Flexible Sled ORIGIN := 1

[*] Basic Data
XZ =
1 2
1 500 100
2 498.997
XZ.ft These distances are supplied in feet, but it's easier to deal with
XZ .= —— Odesolve later if everything is unitless. Because this worksheet has
m Sl units as its default, I've divided by metres to get the correct

dimensionless distances.

Extract the seperate x and z values.

X = le 1" xz<1> Reset the x distances so they are measured from zero.
Z:= XZ<2>

Gravitational acceleration

g := 9.807

Mass of vehicle

SS = 600Ib mass = 272.155 Again we remove units

kg

Friction coefficient

p = 0.08
Initial velocity
ft
20—
V0 = S vO = 6.096 with units removed
m
s

[«] Basic Data




[*] Useful Functions
Function to obtain z value at any x, by linear interpolation

z(x) := linterp(X, Z,x)

Gradient function g1 from linearly interpolating gradients obtained by numerical
differentiation at supplied data points.

e
gX = d—z(X)

dX

g1(x) = linterp(X,gX,x)
Rate of change of gradient function g2
_d
92(x) == —gl(x)
dx
Angle of curve to horizontal function 6

0(x) := atan(gl(x))

Radius of curvature of surface function: Radius

(see http://en.wikipedia.org/wiki/Radius_of curvature_(mathematics) for the basic expression)
I've assumed that any radius greater than 50m is essentially infinite (i.e. it's a straight section).
There is a sign associated with the radius in order to get the right sign for the centripetal force
on the mass - see the Normal force function below.

3
2

(1 + dzdxz)
d2zdx2

return oo if IsNaN(Rmag) v |Rmag| > 50

Radius(dzdx, d2zdx2) := | Rmag <~ NaN on error

Rmag-sign(d2zdx2)

Function R to obtain radius at any point by interpolating between radii at supplied data points.
j = 1. last(X) RX = Radms(gXJ.,gZ(Xj))

R(x) := linterp(X,RX,X)

Normal force function N. When radius is positive the centripetal force increases the
normal force; when negative it reduces it.

2
v
N(X,V) := mass-(g-cos(e(x)) + %]

[+] Useful Functions




Single point model

Let's start by considering a single point model. That is, the whole mass of the sled is
considered to be concentrated in a point. This is not going to be a very accurate model for the
flexible extended sled, but it will provide a first step to a more complicated representation.

The picture below shows the forces (weight, normal and friction) at an arbitrary point (x,y).

N Mass.g

Solve ODEs

Initially assume a long end time (seconds)
tend = O

Given

Sy = —20 x(0) =0

1 g1x)?

D vty = —g-sin(B(x(1))) ~ —E—-N(x(1). V(1)) v(0) = V0
dt mass

X Odesol X t,t
:= Odesolve .t
v v end

v is ds/dt where s is distance measured along the surface. ds?2 = dx2 + dz2

so ds/dt = dx/dt.(1+(dz/dx)2)%-5. This is where the term in the denominator of
the RHS of the equation for dx/dt comes from.



Plot velocity against time and look for first time at which velocity goes to zero.

10

t

Find end time of forward movement (which will occur just after 4 seconds)

T:=4
Given v(T) =0 T := Find(T)
T=4.155

Find values of x and y at time 1

X(T) = 23.995 metres z(x(T)) = 29.921  metres

Plot surface profile from time 0 to time 1

k
npts := 500 k:= 1. npts tk = tend'%
height, := z(x(tk)>~m dist, := 500ft - x(tk)-m
100
95
height
ft
90
8El’120 440 460 480
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500



