a codeword with weight j generated 

from a word of information weight w, (j-w) parity bits are produced. In the standard turbo 

codes, the squared Euclidean distances between the zero-codeword and the codeword 

with weight j is rjEb. 

Now, the Euclidean distance must be modified to accommodate for the unequal 

distribution of the energy. For each frame, there are w information bits each with energy 

Es=cEb and( j-w) parity bits each with energy Ep1=Ep2=(1-c)Eb/2.  The modified squared 

Euclidean distances can be written as (wc+(j-w)(1-c)/2)Eb. Substituting in the pair-wise 

error probability in Equation 5-2, and into Equation 5-1, the probability of bit error 

becomes: 
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Note that if c = 1/3, this bound yields to the standard turbo code. 

5.2.3 Simulation and Analytical Results 

Using the simulation model described in Section 5.2.1, and modified analytical 

bounds, the performance of turbo codes is investigated. This investigation uses the SOVA 

decoder, with two frame lengths of 48 and 192 bits over a wide range of signal-to-noise 

ratios. Since the analytical bounds diverged at lower signal-to-noise ratios, the simulation 

model is used to predict the performance of turbo codes with unequal energy distribution 

at lower signal-to-noise ratios. 

By changing the power allocated to each bitstream, there is an improvement in the 

performance of turbo codes. Tables 5-1 and 5-2 show the comparison between the bit 

error rate (BER) for standard turbo codes with equal energy distribution and the 

minimum bit error rate occurring at certain energy distributions at the same signal-to-

noise ratio, Eb/N0, for frame lengths of 48 and 192 bits respectively. For example, in 

Table 5-1, for a frame length of 48 bits, the bit error rate is 1 x 10-1 at 0 db for the 

standard turbo code with the equal energy distribution (each bitstream has 1/3 of Eb/N0). 

This energy distribution is denoted in the table by (1/3, 1/3, 1/3). At the same signal-to-

noise ratio, the minimum bit error rate is 6.9 x 10-2 with 0.7Eb allocated to the systematic 

bit and 0.15 Eb allocated to each parity bit. This energy distribution is denoted in Table 

5-1 by (0.7,0.15, 0.15) for the unequal energy distribution. 

129




Figures 5-2 and 5-3 show the detailed simulation results of the simulated bit error 

rate (BER) for two signal-to-noise ratios, at different Es/Eb values for 48 and 192 bits 

frames respectively. At a very low signal-to-noise ratio (0 db in Figure 5-2 and – 0.5 db 

in Figure 5-3), the bit error rate decreased as the fraction of the energy allocated to the 

systematic part increases. 

Table 5-1 Comparison of Equal and Unequal energy distribution for 48-bit frames turbo codes. 

STANDARD TURBO CODE 

(EQUAL ENERGY 

DISTRIBUTION) 

MODIFIED TURBO CODE 

(UNEQUAL ENERGY 

DISTRIBUTION) 

SIGNAL-TO-

NOISE RATIO, 

0NEb 

BER Distribution BER Distribution 

0 db 1101.1 -· (1/3, 1/3, 1/3), 2109.6 -· (0.7,0.15,0.15) 

3.0 db 3107.1 -· (1/3, 1/3, 1/3), 4107.7 -· (0.4,0.3,0.3) 

Table 5-2 Comparison of Equal and Unequal energy distribution for 192-bit frames turbo codes. 

STANDARD TURBO CODE 

(EQUAL ENERGY 

DISTRIBUTION) 

MODIFIED TURBO CODE 

(UNEQUAL ENERGY 

DISTRIBUTION) 

SIGNAL-TO-

NOISE RATIO, 

0NEb 

BER Distribution BER Distribution 

0 db 1101.1 -· (1/3, 1/3, 1/3), 2109.8 -· (0.9,0.09,0.01) 

1.5 db 3107.4 -· (1/3, 1/3, 1/3), 3104.4 -· (0.5,0.25,0.25) 
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Figure 5-2 Simulated turbo code with frame lengths of 48 bits at two signal-to-noise 
ratios. 

Similar to [97], at very low signal-to-noise ratios, the performance is enhanced by 

allocating more energy to systematic bits. At practical signal-to-noise ratios around 

BER=10-3, the typical error rate required for voice transmissions are between 5·10-3 and 

4·10-2. Also, the simulated bit error rate at a signal-to-noise ratio of 3 db (for 48 bits 

frames) is shown in Figure 5-2 and of 1.5 db (for 192 bits frames) in Figure 5-3. Figures 

5-2 and 5-3 show that the minimum BER occurs at Es/Eb = 0.4 i.e., (0.4, 0.3, 0.3) in 

Figure 5-2 and in Figure 5-3 at Es/Eb = 0.5. Any increases in Es/Eb causes degraded 

performance. Therefore, limitations exist in increasing the energy allocated to the 

systematic bits operating in this region. 
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Figure 5-3 Simulated turbo code with frame lengths of 192 bits at two signal-to-noise 
ratios. 

At higher signal-to-noise ratios, the modified analytical bound given in Equation 

5-5 is used to handle the unequal energy distribution. Figures 5-4 and 5-5 show the 

analytical bound on BER for higher signal-to-noise ratios at different values of Es/Eb 

using 48 and 192 bits frames respectively. Figures 5-4 and 5-5 show that reducing the 

energy allocated to the systematic bits improves the performance up to a point where any 

reduction less than Es/Eb = 1/3 will not improve the performance. As shown in Figure 5-

4, this occurs at Eb/N0 = 4.0 db and in Figure 5-5 this occurs at Eb/N0 = 5.5 db. 
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Figure 5-4 Modified bounds of turbo code with frame length of 48 bits. 
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Figure 5-5 Modified bounds of turbo code with frame length of 192 bits. 
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5.3 General Interleaver for Equal and Unequal Error protection 

Key to the efficient operation of turbo codes is the interleaver design. With proper 

design, the pairing of low-weight sequences to the input of the encoders can be avoided. 

Circular shift interleavers can be used to ensure that the minimum distance due to weight-

2 input sequences grows roughly as N 2 , where N is the block length. For large frame 

lengths, an interleaver that permutes the data in a random fashion provides better error 

performance than structural interleavers. For short frame lengths, structural interleavers 

can perform as well as any random interleaver. 

In many speech and image coding schemes, certain coded information bits have 

higher sensitivity to channel errors than the other bits. In order to maximize channel use, 

unequal error protection codes are needed. Turbo codes that use Unequal Error 

Protection (UEP) have been introduced in previous research [80]. This research reported 

that UEP turbo codes could not be achieved by puncturing low rate codes alone if the 

information symbols corresponding to different classes are spread over the interleaved 

frame. It was also noted that the performance would be close to that of an Equal Error 

Protection (EEP) code. To overcome this problem, the authors in [80] proposed using a 

different interleaver for each protection level. This research uses only one interleaver to 

accomplish the unequal error protection required. 

5.3.1 Circular Shift Interleaver 

The performance of turbo codes depends on the type and size of the interleaver 

used. For short frame sizes, a structural interleaver can perform as well as any random 

interleaver that uses the same frame length [66]. Structural interleaving based on circular 
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shifting has been discussed in [41] as one of nonrandom interleavers. A circular shift 

interleaver is governed by the following formula: 

P( j) = (aj + r ) mod N , j = 0,1,..., N -1  (5-6) 

where j is the bit position inside the frame before interleaving, P( j )  is the interleaved 

position of bit j after interleaving, N is the interleaver length, r < N an offset, r = 0 if the 

edge effect is ignored, and a < N is a step size that is relatively prime to N. For 

illustration, Table 5-3 shows, the interleaving mapping generated by this formula with N 

= 18, a = 5, and r = 0. 

Table 5-3 Interleaving map for circular shift interleave (N = 18, a = 5, r = 0). 

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

( )jP 0 5 10 15 2 7 12 17 4 9 14 1 6 11 16 3 8 13 

In this example, if the distance between a pair of 1’s in an uninterleaved weight-2 

input sequence is d1 = 1, then the corresponding distance after interleaving is either d2 = 5 

or d2 = 13. Similarly, if d1 = 2 then either d2=10 or d2 = 8. This ensures that d1+d2 ‡ 6 for 

any possible combination of d1 and d2. If N is half of a perfect square, and taking the step 

size a = 2N -1, then d1 + d 2 ‡ N 2 is guaranteed for all possible combinations of d1 

and d2. The step size a that achieves this inequality is not unique. For example, 

a = l 2N – 1 also gives the same lower bound on d1+d2 for positive integers l < 2 
N 
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that are relatively prime to 2 N . In the case where N 2 is not an integer, d1+d2 ‡ m, 

where m is slightly smaller than N 2 , can be achieved for properly optimizing the step 

size. 

Given an application that needs large frame lengths, random interleavers have 

been shown to outperform structural interleavers. For this reason, circular shift 

interleavers have been ignored for use in large frame lengths. The performance of the 

circular shift interleaver has not been studied before using turbo codes with short frame 

lengths. A first-of-its-kind performance comparison of turbo codes using block, random, 

and circular shift interleavers is presented here. Figure 5-6 shows the performance of the 

three interleavers. 
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Figure 5-6 Performance of different turbo code interleavers for 192-bit frame lengths. 
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In Figure 5-6, the performance of the three interleavers is approximately the same 

up to 10-4 BER for short frame lengths. At a BER of 10-4, the performance of the circular 

shift interleaver is 0.3 db better than the other two interleavers. From this, it is concluded 

that the circular shift interleaver is suitable for short frame lengths. As long as a is an odd 

number and r is even or zero, this interleaver is an odd-even interleaver. This type of 

interleaver has been shown to have advantages for turbo code puncturing [69], yielding 

uniform distribution of the correcting capability of the codes in each dimension. 

5.3.2 A General Circular Shift Interleaver 

Problems associated with combining different rates in the same frame have been 

reported in [80]. Here, the authors proposed a method to avoid degradation in 

performance and still have the freedom to choose the necessary rates. This method is 

based on using different interleavers for each protection level. Using this strategy, the 

outputs of different interleavers can be connected in series. This research uses only one 

modified circular shift interleaver. 

Let the input frame length to the interleaver be N with M subframe protection 

levels, each of them with length Nm bits, 1 £ m £ M as shown in Figure 5-7. In Figure 5-7, 

Lm, 1 £ m £ M  represents the accumulated length of the preceding level lengths before 

the level m. Intuitively L1 = 0, and the other Lm are defined as follows: 

M -1 

Lm = � Ni , 2 £ m £ M  (5-7) 
i=1 

Now, the general interleaver is defined as follows: 
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L 
1 

= 0  L 
2 

L 
ML 

3 

�

�

M 
�( j) = � b � ( j)  (5-8)m m 

m = 1 

� 1 if Lm < j £ Lm + 1 

where, b m = � (5-9) 

� 0 Otherwise 

and � ( j )  represents the interleaving map within the subframe level m, and is given bym 

� ( j) = L + {a ( j - L ) mod N } , 1 £ m £ M  (5-10)m m m m m 

In Equation 5-10, am<Nm is a relatively prime to Nm and (j-Lm) represents the 

position of bit j in the subframe m. By employing the generalized mapping function 

defined in Equation 5-8, the whole frame can be interleaved by keeping each level 

separated from other levels using the our generalized circular shift interleaver. 

. . .N 
1 

N 
2 N 

M 
. . .  N 

1 
N 

2 N
M 

L
L = 0 L L M 

1 2 3 

Figure 5-7 Frame of length N with M-level error protection each with length Ni 

and starting at bit number Li. 

Note that the circular shift interleaver defined in Section 5.3.1 for equal error 

protection is a special case of the generalized one by letting M = 1 in Equation 5-8. In 
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Table 5-4, the interleaving mapping is generated using the generalized interleaver for two 

level of protection, i. e. M = 2, with input frame length N = 32 and level 1 and 2 lengths 

are 12 and 20 bits respectively. In this example, a1 =a2 = 7. 

5.3.3 Simulation Results 

The system model used in the simulation is based on the turbo code with two 

identical parallel concatenated Recursive Systematic Convolutional constituent encoders. 

Each encoder uses octal generators 5 (feedforward) and 7 (feedback). Both encoders are 

terminated using the scheme in [38]. The encoded bits are modulated using a Binary 

Phase Shift Keying modulator and transmitted over an Additive White Gaussian Noise 

channel. The decoding is performed using a Soft Output Viterbi Algorithm constituent 

decoder [51] with 8 iterations. 

The simulation model uses a frame length of 192 bits which consists of 190 

information bits plus 2 bits for termination. Only 190 bits need to be interleaved. Three 

levels of error protections have been implemented within each frame. Table 5-4 

illustrates the length and the rate for each level. 

The information bits are ordered inside the frame in decreasing order of 

importance. This strategy allows for the greatest performance benefits. The results from 

the EEP simulation show that the bits at the beginning of the frame have lower error rates 

than the bits at the end of the frame. 
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Three different puncturing matrices and one modified circular shift interleaver 

have been modeled. The systematic portion of the code is not punctured. The model 

parameters are set to: a1 = a2 = 7 , a3 = 13 , r1 = 0 , and r2 = r3 = 10 . 

Table 5-4 Interleaving map for modified circular shift interleave (N = 32, N1 = 12, N2 = 20). 

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

P( j) 0 7 2 9 4 11 6 1 8 3 10 5 16 23 30 17 

24 31 18 25 12 19 26 13 20 27 14 21 28 15 22 29 

Table 5-5 192-bit frame with 3 levels of local coding rates. 

Level Code rate Information bits Check 

+ information 

bits 

1 

2 

3 

1/3 

2/5 

2/3 

32 

48 

112 

96 

120 

168 

Overall frame 1/2 192 384 

Figure 5-8 shows the short term (8 bits) bit error rate (BER) with three-level UEP. 

In this example, the code rate is changing from 1/3 to 2/5 to 2/3 at an Eb/N0 = 0.5 db. It is 

shown in Figure 5-8 that there is no “spill over” effect when switching from one level to 

another. Additionally, each rate provides the expected error probability. The transition 

regions are comparable to those presented in [80]. An UEP turbo code is also compared 

with an EEP turbo code with the same frame length and same overall code rate of 1/2. 

Figure 5-9 shows the BER performance versus Eb/N0 for levels 1, 2, and 3 of the UEP 
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scheme with respect to the EEP scheme. For example, to achieve a BER £ 10-3, 10-2 and 

0.15, for the three UEP levels, respectively, the UEP turbo code meets these conditions at 

Eb/N0 = 1.1 db, while the EEP turbo code Eb/N0 = 2.4 db. 

As in the case of equal error protection, the proper selection of a guarantees that 

the separation between the bits in the same level will grow with m N 2 . Also, the 

separation between the level edges can be controlled by adding an offset term rm < Nm to 

Equation 5-10, as shown in Equation 5-11: 

� ( j) = L + {[a ( j - L ) + r ] mod N } , 1 £ m £ M  (5-11)m m m m m m 

5.4 Summary 

In the first part of this chapter, the problem of energy allocations in turbo codes 

was examined. In standard turbo codes, all bits are transmitted with equal energy. This 

strategy does not guarantee optimum allocation. For turbo codes with short frames, 

different ways to allocate the energy was investigated using computer simulation and 

analytic bounds. It was shown that, for turbo codes with short frames (we use the SOVA 

as a constituent component of the decoder) operating in very low signal-to-noise 

environments, allocating more (without any restriction on the amount of increase) energy 

to the systematic bits improves performance. At higher signal-to-noise ratios, allocating 

less energy to the systematic bits improves the performance. The most important results 

are seen at BER around 10-3. The results in this region show that by allocating half of the 

energy to the systematic bits, the best performance can be achieved. Any deviation from 

this half energy point results in degraded performance. 
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Figure 5-8 Short term BER for three-level Interleaving at Eb/N0 = 0.5 db. 
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Figure 5-9 BER performance comparison of EEP and UEP turbo code. 
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The latter portion of this chapter proposed and examined the application of a 

circular shift interleaver and its generalized version for both equal and unequal error 

protections with turbo codes for short frame lengths. In the case of equal error 

protection, the circular shift interleaver has slightly better performance at higher Eb/N0 

compared with block and random interleavers. In the case of unequal error protection, 

the generalized circular shift interleaver offers a comparable performance to those using 

different inteleaver for each level of protection. 
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6 Performance Bounds of Punctured Turbo Codes


6.1 Introduction 

In this chapter, the average upper bound of punctured turbo codes is derived from 

the knowledge of the conditional weight enumerating function of the original low-rate 

code. A novel approach for generating these bounds, hypergeometric puncturing, is 

introduced to average the performance over all possible punctured positions at a required 

code rate. From this, an analytic formula for error performance is derived. Values 

obtained from simulation trials are shown to be convergent with analytic results. 

Simulation results in Additive White Gaussian Noise (AWGN), fully interleaved fading, 

and correlated fading channels are also presented along with the analytical bound. 

Turbo codes [2] have been shown to achieve near-Shannon-limit error correction 

performance with relatively simple component codes and large interleavers. For a bit 

error probability of 10-5 and code rate = 1/2, it has been shown that an Eb/N0 of 0.7  dB is 

required for block lengths of 65,536 bits. A typical turbo code encoder is shown in 

Figure 6-1. This encoder consists of two binary rate 1/2 convolutional encoders, an 

interleaver of length N, along with puncturing and multiplexing devices. Without the 

puncturing device, the encoding is rate 1/3. The decoding process relies on iterative 
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processing in which each component decoder takes advantage of the work performed by 

the other in the previous step. 

A punctured turbo code is a high-rate code obtained by the periodic deleting of 

specific code symbols from the output of a low-rate code. The resulting high-rate code 

depends on both the low-rate code (original code) and on the number and specific 

positions of the punctured symbols. Since the first appearance of turbo codes, puncturing 

has been used to increase the code rate. Studies [56, 84, 99, 100, 101] that focused on 

punctured turbo codes have relied on simulation due to complexity associated in the 

analytical modeling. 
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xk 

yk 
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and 
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data 

Interleaver 
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Figure 6-1 Turbo-Code Encoder. 
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Many of the theoretical and structural properties of turbo codes are discussed in 

[42, 61, 62, 102, 103]. The most complete works in the analytic bounds are presented in 

[61, 62]. In [61], the authors derive an analytical upper bound for the average 

performance of the coding scheme. The average upper bound is constructed by averaging 

over all possible interleaver configurations. This upper bound is shown to be independent 

of the interleaver used and reveals the influence of the interleaver length on the code 

performance. In [62], the authors apply the transfer function bound techniques to obtain 

an upper bound on the probability of bit error. In their study, the authors developed a 

method for a recursive computation of the Weight Enumerating Function (WEF) of the 

convolutional code that is used as a constituent encoder with random interleaving for the 

calculation of the bound of the turbo code. 

This chapter extends the results presented in [61] and [62] by deriving an upper 

bound of the punctured turbo codes.  This is accomplished by averaging over all 

punctured positions, which in turn yields all possible punctured weights. Section 6.2 

presents a background of the punctured convolutional codes. Section 6.3 introduces 

useful definitions and notations that are used in the derivation of the punctured bound. 

The derivation of the punctured bound is presented in Section 6.4. In Section 6.5, the 

punctured bound is applied to AWGN, fully interleaved fading, and correlated fading 

channels. Section 6.6 evaluates the performance of these bounds and provide a 

comparison of the analytical bound with simulation results. 
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6.2 Punctured Convolutional Codes 

Punctured convolutional codes were first introduced in [104] for the purpose of 

obtaining simpler Viterbi decoding for rates b/v codes with two branches arriving at each 

node of the trellis instead of 2b branches. A punctured convolutional code is a high-rate 

code obtained by the periodic deleting of specific code symbols from the output of a low-

rate code. The resulting high-rate code depends on both the lower-rate code and the 

number and specific positions of the punctured symbols. The pattern of the punctured 

symbols is called the perforation pattern of the punctured code. 

Consider an original low-rate encoder with rate 1/v0. The punctured code with 

rate b/v can be obtained from the original low-rate code by deleting specific symbols 

according to the perforation pattern. The perforation pattern can be expressed as a matrix 

[P] having v0 rows and b columns with only binary elements 0s and 1s, corresponding to 

the deleting and keeping of the corresponding code symbols of the original encoder [105, 

106]. The perforation pattern contains v 1s. Both the punctured code and its rate can be 

varied by suitably modifying the elements of the perforation matrix. For example, 

starting from the original code of rate 1/2, to get rate 2/3 punctured code the following 

perforation matrix, P1 is used: 

Ø ø

Œ1 1 œ


[P1]= Œ
Œ 

œ
œ


Œ1 0œ 
º ß 
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œ Œ 

œ Œ œ Œ œ Œ 

achieving a rate 4/5 can be accomplished using the following perforation matrix, P2: 

Ø ø 
Œ1 0 1 0œ 

[P2]= ŒŒ 
œ
œ 

Œ1 1 0 1 œ 
º ß 

Variable rate coding can be achieved if all punctured rates of interest are obtained 

from the same lower-rate code. Only the perforation matrices need to be modified. By 

adding a restriction that all the code symbols of the higher rate punctured codes are 

required by the lower rate code, this means that any 1s exist in the higher rate perforation 

matrix must be exist in the perforation matrix of the lower-rates codes. For example, 

starting from the original code with rate 1/2, the following three perforation matrices P3, 

P4, and P5 are satisfying this condition and yielding 4/7, 4/6, and 4/5 punctured rates, 

respectively: 

Ø ø Ø ø Ø ø 
Œ1 1 1 1 œ Œ1 1 1 0œ Œ1 1 1 0 œ 

[P3]= Œ 
Œ 

œ 
œ [P4]= Œ 

Œ 
œ 
œ [P5]= Œ 

Œ 
œ 
œ 

Œ1 1 0 1œ Œ1 1 0 1œ Œ1 0 0 1œ 
º ß º ß º ß 

Punctured codes that satisfying this restriction are said to be rate-compatible [79]. 

Rate-Compatible Punctured Convolutional (RCPC) codes are useful in some rate 

adaptive ARQ/FEC applications since only the incremental redundancy needs to be 

transmitted as the coding rate is decreased. Families of good rate compatible punctured 

codes have been found in [17, 79]. 
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The error performance of punctured convolutional codes may be evaluated by 

computing the upper bounds on the bit error probability. Using the transfer function 

bounding technique, the upper bound of the bit error probability can be evaluated. The 

transfer function of a convolutional code is evaluated by solving equations describing the 

transitions between the states of the finite-state encoder. For punctured convolutional 

codes, the first step in the evaluation is the drawing of a proper state diagram for the 

encoder under consideration. Reflecting the assumption made on the punctured code 

trellis [106], knowledge of the perforation matrix is necessary to get the transfer function 

of the punctured code. 

6.3 Analytic Background 

It is useful to consider turbo codes as block codes. The input sequences are 

restricted to length N, where N corresponds to the size of the interleaver in the turbo code 

encoder. For discussion, consider a traditional union upper bound for maximum 

likelihood decoding of an (N, 3N) block code. Without loss of generality, the all-zero 

codeword is sent, and the upper bound of the probability of word error is [61]: 

3N 

Pe £ � Bd P2 (d ) (6-1) 
d = d free 

where Bd denotes the number of codewords with Hamming weight d, dfree is the minimum 

Hamming weight of all the non-zero codewords of the code and it is known as the free 

distance of the code, and P2(d) is the pair-wise error probability between the all-zero 

codeword and codeword with weight d. This bound can be calculated if the Weight 

Enumerating Function (WEF) [62] of the code, given by Equation 6-2, is available. 
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3N 

Bc (H ) = � Bd H d (6-2) 
d =0 

In Equation 6-2, H is a dummy variable. Due to the fact that the WEF enumerates the 

codewords weights without relating them to the input weight of the information, the WEF 

can be used to compute an upper bound of the word error probability. 

In [61], the authors define the Input-Redundancy Weight Enumerating Function 

(IRWEF) of the code as: 

Ac (W , Z ) = � Aw, j W w Z j  (6-3) 
w, j 

where Aw,j denotes the number of codewords of Hamming weight j generated by an input 

information word of Hamming weight w. The IRWEF makes explicit, in each term of the 

WEF, the separate contributions of the information and the parity bits to the total 

Hamming weight of the codewords. The IRWEF then provides information on the bit 

error probability. 

The conditional weight enumerating function, Ac (Z ) , of the parity check bitsw 

generated by the constituent code C corresponding to the input words of weight w is 

defined as follows: 

cAw (Z ) = � Ac
j Z j  (6-4) 

j 

cwhere Aj  denotes the number of codewords of weight j, and can be related to the IRWEF 

by: 
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cAc (W , Z ) = �W w Aw (Z )  (6-5) 
w 

Both Ac (W , Z )  and Ac (Z )  can be used with the union bound to compute an upperw 

bound to the bit error probability for maximum likelihood decoding. From this, the 

probability of bit error of turbo codes, in terms of its conditional weight function can be 

shown as follows [61, 62]: 

w c pPbit £ �� Aw, j P2 ( j)  (6-6) 
j w N 

cwhere Aw, 
p

j  denotes the number of codewords of the parallel concatenation (turbo code) 

with weight j generated by a word of information weight w. Parameters d1 and d2 

represent the parity weights of the first and second encoders respectively. The weight 

j = d1 + d 2 + w  and P2 ( j)  is the pair-wise error probability between the zero-codeword 

and the codeword with weight j. This means that to calculate the probability of bit error, 

cPbit, the WEF, Aw
p (Z ) , must be known. 

cFor a turbo code with a fixed interleaver, the construction of Aw
p (Z )  requires an 

exhaustive search. Due to the complexity involved in this search, [61] introduced the 

concept of the uniform interleaver to reduce the search overhead. Using this approach, an 

average upper bound on performance could be constructed by averaging over all possible 

interleavers. 

Definition 1: A uniform interleaver of length N is a probabilistic device which maps a 

given input word of weight w into all distinct Ncw permutations of it with equal 
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��

probability1/Ncw. From this, the average conditional WEF of the parallel concatenation 

(turbo code) can be obtained from those of the constituent codes 

c1 c2 
cAw

p (Z ) = 
Aw (Z ) Aw (Z ) 

, Ncw = �
� N �

� (6-7)
Ncw Ł w ł 

c p c p Z j (6-8)or equivalently, Aw (Z ) = � Aw, j 
j 

cTo get the individual components of Equation 6-6, Aw, 
p

j , equate the right hand 

sides of Equations 6-7 and 6-8. From this, the WEF of turbo code can be written as: 

c p cpA (W , Z ) = �W w Aw (Z )  (6-9) 
w 

6.4 Derivation of The Punctured Bound 

For punctured convolutional codes, extensive computer searches [104-107] have 

been performed to get an optimal (maximum free distance) puncturing pattern to obtain 

higher rates from the original low-rate code. Once the puncturing pattern is obtained, it is 

applied to the original low-rate trellis to get the WEF of the higher rate code. For turbo 

codes, the computer search for optimum puncturing patterns is very complex due to the 

existence of the interleaver. One of the goals of this research is to get the WEF of the 

punctured turbo code that is independent of specific puncturing pattern. 

152




In [61, 62], the authors calculated the average performance upper bound for turbo 

ccodes with rate 1/3. Here, from the knowledge of Aw, 
p

j , the methodology used in [61, 62] 

to calculate the probability of bit error rate of the punctured turbo codes for rates higher 

than 1/3 is extended. 

The number of codewords of a punctured turbo code with punctured weight v, 

c ppgenerated by a word of information weight w, is denoted by Aw,v . Writing the conditional 

WEF of the punctured turbo code yields: 

c c ppAw
pp (Z ) = � Aw,v Z v  (6-10) 

v 

where Z is a dummy variable. The individual terms of the average number of codewords 

are then calculated with punctured weight v generated by information weight w of the 

punctured turbo code, Acpp . Rewriting the probability of bit error in terms of thew,v 

punctured components yields: 

w cppPbit £ �� Aw,v P2 (v)  (6-11) 
v w N 

By knowing the conditional WEF, Acp (Z ), of the parallel concatenation of ratew, j 

1/3, the conditional WEF of the punctured code, Acpp 
w,v (Z ) , can be derived for any given 

code rate r > 1/3. The calculation is accomplished by introducing the concept of a 

hypergeometric puncturing device. Using this first-of-its-kind device, tractable analytic 

solutions to performance bounds are derived. The hypergeometric puncturing device  is 

defined as follows: 
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��

� � 

� � 

Definition 2:  For a given codeword of length L and weight  j generated from a word of 

information weight w, the device is to puncture (delete) M bits from the L bits (i.e., 

randomly choose L-M bits from L bits to survive). The hypergeometric puncturing 

device is a probabilistic device that maps the L bits with weight  j to L- M bits of all 

possible weights v with probability given by: 

� j � � L - j �
���� �� �� 

Pw (V = v | j) = 
Ł v ł Ł L - M - v ł 

, 0 £ v £ j  (6-12)
� L � 

Ł L - M ł 

The hypergeometric distribution [108] is a well known distribution in probability 

theory. Given a set with N items, with K being defective (or different), n items are 

randomly chosen from the set. The hypergeometric distribution yields the probability of 

getting x of the n items from the K set (or defective). Thus, X is a hypergeometric 

random variable and its probability distribution is given by Equation 6-13: 

� K � � N - K � 
�� �� �� �� 

P(X = x | K ) =
Ł x ł Ł n - x ł 

, x = 0,1,..., n  (6-13)
� N � 

Ł n ł 

Example:  Suppose there exist an input codeword of length L = 8, and weight K = 3, with 

an original code rate of 1/3. Let this codeword enter the puncturing device to yield a rate 

1/2 codeword. Then, as a representative example, M = 4 bits from this codeword need to 

be punctured. The possible output weights after puncturing are x = 0, 1, 2, and 3. 

Substituting these values into Equation 6-13, 
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��� � 

� 3 � � 5 � 
�� �� �� �� 

P (X = x | K = 3) = 
Ł x ł Ł 4 - x ł 

�8 � 

Ł 4ł 

Results in 

P (X = 0 | K = 3) = 5 / 70 , 

P (X = 1| K = 3) = 30 / 70 , 

P (X = 2 | K = 3) = 30 / 70 , 

P (X = 3 | K = 3) = 5 / 70 , 

And � P(X = x | K = 3) = 1 
x 

From Definition 2, the output of the puncturing device is averaged over all 

possible punctured positions to yield all the possible output punctured weights. As a 

consequence of this, the components of the conditional WEF of the punctured turbo 

codes are obtained from: 

cpp cpAw,v = � Aw, j Pw (V = v | j) (6-14) 
j 

Similar to the uniform interleaver in [61], one is confronted with a deterministic 

puncturing map. This map gives rise to one particular punctured frame for the input 

frame (i.e., only one punctured weight of the punctured frame). But the introduction of 

the hypergeometric puncturing device facilitates the derivation of the punctured WEF of 

the parallel concatenation. So, the following theorem and proof illustrates the 
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œŒ

œŒ

œŒ

œŒ

œŒ

œŒ

contribution of this device to averaging the number of punctured codewords with 

punctured weight v generated from a codewords with information weights w. 

CTheorem: Letting A ppk (W ,V ) be the IRWEF of the punctured code C pk
 obtained using 

the particular puncturing pattern Pk , then: 

Ek 
Ø A

C ppk (W ,V )ø = AC pp (W ,V )  (6-15)
º ß 

Where Ek[*] is the mean with respect to all punctured positions that gives all the possible 

output weights. 

Ø ø
CProof: Ek 

Ø
º 
A

C ppk (W ,V )ø
ß 

= Ek Œ
Œ�W wAw 

ppk (V )œ (6-16)
œº w ß 

= �W wEk 
Ø
º 
A

C ppk ø
ß 

(6-17)w 

w 

Ø ø 
w C ppk œ= �W Ek Œ

Œ� Aw,n œ 
(6-18) 

w º n ß 

Ø C ppk ø= �W w �Ek º 
Aw,n ß 

(6-19) 
w n 

C pp C ppk ø , thenFrom the definition of the hypergeometric puncturing device, Aw,n = Ek 
Ø
º 
Aw,n ß 

C ppEk 
Ø
º 
A

C ppk (W ,V )ø
ß 

= �W w � Aw,n (6-20) 
w n 

C = �W w Aw 
pp (V ) = AC pp (W ,V ) (6-21) 

w 
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Since the analytical upper bound has a linear dependency with the conditional 

WEF of the punctured code as shown in Equation 6-11, the following corollary is 

achieved: 

Corollary: The analytical upper bound using the IRWEF of the punctured turbo code, 

C ppA (W ,V )  coincides with average of the analytical upper bounds calculated with 

hypergeometric puncturing device. 

6.5 Application of The Bound 

The derived punctured bound in Equation 6-11 can be studied on various 

statistical channels by formulating the pair-wise error probability, P2 (v) , for the channel 

of interest. This section applies the derived punctured bound, using Binary Phase Shift 

Key (BPSK) modulation, to the Additive White Gaussian Noise (AWGN) channel, the 

fully interleaved Rayleigh fading channel, and the correlated Rayleigh fading channel. 

6.5.1 Additive White Gaussian Noise (AWGN) Channel 

It is assumed that the channel has AWGN with two-sided noise power spectral 

density of N0/2. Using BPSK modulation, the pair-wise probability is given by [12]: 

P2 (v) = Q�
� 

0 

2

N 

vrEb �
� (6-22) 

Ł ł 
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� � 

where r is the code rate of the code, Eb/N0 is the signal-to-noise ratio per information bit, 

v is the codeword weight, and Q(x)  is the tail integral of a standard Gaussian density with 

zero mean and unit variance defined as: 

¥ 
z-

Q(x) = � 2p 

1 
e 2 

2 

dz  (6-23) 
x 

6.5.2 Fully Interleaved Fading Channel with Perfect Side Information 

For the fully interleaved channel with perfect side information, the exact 

probability of incorrectly decoding a codeword C0 (zero codeword) into a codeword C j 

which differs from C0  in n  bit positions indexed by (i1 , i2 ,� � �, in )  is given by [75]: 

P(C0 fi C j a) = Q�
�� � 

=

n

1 

2

0 

2

k 
i

b 
k 

a
N 

rE �
�� (6-24) 

Ł ł 

where aik 
is the fading amplitude. To compute the average word error probability, 

P(C0 fi C j )  must be averaged over the fading amplitude a. The result is a multi-

dimensional integral and given as: 

P(C0 fi C j ) = � � � � � pA (ai1
, ai2

,� � �, ain 
) . P(C0 fi C j a) dai1 

� � � dain 
(6-25) 

ai1 
ain 

where pA (ai1
, ai2

,� � �, ai ) is the joint probability density function of the fading amplitudes.
n 

In case of independent fading amplitudes, the indices of the different bit positions are of 

no importance (only the weight of the incorrect codeword matters). The pair-wise error 
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probability can be formulated in terms of the Hamming distance of the codewords as 

follows: 

� 

N 

rEb 

0 

2 n � 
P2 (n ) = � � � � � pA (a1 , a2 ,..., an ) . Q�

� � ak 
2 

�
� da1 � � � dan (6-26) 

a1 an Ł k =1 ł 

For independent fading amplitudes, 

n 

pA (a1 , a2 ,� � �, an ) = � pA (ai )  (6-27) 
i=1 

The fading amplitude ai  is modeled with a Rayleigh probability density function, 

2

where p A (ai ) = 2ai e -ai  for ai > 0 . With sufficient interleaving (fully interleaved), the 

ai ’s are independent. The exact calculation of Equation 6-26 is extremely difficult. To 

solve this problem, the authors [75] examine four options. The first option (exact) is to 

simplify Equation 6-26 to a form that can be evaluated via numerical integration. The 

other three options avoid the problem of numerical integration by seeking closed form 

upper bounds for P2 (v) . The authors reported three other simplified options for the pair-

wise error probability and also concluded with comparison evaluations of these different 

simplification versions: 

Option 1: This bound is tight for larger values of rEb N 0 and weak at lower values and is 

given by: 

-n 

P2 (v) £ C(n ) 
�
�� rEb �

�� (6-28) 
Ł N 0 ł 
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-

) 
1)

�
�
ł

� 
(6-29)where 

Option 2: This bound differs by a scale factor from the exact for all values of rEb/N0 and 

is given by: 

n
Ø ø 
Œ œ 

P2 (v) £ 
1 Œ 1 œ (6-30)
2 

Œ
Œ
1+ 

rEb œ
œ 

º N 0 ß 

Option 3: This bound is tight for lower values of rEb N 0 and differ by a scale factor from 

the exact for higher values of rEb N 0 and is given by: 

Ø �
� 

rEb �
� 

1 2 ø
œ Ø ø 

n -1 

Œ Œ œ 
P2 (v) £ 

1 Œ
1- �

� 
N 0 � œ Œ 1 œ (6-31)
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�
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œ
œ Œ

Œ1+ 
rEb œ

œŒ Ł N 0 ł œß º N 0 ßº 

6.5.3 Correlated fading channel with perfect side information 

The exponentially correlated fading channel with an autocorrelation function is 

given by r(t ) = e - 2pfdt , where f d is the Doppler bandwidth and t is the lag parameter. 

As shown in [75, 109, 110], the pair-wise error probability is bounded by an expression 

which is a function of n and f dTs , where Ts is the symbol duration, and given by: 

-1 
ø 

P2 (n ) £ 
1 ØŒ�

�� rEb 
��
�

n 

(1 - e - 4pfdTs )n -1 
+n ��

� rEb �
�� + 1œ (6-32)

2 Œ
ºŁ N0 ł Ł N 0 ł œ

ß 
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6.6 Performance Evaluation 

This section shows the results of the derived punctured bound for different turbo 

code rates derived from the original code rate 1/3 turbo code. Using the simulation 

model, obtained results are compared with derived analytic bounds. The simulation 

model uses a turbo code with two identical parallel concatenated recursive systematic 

convolutional constitute encoders, separated by a random interleaver. Each encoder uses 

octal generators 5 (feedforward) and 7 (feedback) and is denoted as (5/7)8. Both 

encoders are terminated using the scheme presented in [38]. The encoded bits are 

punctured and then modulated using a BPSK modulator, and then transmitted over the 

designated channel. The decoding is performed using a Soft Output Viterbi Alogorithm 

(SOVA) as a constitute decoder [51] with 8 iterations. 

The derived punctured bound of the turbo code with two identical constituent 

encoders is applied with generator functions (5/7)8. The algorithm in [62] is used to 

calculate the WEF of the constituent codes. 

For an AWGN channel, Figures 6-2, 6-3 and 6-4 show the bound for frame 

lengths of 100, 200, and 500 bits for different code rates of 1/3, 2/5, 1/2, and 2/3 

respectively. As expected, the punctured bounds diverge at signal-to-noise ratios larger 

than those that occur at rate 1/3. 
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Figure 6-2 Analytical bounds for frame length of 100 bits in AWGN channel. 
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Figure 6-3 Analytical bounds for frame length of 200 bits in AWGN channel. 
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Figure 6-4 Analytical bounds for frame length of 500 bits in AWGN channel. 


The abrupt transition of the bound occurs when the signal-to-noise ratio, Eb N0 , 

drops below the threshold determined by the computation cutoff rate R0, i.e., when 

Eb/N0 < -1/r ln (21-r - 1) for a code rate r [62]. Figures 6-2, 6-3, and 6-4 show the abrupt 

change occurring for rates 1/3, 2/5, 1/2, and 2/3 at 2.03 db, 2.2 db, 2.5 db, and 3.1 db, 

respectively. Also, as seen for the 1/3 rate code, the evaluation of the punctured bound 

requires only a few terms in the summation at higher signal-to-noise ratios. The error 

floor (the low slope region of the performance curve where the error rate decreases very 

slowly with increasing the signal-to-noise ratio) still exists with the punctured bound. 
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Figure 6-5 shows a simulated punctured turbo code with a 192-bit frame length 

compared with the analytical punctured bound at rates 2/5 and 1/2. At higher signal-to-

noise ratios (greater than approximately 2 dB), the bound accurately predicts the turbo 

decoder performance. At signal-to-noise ratios less than R0, simulation is the only way to 

predict the performance of turbo codes due to the divergence in the performance of the 

analytical bound in this region. 
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Figure 6-5 Simulated and analytical bound for frame length of 192 bits punctured turbo 
code in AWGN channel. 
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For the fully-interleaved fading channel, Figures 6-6, 6-7, and 6-8 show the 

analytical bound for frame lengths of 100, 200, and 500 bits at code rates of 1/3, 2/5, 1/2, 

and 2/3. To calculate these bounds, the third option (Equation 6-31) is used as 

recommended in [75]. This approach yields the best compromise between the 

performance in regions of low signal-to-noise ratios while not requiring numerical 

integration. Figures 6-6, 6-7, and 6-8 show the effects of puncturing and frame lengths. 

As the code rate increases (more deleted bits), the performance degrades and as the frame 

lengths increase, the performance improves. It is also shown that the bounds diverge at 

lower signal-to-noise ratios. This leads to the need for the simulation to study the 

performance of punctured turbo codes in the diverged regions. 
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Figure 6-6 Analytic bounds for frame length of 100 bits in the fully interleaved 
fading channel. 
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Figure 6-7 Analytic bounds for frame length of 200 bits in the fully interleaved 
fading channel. 
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Figure 6-8 Analytic bounds for frame length of 500 bits in the fully interleaved 
fading channel. 

166 

B
E

R
 

B
E

R
 



In Figure 6-9, a simulated punctured turbo code with a frame length of 192 bits is 

compared with the analytical punctured bound at code rates of 1/2 and 2/3. Figure 6-9 

shows that the analytic bound diverges at lower signal-to-noise ratios and the simulation 

is the only tool to investigate the performance at lower signal-to-noise ratios. 
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Figure 6-9 Simulated and analytical bound for frame length of 192 bits punctured 
turbo code in the fully interleaved fading channel. 

B
E

R



167




For the correlated fading channel, Figures 6-10, 6-11, and 6-12 show the 

analytical bound for frame lengths of 100, 200, and 500 bits, respectively, at different 

code rates of 1/3, 2/5, 1/2, and 2/3 for various fading rates ( f dTs  products) of 0.1 and 

0.01. It can be seen that the performance degrades as the code rate increases (more 

deleted bits), the frame length decreases, and the correlation of the channel increases 

( f dTs  decreases). 
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Figure 6-10 Analytical bounds for frame length of 100 bits in the correlated 
fading channel with 0.01 and 0.1 correlation rates. 
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Figure 6-11 Analytical bounds for frame length of 200 bits in the correlated 
fading channel with 0.01 and 0.1 correlation rates. 
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Figure 6-12 Analytical bounds for frame length of 500 bits in the correlated 
fading channel with 0.01 and 0.1 correlation rates. 
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Figures 6-13 and 6-14 show the simulated punctured turbo codes with a frame 

length of 192 bits for fading rates of f d Ts = 0.01 and 0.1 , respectively. In the simulated 

model, the auto-correlation function, R(k ), given in Equation 6-33 is used. This function 

is based on Clark’s model [94] and is given by: 

R(k ) = 
1 

J 0 (2pf dTs k )  (6-33) 
pf dTs 

where J 0 (*) is the Zero-order Bessel function of the first kind. This model is used in the 

simulation to produce more realistic results than those obtained from the exponential 

correlation.  While exponential correlation has the benefit of mathematical tractability, it 

is not the most realistic model [111]. 

Figures 6-15 and 6-16 present a comparison of a simulated punctured turbo code 

with a frame length of 192 bits to the analytical punctured bound at rates of 2/5 and 1/2 

for f dTs = 0.01and 0.1, respectively. Figures 6-15 and 6-16 show that as the correlation 

of the channel increases ( f d Ts


punctured bits), the need for simulation to study the performance at lower signal-to-noise 


ratios increases due to the fast divergence of the analytical bound.


decreases), and the code rate increases (due to more 
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Figure 6-13 Simulated bounds of punctured turbo code for frame length of 192 

bits in the correlated fading channel with 0.01 correlation rate.
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Figure 6-14 Simulated bounds of punctured turbo code for frame length of 192 

bits in the correlated fading channel with 0.1 correlation rate.
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Figure 6-15 Simulated and analytical bound for frame length of 192 bits in the 
correlated fading channel with f d Ts = 0.01 . 
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Figure 6-16 Simulated and analytical bound for frame length of 192 bits in the 
correlated fading channel with f d Ts = 0.1. 
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6.7 Summary 

In this chapter, the hypergeometric puncturing device was introduced. The 

introduction of the hypergeometric puncturing device makes the derivation of the 

analytical punctured bound of turbo codes tractable. The hypergeometric puncturing 

device allows for averaging over all possible punctured positions.  Simulation results in 

AWGN, fully-interleaved fading, and correlated fading channels were also presented 

along with the analytical bound. The analytic performance bound was compared with the 

simulation results obtained for various code rates. The comparison shows that the two 

bounds, analytical and simulation, are identical at higher signal-to-noise ratios but 

diverge at lower signal-to-noise ratios. This bound can also be extended for use with 

different punctured turbo code modulations and for assistance in designing punctured 

turbo codes. 
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7  Conclusions and Future Work


7.1 Conclusions 

In Chapter 2, the parameters and types of fading in wireless communication 

systems were reviewed. The channel coding techniques deployed in wireless 

communication systems were also discussed. 

Turbo code performance is sensitive to its code structure which is made up of 

code rate, constraint length, tap connection, block size, interleaving pattern, and number 

of decoding iterations. In Chapter 2, the problem of choosing different turbo code 

components and how these choices affect turbo code performance was discussed. The 

problem of turbo code application to cellular mobile communication systems was also 

discussed. 

From this discussion, it was concluded that optimizing different turbo code 

components is closely related to the chosen application. The choice of constituent 

encoder depends on its distance spectrum. If the quality of service requires low bit error 

rate, e.g., data transmission, the design focuses on choosing a constituent encoder with a 

sparse spectrum for the first few low-weight codewords. The termination of both 

encoders was also shown to be important. In the case where lower signal-to-noise ratios 
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or higher bit error rates are permissible, e.g., speech transmission, the distance spectrum 

of the constituent encoders plays a very important role in choosing this component. In 

this region, the multiplicity of low and moderate weight codewords is required to be 

minimal. Also, choosing the interleaver length is restricted by application sensitivity to 

the time delay and restricts performance in certain cases, e.g., speech transmission. 

Interleaving map performance depends on interleaver length. For short frames, 

structured interleavers perform better than nonstructured ones. Random interleavers 

perform best when the interleaver is long. 

It was shown that sensitivity to the delay restricts the number of decoder 

iterations. Complexity and memory size availability also restrict the component decoder 

type used. 

The principle of iterative decoding using turbo decoder was presented in Chapter 

3. Turbo decoder performance depends mainly on the soft-input/soft-output constituent 

decoders. The process for applying the soft-in/soft-out constituent decoder to the 

iterative turbo decoder was presented. Information transfer from one decoder to another 

was shown to be essential for improving performance from one step to the next in the 

iterative decoding process. The Viterbi algorithm was also reviewed, along with its 

modified version that delivers soft decisions used by a constituent soft-input/soft-output 

decoder. All related mathematics associated with implementing the iterative decoding 

process were presented. 

Chapter 4 provided a discussion on the analytical model development for 

evaluating the analytical bound for turbo code performance. The idea of uniform 
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interleaving was presented along with tractable analytical bound calculations. A method 

was detailed for calculating the average weight enumerating function of turbo codes 

using the weight enumerating function calculation for convolutional codes when used as 

constituent decoders of the parallel concatenation. 

The development of turbo code simulation models, channel models, and 

implementation issues were presented. The Soft Output Viterbi Algorithm (SOVA) 

implementation in a constituent decoder of the turbo decoder was addressed along with 

practical implementation issues. The last section of Chapter 4 detailed operating 

assumptions for experiments conducted. 

In Chapter 5, the problem of energy allocation in turbo codes was examined. In 

standard turbo coding, all bits are transmitted with equal energy. This strategy does not 

guarantee optimum allocation. For turbo code applications involving short frames, 

computer simulation and analytic modeling were used to examine different ways to 

allocate energy to frame bits. Results show that, for turbo codes with short frames (using 

SOVA as a constituent decoder component) operating in very low signal-to-noise 

environments, allocating more (without restriction on the amount of increase) energy to 

the systematic bits improves performance. At higher signal-to-noise ratios, allocating 

less energy to systematic bits improves performance. The most important results are seen 

at a BER of approximately 10-3. In this region, results indicate that by allocating half the 

energy to systematic bits, optimal performance can be achieved. Any deviation from this 

half energy point results in degraded performance. 
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A new interleaving approach, the general circular shift interleaver, is presented in 

Chapter 5. This interleaver’s performance was examined and reported using 

mathematical analysis and computer simulations. The application of the circular shift 

interleaver and its generalized version for both equal and unequal error protections with 

turbo codes for short frame lengths were presented. In the case of equal error protection, 

the results show that circular shift interleaving provides slightly better performance at 

higher Eb/N0 values when compared with block and random interleaving. In the case of 

unequal error protection, the generalized circular shift interleaver offers comparable 

performance to those using a different inteleaver for each level of protection. 

Chapter 6 presented a novel approach for obtaining the analytic punctured bound 

for turbo codes. The hypergeometric puncturing device was introduced which makes the 

analytical punctured bound derivation of turbo codes tractable. The hypergeometric 

puncturing device allows for averaging over all possible punctured positions. Simulation 

results in AWGN, fully interleaved fading, and correlated fading channels are also 

presented along with the analytical bound. The analytic performance bound was 

compared with simulation results for various code rates. The comparison shows that the 

two bounds, analytical and simulation, are identical at higher signal-to-noise ratios with 

the analytical bound diverging at lower signal-to-noise ratios. The abrupt transition of 

the analytic bound occurs when the signal-to-noise ratio drops below the threshold 

determined by computation cutoff rate. Simulation is the only effective way to predict 

turbo code performance in regions where the analytic bound divergence. 
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7.2 Contributions and Future Work 

The original contributions of this research: 

1.	 A comprehensive turbo code tutorial with application to wireless mobile 

communication systems. A tutorial of this level is not available in previous open 

literature. As a result, a draft journal article is under revision for IEEE 

Communications Surveys. 

2.	 A complete tutorial of the turbo decoder iterative processing. This discussion 

addressed the most complex and least understood concepts of turbo coding. 

3.	 Turbo code performance enhancement using short frames with unequal energy 

distribution. Simulation and analysis results have been published in IEEE 

International Conference on Information Technology: Coding and Computing 

[112]. 

4.	 Proposal of a new interleaver for short frame applications. This new interleaver 

can be used in both equal and unequal error protections application. This work has 

been published in IEEE International Conference on Information Technology: 

Coding and Computing [113]. 

5.	 A novel method for deriving an analytic bound of punctured turbo codes has been 

introduced. This work has been published in the journal of IEE Electronic Letters 

[114]. 
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6.	 A mathematical analysis for punctured turbo coding which fills a critical void in 

previously published works. This analysis is summarized in a draft paper to be 

submitted to IEEE Transactions on Information Theory. 

Proposals for future work may include: 

1.	 For short frame applications, structured interleavers can perform as well as 

random interleavers. This opens areas for future work to search or design an 

optimum structured interleaver. In the case of punctured turbo codes, the 

existence of the interleaver complicates the puncturing process. Thus, any search 

or design procedure for an optimum interleaver must take into account the 

puncturing process. 

2.	 Study the performance of turbo codes with short frames using a jointly designed 

constituent encoder and interleaver. Different constituent encoders, different 

polynomial generators and different memory sizes, should be studied along with 

any proposed interleaver. Throughout this investigation, the constituent encoder 

used a memory length of two and its generator polynomial was optimum in the 

sense that it maximized the free distance and effective weight of the constituent 

code. 

3.	 Extending the derived punctured bound for use with different punctured turbo 

code modulations and for aiding in the design of punctured turbo code 

components (constituent encoders). 
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4.	 Extending the iterative decoding process of turbo codes, especially with speech 

transmission (i.e., short frames applications), to be used jointly with the source 

decoder. This joint decoding should enhance turbo code performance. In a 

typical case, both the channel decoder and source decoder work independently. 

Exchanging information between the source decoder and the channel decoder in 

an iterative process before making a final decision will enhance performance. As 

A. J. Viterbi said in [115], one of three lessons learned was to never discard 

information prematurely that may be useful in making a decision until after all 

decisions related to that information have been computed. 

181




Appendix A 

The Maximum A posteriori Probability (MAP) Algorithm 

Throughout this investigation, the Soft Output Viterbi Algorithm (SOVA) was 

mentioned many times versus the Maximum A posteriori Probability (MAP) algorithm. 

The only algorithm discussed previously was the SOVA. Here the MAP algorithm is 

presented for completeness. 

The Viterbi algorithm (VA) is an optimal decoding algorithm which minimizes 

the probability of sequence error for convolutional codes. However, this algorithm does 

not necessarily minimize the probability of symbol (bit) error for the decoded bit. Also, 

VA is not able to deliver the a posteriori probability (APP) for each decoded bit. 

The symbol-by-symbol maximum a posteriori (MAP) algorithm was proposed in 

1974 by Bahel, et al. [47] as an optimal decoding algorithm. This algorithm is also 

denoted by BCJR (first letters of the name of the four authors). The algorithm minimizes 

the symbol error probability in decoding linear block and convolutional codes and 

delivers the APP for each decoded bit. In [2, 27], the BCJR or MAP algorithm was 

modified in order to take into account the recursive character of the convolutional code to 

be applied to turbo codes. 
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MAP algorithm for recursive systematic convolutional codes: 

Consider a recursive systematic convolutional (RSC) code with constraint length 

K, and rate 1/2, at time k the encoder state denoted by Sk. Assume that the information bit 

sequence {dk} has N-bit length, where dk = {0, 1}, and the initial state of the encoder, S0, 

and the final state of the encoder, SN, are the zero states. 

The input to the encoder at time k is a bit dk and the corresponding output binary 

couple is (Xk, Yk). For a discrete memoryless Gaussian channel and a binary modulation, 

the decoder input is made up of a couple Rk of two random variables at time k, given as: 

xk = (2 X k -1)+ ik  (A-1a) 

yk = (2Yk -1)+ qk  (A-1b) 

where ik and qk are two independent noises with the same variance s2. The encoder 

output codeword sequence, noted by C1 
N = {C1,..., Ck ,..., CN } where Ck = (Xk, Yk) is the 

input to a discrete Gaussian memoryless channel whose output is the sequence 

R N = {R1 ,..., Rk ,..., RN } where Rk = (xk, yk). 

Now, the task of the MAP algorithm is to calculate the a posteriori probability 

(APP) of each decoded bit. The logarithmic of likelihood ratio (LLR), L(dk), associated 

with each decoded bit dk is given by: 

L(dk ) = log 
P(dk = 1observation)

 (A-2)
P(dk = 0 observation) 
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where P(dk = i | observation) and i = 0, 1 is the a posteriori probability (APP) of the 

decoded bit dk. According to the received sequence, R1 
N , Equation A-2 becomes: 

N 

L(dk ) = log 
P(dk = 1 R1 

N 

)
 (A-3)

P(dk = 0 R1 ) 

Now, we need to calculate the APPs P(dk = i R1 
N ) , i = 0, 1 for any decoded bit dk. The 

encoder is assumed to be a discrete-time finite-state Markov process. The encoder has 2n 

distinct states, where n is the memory of the encoder, n = K – 1. The object of the 

decoder is to examine the received codeword, R1 
N , and estimate the APPs of the decoded 

bits. 

At any state m, where m = {0, 1,…, 2n-1}, at time k, the probability of being at 

state m given the received sequence, R1 
N , is P(Sk = m R1 

N )  which is made up of two 

components P(dk = 1, Sk = m R1 
N )  and P(dk = 0, Sk = m R1 

N ) . Then, the APP of a 

decoded bit at state m at time k is: 

li
k (m) = P(dk = i, Sk = m R1 

N ) , i = 0,1 (A-4) 

The APP of a decoded bit at time k is the summation of APPs at all states at time k, given 

as: 

P(dk = i | R1 
N ) = �li

k (m) , i = 0,1 (A-5) 
m 
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Substituting from Equation A-5 into Equation A-3, the LLR L(dk) associated with 

each decoded bit dk becomes: 

�l1 
k (m) 

L(dk ) = log m 

�l0 
k (m)

 (A-6) 

m 

Once the APPs li
k (m) , i =0, 1, are calculated, the decoder can make a decision by 

comparing L(dk) to a threshold equal to zero, as follows: 

d̂ k = 1 if L(dk) ‡ 0 (A-7a) 

d̂ k = 0 if L(dk) < 0 (A-7a) 

To calculate li
k (m) , i =0, 1, further mathematical manipulation is needed. State m at 

time k can be reached from any state m¢ at time k-1 (if a transition from state m¢  to m is 

possible in the state diagram of the encoder) as a response to an input dk =i, i =0, 1. 

li
k (m) = P(dk = i, Sk = m R1 

N ) 

= � P(dk = i, Sk -1 = m¢, Sk = m R1 
N )  (A-8) 

m¢ 

where P(dk = i, Sk -1 = m¢, Sk = m R1 
N )  is the APP of the branch connected the two states, 

m¢  to m, in the trellis diagram of this encoder. Applying Bayes rule to Equation A-8, 

then Equation A-8 becomes: 

li
k (m) = � P(dk = i, Sk -1 = m¢, Sk = m, R1 

N )
 (A-9)

N 
m¢ P(R1 ) 
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NIn Equation A-9, the term P(R1 )  is neglected in the denominator because it is 

independent of state m or m¢ and is cancelled when substituting in Equation A-6. The 

R1 
N  in the numerator can expressed as: 

R1 
N = {R1 ,..., Rk ,..., RN } 

= {R1 
k , Rk

N 
+1 }  (A-10) 

where R1 
k = {R1,..., Rk } and Rk

N 
+1 = {Rk +1 ,..., RN }, then Equation A-9 becomes: 

li
k (m) = � P(dk = i, Sk -1 = m¢, Sk = m, R1 

k , Rk
N 
+1 ) 

m¢ 

= � P(Rk
N 
+1 dk = i, , Sk -1 = m¢, Sk = m, R1 

k ) P(dk = i, Sk -1 = m¢, Sk = m, R1 
k )  (A-11) 

m¢ 

Note that if state Sk is known, then the events after time k are not influenced by 

observation R1 
k  and bit dk. 

Equation A-11 then becomes: 

li
k (m) = � P(Rk

N 
+1 Sk = m) P(dk = i, Sk -1 = m¢, Sk = m, R1 

k )  (A-12) 
m¢ 

kAgain, R1  can be expressed as: 

R1 
k = {R1,..., Rk } 

= {R1 
k -1 , Rk }  (A-13) 
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Equation A-12 becomes: 

li
k (m) = � P(Rk

N 
+1 Sk = m) P(dk = i, Sk = m, Rk Sk -1 = m¢, R1 

k -1 ) P(Sk -1 = m¢, R1 
k -1 ) 

m¢ 

(A-14) 

Events after time k –1 do not depend on R1 
k -1 if the state Sk-1 is known, then Equation A-

14 becomes: 

li
k (m) = � P(Rk

N 
+1 Sk = m) P(dk = i, Sk = m, Rk Sk -1 = m¢) P(Sk -1 = m¢ | R1 

k -1 ) P(R1 
k -1 ) 

m¢ 

(A-15) 

In Equation A-15, the term P(R1 
k -1 )  will be neglected because it is independent of m or 

m¢  and will be cancelled when substituting into Equation A-6. 

Equation A-15 then becomes: 

li
k (m) = � P(Rk

N 
+1 Sk = m) P(dk = i, Sk = m, Rk Sk -1 = m¢) P(Sk -1 = m¢ | R1 

k -1 )  (A-16) 
m¢ 

Substituting li
k (m) , i =0, 1 from Equation A-16 to the logarithmic of likelihood ratio 

(LLR) L(dk) in Equation A-6: 

�� P(Rk
N 
+1 | Sk = m) P(Sk -1 = m¢ | R1 

k -1 ) P(dk = 1, Sk = m, Rk | Sk -1 = m¢) 
L(dk ) = log m m¢ 

�� P(Rk
N 
+1 | Sk = m) P(Sk -1 = m¢ | R1 

k -1 ) P(dk = 0, Sk = m, Rk | Sk -1 = m¢) 
m m¢ 

(A-17) 
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To calculate L(dk) in Equation A-17, as in [87] the probability functions a k (m) , b k (m) , 

and g i (Rk , m¢, m)  are defined by: 

ka k (m) = P(Sk = m | R1 )  (A-18a) 

b k (m) = 
P(Rk

N 
+1 

N 

| Sk = 
k

m)
 (A-18b)

P(Rk +1 | R1 ) 

g i (Rk , m¢, m) = P(dk = i, Sk = m, Rk | Sk -1 = m¢)  (A-18c) 

Equation A-17 then becomes: 

��g 1 (Rk , m¢, m)a k -1 (m¢)b k (m) 
L(dk ) = log m m¢ (A-19)

��g 0 (Rk , m¢, m)a k -1 (m¢)b k (m) 
m m¢ 

The probability g i (Rk , m¢, m)  in Equation A-18c can be calculated as: 

g i (Rk , m¢, m) = P(dk = i, Sk = m, Rk | Sk -1 = m¢) 

P(dk = i, Sk = m, Rk , Sk -1 = m¢)
= 

P(Sk -1 = m¢) 

P(Rk | dk = i, Sk -1 = m¢, Sk = m) P(dk = i, Sk -1 = m¢, Sk = m) 
= 

P(Sk -1 = m¢) 

P(Rk | dk = i, Sk -1 = m¢, Sk = m) P(dk = i | Sk -1 = m¢, Sk = m) P(Sk -1 = m¢, Sk = m) 
= 

P(Sk -1 = m¢) 

P(Rk | d k = i, Sk -1 = m¢, Sk = m) P(d k = i | Sk -1 = m¢, S k = m) P(Sk = m | Sk -1 = m¢) P(Sk -1 = m¢) 
= 

P(S k -1 = m¢) 
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= P(Rk | d k = i, Sk -1 = m¢, Sk = m) P(d k = i | Sk -1 = m¢, Sk = m) P(Sk = m | S k -1 = m¢)  (A-20) 

where P(Rk | d k = i, Sk -1 = m¢, Sk = m)  is the transition probability of the discrete Gaussian 

memoryless channel. For rate 1/2 encoder, Rk is made up of two uncorrelated Gaussian 

random variables xk, yk (i.e., Rk = (xk, yk)). 

Then: 

P(Rk | d k = i, Sk -1 = m¢, Sk = m) = P(xk | d k = i, Sk -1 = m¢, Sk = m) P( yk | d k = i, Sk -1 = m¢, Sk = m) 

(A-21) 

Since the convolutional encoder is a deterministic machine, P(d k = i | Sk -1 = m¢, Sk = m)  is 

equal to 1 if the transition from Sk -1 = m¢ to Sk = m  due to input dk = i exists and equal 

to 0 if it does not exist. The transition state probabilities P(Sk = m | Sk -1 = m¢)  of the trellis 

are defined by the encoder input statistics. Generally, P(d k = 1) = P(d k = 0) = 1/ 2 . Since 

there are two possible transitions from each state, then P(S k = m | S k -1 = m¢) = 1/ 2  for each 

of these transitions. 

The probabilities a k (m)  and b k (m)  can be recursively calculated from 

g i (Rk , m¢, m)  as in [4]: 

1 

��g i (Rk , m¢, m) a k -1 (m¢) 
a k (m) = m¢ i=0 (A-22)

1 

���g i (Rk , m¢, m) a k -1 (m¢) 
m m¢ i=0 

189




1 

��g i (Rk +1 , m¢, m) b k +1 (m¢) 
b k (m) = m¢ i=0 (A-23)

1 

���g i (Rk +1 , m¢, m) a k (m¢) 
m m¢ i=0 

The MAP algorithm implementation: 

1. Initialize the boundary conditions: 

a.	 Suppose the trellis starts with the zero state, then: 

�1 m = 0 
a 0 (m) = � (A-24a) 

�0 m „ 0 

b.	 If the trellis is terminated and the last state is the zero state, then: 

�1 m = 0
b N (m) = � (A-24b) 

�0 m „ 0 

1
If the trellis is not terminated (i.e., the final state is known), then b N (m) =  for all n2 

m at time N. 

2.	 As soon as Rk = (xk, yk) is received, the decoder computes g i (Rk , m¢, m)  and 

a k (m)  using Equations A-20 and A-22, respectively. 

3.	 At time k, repeat Step 2 for all m = 0, 1, …, 2n-1, where n is the memory of the 

encoder. 

4. Repeat Steps 2 and 3 for all time k = 0,…, N. 
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5. The obtained values of a k (m)  and g i (Rk , m¢, m)  are stored for all k and m. 

N6.	 After the complete sequence R1

computes b k (m)  using Equation A-23. 

has been received, the decoder recursively 

7.	 At time k, repeat Step 6 for all m = 0, 1, . . ., 2n-1, where n is the memory of the 

encoder with k = N-1. 

8. Repeat Steps 6 and 7 for all time k = N-2, N-3, . . ., 0. 

9. The obtained values of b k (m) are stored for all k, and m. 

10. For k = 0, 1, . . ., N-1, having a k (m)  and g i (Rk , m¢, m) , the logarithmic of 

likelihood ratio (LLR), L(dk) associated with each decoded bit dk is computed 

using Equation A-19. 

The MAP algorithm calculates the APP for each decoded bit. However, the MAP 

algorithm suffers from a computational complexity due to working with a large number 

of multiplications. The log-MAP algorithm [57] performs the MAP algorithm in the 

logarithmic domain, i.e., performing multiplications in the logarithmic domain as 

additions. The log-MAP algorithm is a transformation of MAP, which has equivalent 

performance without its problems in practical implementations. 
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