The scenario is two vessels connected in series. The first vessel is initially full of water while the second vessel is empty. At time $=0$, a flow of a second fluid starts into vessel 1. The overflow from vessel 1 goes into vessel 2 . When vessel 2 is filled, then the overflow from vessel 2 goes to a drain.

I want to model the volume fraction of the second fluid in each vessel as a function of time. Assume the vessels are instantaneously perfectly mixed.

The equations are:
$\frac{\mathrm{d}}{\mathrm{d} t} F_{1}(t)=Q_{0}-F_{1}(t) \cdot \frac{Q_{0}}{V_{1}}$
$\frac{\mathrm{d}}{\mathrm{d} t} F_{2}(t)=F_{1}(t) \cdot \frac{Q_{0}}{A_{2} \cdot h_{2}(t)}$ when vessel 2 is not full
$\frac{\mathrm{d}}{\mathrm{d} t} F_{2}(t)=F_{1}(t) \cdot \frac{Q_{0}}{A_{2} \cdot h_{2}(t)}-F_{2}(t) \cdot \frac{Q_{0}}{V_{2}}$ when vessel 2 is full
$h_{2}(t)=\frac{Q_{0}}{A_{2}} \cdot t$ when vessel 2 is not full
$h_{2}(t)=\frac{V_{2}}{A_{2}}$ when vessel 2 is full
Subscripts 1 and 2 refer to vessel 1 and 2.
F is the volume of the second fluid in each vessel.
Q_{0} is the flow rate of the second fluid into vessel 1.
V is the vessel volume, A is the area of the vessel base. h_{2} is the depth of the mixture in vessel 2.
t is time.
The question is how to solve this when the equations change at a certain point. It seems the easiest would be an IF test in the solve block to check when vessel 2 is filled. However, it seems an IF test is not allowed in a solve block. The only solution I've come up with is to use the step function, $\Phi(x)$. I've found that this can be made to work, but it has some odd behavior that must be accounted for. $\Phi(x)=1 / 2$ when $x=0$. I've given two solve blocks with the step function slightly changed in the second so that the solution seems to work. The solution in the first block results in a nonsensical answer. It seems to be due to the step function randomly (?) varying between $0,0.5$, and 1 where it should be 0 .

Any suggestions for a more clean way to handle this?

Set parameter values:
$H:=1 \cdot m$
$A_{2}:=H^{2}=1 \mathrm{~m}^{2} \quad V_{1}:=H^{3}=1 \mathrm{~m}^{3} \quad V_{2}:=V_{1}=1 \mathrm{~m}^{3}$
$Q_{0}:=1 \cdot \frac{m^{3}}{h r}$
$t_{0}:=0 \cdot h r \quad t_{\text {end }}:=10 \cdot \frac{V_{1}}{Q_{0}}=10 \mathrm{hr} \quad$ nsteps $:=1000$
Solution block 1: Step function handled the way it looks like it should be.

$$
\begin{aligned}
& i:=0 . .1000 \\
& t t_{i}:=i \cdot \frac{t_{\text {end }}}{n s t e p s}
\end{aligned}
$$

$$
t t_{i}(s)
$$

This result in nonsensical.

The step function is not behaving as expected. It should be 0 in the area where it fluctuates.

Solve block 2 with the step function modified to force it to be 0 when it should be.

$$
\frac{\frac{F_{11}\left(t t_{i}\right)}{V_{1}}}{\frac{F_{22}\left(t t_{i}\right)}{A_{2} \cdot h_{2}\left(t t_{i}\right)}}
$$

This result seems sensible.

The step function behaves as expected.

$$
\Phi\left(.99 \cdot \frac{V_{2}}{A_{2}}-h_{2}\left(t t_{i}\right)\right)
$$

$t t_{i}(s)$

$$
.99 \cdot \frac{V_{2}}{A_{2}}-h_{2}\left(t t_{i}\right)(m)
$$

$$
t t_{i}(s)
$$

