
Flexible Sled ORIGIN 1:=
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These distances are supplied in feet, but it's easier to deal with

Odesolve later if everything is unitless.  Because this worksheet has

SI units as its default, I've divided by metres to get the correct

dimensionless distances.
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Extract the seperate x and z values. 
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Calculate distances along surface at data points 
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Calculate angles to the horizontal of the surface between succesive data points (assuming a

linear change between them). 
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Gravitational acceleration

g 9.807:=

Mass of vehicle

mass
600lb

kg
:= mass 272.155= Again we remove units

Friction coefficient

μ 0.08:=

Initial velocity

v0

20
ft

s

m

s

:= v0 6.096= with units removed

Basic Data

Useful Functions

Function to obtain z value at any x, by linear interpolation

z1 x( ) linterp X Z, x, ( ):=

Function to obtain x value at any s, by linear interpolation

x s( ) linterp S X, s, ( ):=

Function to obtain θ at any x by linear interpolation

θ x( ) linterp X Θ, x, ( ):=



Gradient function g1 

g1 x( ) tan θ x( )( ):=

Function g2 to obtain rate of change of gradient g1 wrt x (i.e. dg1(x)/dx)    

g2 x( ) tan θ x( )( )
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Radius of curvature of surface function: R

(see http://en.wikipedia.org/wiki/Radius_of_curvature_(mathematics) for the basic expression).

There is a sign associated with the radius in order to get the right sign for the centripetal force

on the mass - see the Normal force function below. 
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Normal force function N.  When radius is positive the centripetal force increases the

normal force; when negative it reduces it.
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Useful Functions

Single point model



Let's start by considering a single point model.  That is, the whole mass of the sled is

considered to be concentrated in a point.  This is not going to be a very accurate model for the

flexible extended sled, but it will provide a first step to a more complicated representation.

The picture below shows the forces (weight, normal and friction) at an arbitrary point (x,z). 
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Solve ODEs

Initially assume a long end time (seconds)

tend 10:=
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Plot velocity against time and look for first time at which velocity goes to zero.
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Find end time of forward movement (which will occur just after 4 seconds)

τ 5:=

Given v τ( ) 0= τ Find τ( ):=

τ 4.128=

Find values of x and z at time τ

x s τ( )( ) 23.833= metres z1 x s τ( )( )( ) 29.864= metres 

Plot surface profile from time 0 to time τ
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Validity checks

Need to check that normal force is always positive as model is invalid otherwise.

tt is the time at which the normal force is closest to 0. 

tt 0.5:= initial guess

Given

N x s tt( )( ) v tt( ), ( ) 0=

tt Minerr tt( ) 0.83=:=

N x s tt( )( ) v tt( ), ( ) 213.867= smallest value of normal force

Plot normal force as a function of horizontal distance 
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Look at centripetal component relative to gravitional component in normal force 
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We can see that the centripetal component is sometimes of comparable size to the

gravitational component. 

Let's check that the sled doesn't immediately fly off the track at the start.  We'll do a

conservative calculation assuming there is no resistance and that the sled initially travels

horizontally at its starting speed and is in free-fall vertically.  We'll compare its trajectory with

the track profile.  If its trajectory lies above the track profile for a while then we won't be able to

use the above model for that period of time.  So:

Use xx for horizontal distance, zz for height, vx and vy for horizontal and vertical velocities

respectively.  (Of course, there is an analytical solution for this free-fall motion, but I'll use

mathcad's odesolve here).
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We can see that in free fall the sled would immediately go below the track if the track

weren't there; so it's reasonable to assume the sled follows the track profile at the start. 

Validity checks


