Please use a friction of 0.08 and assume no drag. To be more descriptive the vehicle is about twelve feet long on a smooth resin surface with an average weight of 600 lbs .

The vehicle is actuall $11^{\prime} 6$ " long. It is a flat inner tube, no wheels and it is in contact with the surface.

Additional information: $\quad \mathrm{k}_{\mathrm{f}}=0.08 \quad$ Wgt $:=600 \mathrm{lbf}$ Vehicle width: 46"

Friction is defined (traditionally) as $\mathrm{k}_{\mathrm{f}} \times \mathrm{Wgt}$; the force opposes motion and is proportional to the normal force to the surface.

Initial speed

$$
\mathrm{V}_{\mathrm{o}}:=20 \frac{\mathrm{ft}^{】}}{\mathrm{sec}}
$$

Drag review. Flat plate drag $C_{D}=1.5 \quad F_{d r a g}=C_{D} \cdot \frac{\rho \cdot V^{2}}{2} \cdot$ Area
for air near the earth's surface

$$
\begin{aligned}
& \rho_{\mathrm{air}}:= 0.0765 \frac{\mathrm{lb}}{} \quad \text { Area }:=1 \mathrm{ft} \cdot 46 \mathrm{in}=3.833 \cdot \mathrm{ft}^{2} \quad \text { (no height given.') } \\
& 1.5 \cdot \frac{\rho_{\mathrm{air}} \cdot\left(20 \frac{\mathrm{ft}}{\mathrm{sec}}\right)^{2}}{2} \cdot \mathrm{Area}=2.734 \cdot \mathrm{lbf} \\
& \frac{\rho_{\mathrm{air}} \cdot\left(20 \frac{\mathrm{ft}}{\mathrm{sec}}\right)^{2}}{2} \cdot \mathrm{Area} \\
& \mathrm{k}_{\mathrm{f}} \cdot \mathrm{Wgt}=5.697 \cdot \%
\end{aligned}
$$

Probably can ignore drag for initial pass.

Slope where friction and gravity cancel. (If the hill is steep enough, the acceleration due to gravity will equal the retarding force of friction, and the sled will move at constant speed.

Retarding force: $\quad \mathrm{F}_{\text {fric }}=\mathrm{k}_{\mathrm{f}} \cdot \mathrm{Wgt} \cdot \cos (\theta)$

Gravitational Acceleration: $\mathrm{F}_{\text {grav }}=\mathrm{Wgt} \cdot\binom{\sin (\theta)}{\cos (\theta)}$

$$
\mathrm{k}_{\mathrm{f}} \cdot \mathrm{Wgt} \cdot \cos (\theta)=\mathrm{Wgt} \cdot \sin (\theta)
$$

$$
\mathrm{k}_{\mathrm{f}}=\frac{\sin (\theta)}{\cos (\theta)}=\tan (\theta) \quad \operatorname{atan}\left(\mathrm{k}_{\mathrm{f}}\right)=4.574 \cdot \mathrm{deg}
$$

Profile

data :=

	0	1
0	500	400
1	498.997	\ldots

$$
\mathrm{X}:=\operatorname{data}^{\langle 0\rangle_{\mathrm{ft}}}
$$

$$
\mathrm{Z}:=\text { data }^{\left\langle{ }^{2}\right\rangle} \mathrm{ft}
$$

Let's turn the X coordinate around

$$
\underset{\sim}{X}:=-\left(X-X_{0}\right)
$$

Yes the units are feet. The vehicle (inner Tube) travels from right to left on a wet surface entering the profile at 20 fts .

Now traveling left to right since X was reversed!

Build a function expression for the profile
vs :=1spline $(\mathrm{X}, \mathrm{Z}) \quad \operatorname{Path}(\mathrm{x}):=\operatorname{interp}(\mathrm{vs}, \mathrm{X}, \mathrm{Z}, \mathrm{x})$

$$
\mathrm{xx}:=0 \mathrm{ft}, 6 \mathrm{in} . .189 \mathrm{ft}
$$

slope of the profile is the derivative

$$
\operatorname{slp}(\mathrm{x}):=\frac{\mathrm{d}}{\mathrm{dx}} \operatorname{Path}(\mathrm{x}) \quad \operatorname{slp}(0 \mathrm{ft})=-5.639 \cdot \operatorname{deg}
$$

Now, gravity always points down, friction always points back the path.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{grav}}(\mathrm{x}):=\mathrm{Wgt} \cdot\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) \quad \mathrm{F}_{\text {fric }}(\mathrm{x}):=\left(\mathrm{k}_{\mathrm{f}} \cdot \mathrm{Wgt}\right)\left(\begin{array}{c}
-|\sin (\operatorname{slp}(\mathrm{x}))| \\
0 \\
\cos (\operatorname{slp}(\mathrm{x}))
\end{array}\right) \quad \mathrm{F}_{\mathrm{fric}}(0 \mathrm{ft})=\left(\begin{array}{c}
-4.717 \\
0 \\
47.768
\end{array}\right) \cdot \mathrm{lbf} \\
& \operatorname{Acc}(\mathrm{x}):=\frac{\mathrm{F}_{\mathrm{grav}}(\mathrm{x})+\mathrm{F}_{\mathrm{fric}}(\mathrm{x})}{\mathrm{Wgt}} \cdot \mathrm{~g} \quad \operatorname{Acc}(70 \mathrm{ft})=\left(\begin{array}{c}
-0.032 \\
0 \\
-0.927
\end{array}\right) \cdot \mathrm{g} \\
& \mathrm{~V}_{\mathrm{O}}:=20 \frac{\mathrm{ft}}{\sec } \cdot\left(\begin{array}{c}
\cos (\operatorname{slp}(0 \mathrm{ft})) \\
0 \\
\sin (\operatorname{slp}(0 \mathrm{ft}))
\end{array}\right)
\end{aligned}
$$

We set this problem up in full coordinates, but we only are interested in the X direction.

$$
\left.\begin{array}{l}
\mathrm{D}(\mathrm{t}, \mathrm{U}):=\left[\frac{\left(\mathrm{U}_{1}\right.}{\left.\mathrm{grav}\left(\mathrm{U}_{0} \cdot \operatorname{UnitsOf}(\mathrm{ft})\right)+\mathrm{F}_{\text {fric }}\left(\mathrm{U}_{0} \cdot \operatorname{UnitsOf}(\mathrm{ft})\right)\right)_{0}}\right. \\
\mathrm{Wgt}
\end{array}\right]
$$

Change friction factor to see effect: $\quad \mathrm{k}_{\mathrm{f}} \equiv 0.08$

