
Flexible Sled ORIGIN 1

Basic Data

XZ
1 2

1
2

500 100
498.997 ...



These distances are supplied in feet, but it's easier to deal with
Odesolve later if everything is unitless.  Because this worksheet has
SI units as its default, I've divided by metres to get the correct
dimensionless distances.

XZ
XZ ft

m


Extract the seperate x and z values. 

X XZ
1 1 XZ 1  Reset the x distances so they are measured from zero.

Z XZ 2 

Gravitational acceleration

g 9.807

Mass of vehicle

mass
600lb

kg
 mass 272.155 Again we remove units

Friction coefficient

μ 0.08

Initial velocity

v0

20
ft

s

m

s

 v0 6.096 with units removed

Basic Data



Useful Functions

Function to obtain z value at any x, by linear interpolation

z x( ) linterp X Z x( )

Gradient function g1 from linearly interpolating gradients obtained by numerical
differentiation at supplied data points.

gX
X

z X( )d

d





g1 x( ) linterp X gX x( )

Rate of change of gradient function g2 

g2 x( )
x

g1 x( )d

d


Angle of curve to horizontal function θ

θ x( ) atan g1 x( )( )

Radius of curvature of surface function: Radius
(see http://en.wikipedia.org/wiki/Radius_of_curvature_(mathematics) for the basic expression)
I've assumed that any radius greater than 50m is essentially infinite (i.e. it's a straight section).
There is a sign associated with the radius in order to get the right sign for the centripetal force
on the mass - see the Normal force function below. 

Radius dzdx d2zdx2( ) Rmag NaN
1 dzdx

2
 

3

2

d2zdx2
on error

∞return IsNaN Rmag( ) Rmag 50if

Rmag sign d2zdx2( )



Function R to obtain radius at any point by interpolating between radii at supplied data points.

j 1 last X( ) RX
j

Radius gX
j

g2 X
j  

R x( ) linterp X RX x( )

Normal force function N.  When radius is positive the centripetal force increases the
normal force; when negative it reduces it.

N x v( ) mass g cos θ x( )( )
v

2

R x( )












Useful Functions



Single point model

Let's start by considering a single point model.  That is, the whole mass of the sled is
considered to be concentrated in a point.  This is not going to be a very accurate model for the
flexible extended sled, but it will provide a first step to a more complicated representation.

The picture below shows the forces (weight, normal and friction) at an arbitrary point (x,y). 
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Solve ODEs

Initially assume a long end time (seconds)

tend 5

Given

t
x t( )d

d

v t( )

1 g1 x t( )( )
2



= x 0( ) 0=

t
v t( )d

d
g sin θ x t( )( )( )

μ

mass
N x t( ) v t( )( )= v 0( ) v0=

x

v








Odesolve
x

v








t tend










v is ds/dt where s is distance measured along the surface.  ds2 = dx2 + dz2

so ds/dt = dx/dt.(1+(dz/dx)2)0.5.  This is where the term in the denominator of
the RHS of the equation for dx/dt comes from.



Plot velocity against time and look for first time at which velocity goes to zero.

0 1 2 3 4 5
5

0

5

10

v t( )

t

Find end time of forward movement (which will occur just after 4 seconds)

τ 4

Given v τ( ) 0= τ Find τ( )

τ 4.155

Find values of x and y at time τ

x τ( ) 23.995 metres z x τ( )( ) 29.921 metres 

Plot surface profile from time 0 to time τ

npts 500 k 1 npts t
k

tend
k

npts


height
k

z x t
k   m dist

k
500ft x t

k  m
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