Flexible Sled

XZ $:=$| | 1 | 2 |
| ---: | ---: | ---: |
| 1 | 500 | 100 |
| 2 | 498.997 | |

$$
\mathrm{XZ}:=\frac{\mathrm{XZ} \cdot \mathrm{ft}}{\mathrm{~m}} \quad \begin{aligned}
& \text { These distances are supplied in feet, but it's easier to deal with } \\
& \text { Odesolve later if everything is unitless. Because this worksheet has } \\
& \text { SI units as its default, I've divided by metres to get the correct } \\
& \text { dimensionless distances. }
\end{aligned}
$$

Extract the seperate x and z values.

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{XZ}_{1,1}-\mathrm{XZ} \\
& \mathrm{Z}:=\mathrm{XZ} \\
& \\
& \left\langle{ }^{\langle 2}\right\rangle
\end{aligned} \text { Reset the } \mathrm{x} \text { distances so they are measured from zero. }
$$

Calculate distances along surface at data points

$$
\mathrm{i}:=2 . . \operatorname{last}(\mathrm{X})
$$

$$
\mathrm{S}_{\mathrm{w}}:=0 \quad \mathrm{~S}_{\mathrm{i}}:=\sqrt{\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}-1}\right)^{2}+\left(\mathrm{Z}_{\mathrm{i}}-\mathrm{Z}_{\mathrm{i}-1}\right)^{2}}+\mathrm{S}_{\mathrm{i}-1}
$$

Calculate angles to the horizontal of the surface between succesive data points (assuming a linear change between them).

$$
\mathrm{j}:=1 . . \operatorname{last}(\mathrm{X})-1
$$

$$
\Theta_{\mathrm{j}}:=\operatorname{atan}\left(\frac{\mathrm{Z}_{\mathrm{j}+1}-\mathrm{Z}_{\mathrm{j}}}{\mathrm{X}_{\mathrm{j}+1}-\mathrm{X}_{\mathrm{j}}}\right) \quad \Theta_{\operatorname{last}(\mathrm{X})}:=0
$$

Gravitational acceleration

$$
\mathrm{g}:=9.807
$$

Mass of vehicle
mass $:=\frac{600 \mathrm{lb}}{\mathrm{kg}} \quad$ mass $=272.155 \quad$ Again we remove units
Length of vehicle
$\mathrm{L}:=11.5 \frac{\mathrm{ft}}{\mathrm{m}} \quad \mathrm{L}=3.505 \quad$ Units removed
Friction coefficient
$\mu:=0.08$

Initial velocity
$\mathrm{v} 0:=\frac{20 \frac{\mathrm{ft}}{\mathrm{s}}}{\frac{\mathrm{m}}{\mathrm{s}}} \quad \mathrm{v} 0=6.096 \quad$ with units removed

Radii rc and horizontal distances xc that mark places where radii change

Function to obtain z value at any x, by linear interpolation

$$
\mathrm{zl}(\mathrm{x}):=\| \begin{aligned}
& \text { return } \mathrm{Z}_{1} \text { if } \mathrm{x}<0 \\
& \operatorname{linterp}(\mathrm{X}, \mathrm{Z}, \mathrm{x})
\end{aligned}
$$

Function to obtain x value at any s, by linear interpolation

$$
\mathrm{x}(\mathrm{~s}):=\left\lvert\, \begin{aligned}
& \text { return } 0 \text { if } \mathrm{s}<0 \\
& \operatorname{linterp}(\mathrm{~S}, \mathrm{X}, \mathrm{~s})
\end{aligned}\right.
$$

Function to obtain θ at any x by linear interpolation

$$
\theta(\mathrm{x}):=\left\lvert\, \begin{aligned}
& \text { return } 0 \text { if } \mathrm{x}<0 \\
& \operatorname{linterp}(\mathrm{X}, \Theta, \mathrm{x})
\end{aligned}\right.
$$

Radius of curvature of surface function: R
There is a sign associated with the radius in order to get the right sign for the centripetal force on the mass - see the Normal force function below.

$$
\underset{\sim}{R}(x):=\left\{\begin{array}{l}
\text { for } \mathrm{k} \in 1 . . \operatorname{last}(\mathrm{xc}) \\
\left\lvert\, \begin{array}{l}
\mathrm{r} \leftarrow \mathrm{rc}_{\mathrm{k}} \\
\text { break if } \mathrm{x}<\mathrm{xc}_{\mathrm{k}}
\end{array}\right.
\end{array}\right.
$$

Normal force function N averaged over length of vehicle. When radius is positive the centripetal force increases the normal force; when negative it reduces it.

$$
\mathrm{N}(\mathrm{~s}, \mathrm{v}):=\max \left[\frac{\text { mass }}{\mathrm{L}} \cdot \mathrm{~g} \cdot\left(\int_{\mathrm{s}-\mathrm{L}}^{\mathrm{s}} \cos (\theta(\mathrm{x}(\mathrm{~s})))+\frac{\mathrm{v}^{2}}{\mathrm{~g} \cdot \mathrm{R}(\mathrm{x}(\mathrm{~s}))} \mathrm{ds}\right), 0\right]
$$

QUseful Functions

Extended single point model

Here we still consider the whole mass of the sled to be concentrated in a point when calculating movement, but now we base the forces on a continuous stretch of the vehicle covering the surface.

The picture below shows the forces (weight, normal and friction) at an arbitrary point (x, z).

Solve ODEs

Initially assume a long end time (seconds)

$$
t_{\text {end }}:=6
$$

Given

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~s}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \quad \mathrm{s}(0)=0 \\
& \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v}(\mathrm{t})=\frac{-\mathrm{g}}{\mathrm{~L}} \cdot \int_{\mathrm{s}(\mathrm{t})-\mathrm{L}}^{\mathrm{s}(\mathrm{t})} \sin (\theta(\mathrm{x}(\mathrm{~s}))) \mathrm{ds}-\frac{\mu}{\operatorname{mass}} \cdot \mathrm{N}[(\mathrm{~s}(\mathrm{t})), \mathrm{v}(\mathrm{t})] \cdot \operatorname{sign}(\mathrm{v}(\mathrm{t})) \quad \mathrm{v}(0)=\mathrm{v} 0
\end{aligned}
$$

$$
\left(\begin{array}{c}
\mathrm{s} \\
\mathrm{w} \\
\mathrm{v}
\end{array}\right):=\text { Odesolve }\left[\binom{\mathrm{s}}{\mathrm{v}}, \mathrm{t}, \mathrm{t} \text { end }\right]
$$

Plot velocity against time and look for first time at which velocity goes to zero.

Find end time of forward movement (which will occur just after 4 seconds)

$$
\tau:=5
$$

Given $\quad \mathrm{v}(\tau)=0 \quad \tau_{m}:=\operatorname{Find}(\tau)$

$$
\tau=4.46
$$

Find values of x and z at time τ
$\mathrm{x}(\mathrm{s}(\tau))=25.737 \quad$ metres $\quad \mathrm{z} 1(\mathrm{x}(\mathrm{s}(\tau)))=30.392 \quad$ metres

Plot surface profile from time 0 to time $\boldsymbol{\tau}$ (this represents the position of the front of the vehicle).
npts $:=500 \quad \mathrm{k}:=1 . . \mathrm{npts} \quad \mathrm{t}_{\mathrm{k}}:=\tau \cdot \frac{\mathrm{k}-1}{\mathrm{npts}-1}$

$$
\text { height }_{\mathrm{k}}:=\mathrm{zl}\left(\mathrm{x}\left(\mathrm{~s}\left(\mathrm{t}_{\mathrm{k}}\right)\right)\right) \cdot \mathrm{m} \quad \operatorname{dist}_{\mathrm{k}}:=500 \mathrm{ft}-\mathrm{x}\left(\mathrm{~s}\left(\mathrm{t}_{\mathrm{k}}\right)\right) \cdot \mathrm{m}
$$

Validity checks

Need to check that normal force is always positive as model is invalid otherwise.
tt is the time at which the normal force is closest to 0 .

$$
\begin{aligned}
& \mathrm{tt}:=1 \quad \text { initial guess } \\
& \text { Given } \\
& \mathrm{N}(\mathrm{~s}(\mathrm{tt}), \mathrm{v}(\mathrm{tt}))=0 \\
& \mathrm{tt}:=\text { Minerr }(\mathrm{tt}) \\
& \mathrm{m} \\
& \mathrm{tt}=1.019
\end{aligned}
$$

$\mathrm{N}(\mathrm{s}(\mathrm{tt}), \mathrm{v}(\mathrm{tt}))=663.769$ smallest value of averaged normal force

Plot averaged normal force as a function of horizontal distance

Nforce $_{k}:=N\left(s\left(t_{k}\right), v\left(t_{k}\right)\right)$

Δ Validity checks

