
 PRECONDITIONING DATA

Principal Component Analysis

Nipals(DATA, numPC, maxiter,"scale/noscale", Acc)

Nipals2(NIPALS, numAddPC)

loadings(NIPALS) scores(NIPALS)

PCAeigenvals(NIPALS) PCAvariance(NIPALS)

It is not uncommon to find data sets in which there are a large
number of correlated or redundant variables. This not only leads to
computational inefficiency in the data analysis, but can also lead
to numerical problems (e.g. in matrix inversion steps). What is
required in such cases is a method by which we can compress the
data into a smaller number of orthogonal variables. There is a
group of methods for doing this, which are collectively referred to
as factor analysis methods. The most fundamental of these
methods is Principal Component Analysis (PCA), which compresses
the data to its most dominant factors. In this case, the new,
orthogonal, variables are called the principal components. The
Nipals function takes a multivariate set of data, the desired
number of principal components, and the maximum number of
iterations, and calculates the loadings, scores (i.e. the principal
components), eigenvalues, and percentage of the overall variance
explained by the principal components. Nipals2 allows you to
extract additional components from the same data without redoing
the whole calculation.

PCA background

To see how PCA works, let's look at a simple data set in which we
have three variables (columns), and 100 measurements (rows). This
data is artificial, and was created for the purpose of showing how
PCA works:

DATA
0 1 2

0

1

2

3.616 3.498 3.347

3.746 4.509 3.923

3.018 2.612 2.612

Since we have only three variables we can plot our data in 3D
space:

DATA 0 DATA 1 DATA 2
The data is an elliptical cloud of points that almost lies on a
plane. This is because the three variables are linearly related,
and the deviation from a perfect plane is only because of
noise. The first step in PCA is to mean center the data, that
is, subtract the mean of each variable. This is done
automatically by the Nipals function.

i 0 cols DATA() 1

MeanDATA
i

mean DATA i

i 0 rows DATA() 1

Centered i DATAT i
MeanDATA

 Centered CenteredT

Centered 0 Centered 1 Centered 2

The data is now centered about the origin. Now let's create a new
variable space using the Nipals function. Calculate three principal
components, which is the maximum possible since we started with
only three variables

NumPC 3 MaxIter 1000 Acc 10
12

In many applications of PCA it is also desirable to scale the
data so that the variables have equal weights, for example
when different variables have different units. Scaling each
variable (i.e. column of DATA) to unit variance is common,
but not appropriate for this data, so we will use no scaling.

NIPALS_Result Nipals DATA NumPC MaxIter "noscale" Acc()

The output is a nested matrix (more about the output later).
Look at the scores for this data set. The scores are our new
variables:

SCORES NIPALS_Result
0

 SCORES scores NIPALS_Result()

Either syntax works — the scores function doesn't require you to
remember which entry in the result holds the scores.

SCORES 0 SCORES 1 SCORES 2

PCA has rotated the data such that the maximum amount of
variance can be explained by the first new variable (i.e. the
long axis of the elliptical cloud is parallel to the x-axis). The
maximum amount of the residual variance, the variance not
explained by the first variable, is explained by the second
variable. The second variable is of course orthogonal to the

first one. Any variance not explained by the first two variables
is explained by the third. In this example all the values for the
third variable are very small, so for most purposes we can
discard it; we have compressed the data.

PCA takes an n-dimensional data space and defines a new set
of orthogonal axes (i.e. new variables) that describe the
variance in the data in an optimal way. The new variables are
optimal in the sense that the first one describes the maximum
amount of variation possible (i.e. the maximum variance), the
second describes the maximum amount of the remaining
variation, etc. These are termed the principal components of
the data set. In data sets in which the starting variables are
interdependent, or correlated, the higher principal components
are close to zero (usually just noise), and can be discarded.
The underlying, orthogonal (uncorrelated), variables are termed
latent variables, and the number required to describe the data
is the rank of the data.

Nipals function

PCA represents the matrix of DATA in the form DATA L ST= . The
columns of S are called the scores, and the columns of L are called

the loading vectors. The columns of S, S a , are the eigenvectors of

DATA DATAT , scaled to a length τa, where τa are the eigenvalues.

It is also worth noting that the loadings are the nonzero

eigenvectors of DATAT DATA . This is a large matrix however, so it
is not computationally efficient to calculate them this way. Rewrite
the equation above as

DATA L diag τa VT=

which is the singular value decomposition of DATA. For many
data sets we could in fact use Mathcad's svds function to
calculate the scores and loadings, but in general this is
undesirable. First, if we use SVD we must calculate all the
scores, even though we know we will not need the higher ones.
For large, highly redundant data sets SVD is therefore
computationally inefficient. Second, SVD may fail numerically if
the data set is large and highly redundant. Lastly, the svds
function requires that the number of columns in the data matrix
be larger than the number of rows, which is a problem if we have
more measurements than variables (as is the case in the example
above).

The NIPALS (Nonlinear Iterative Partial Least Squares) algorithm
calculates the scores and loadings iteratively, and gets around all
of these problems. It is numerically very stable, can handle
arbitrary size data sets, and calculates only as many principal
components as are needed.

Let's look at a larger, more complex data set. This data
represents a portion of the near-infrared (NIR) spectra of
pharmaceutical tablets, with five different dosages of the active
ingredient (courtesy of Bruker Optics, Inc.). The first column is
wavenumber (1/wavelength), in cm-1, there are 5 sequential
spectra of each dosage, constituting the remaining 25 columns.
The data is from a double blind study in a clinical trial. What is
required is that we build a model that allows us to distinguish
each dosage based on the spectrum, without knowing what the
actual dosages are. This model is needed for QC purposes during
the production of more tablets for the trial.

DATA
0 1 2

0

1

2

3

4

5056 -57.891·10 0.0001

5053 -58.647·10 0.0002

5049 -59.521·10 0.0002

5045 0.0001 0.0002

5041 0.0001 ...

We need to group the tablets by the percentages of the
medication in each one, based on their absorbance spectra. We
can plot two spectra of each dosage to see what they look like
(by convention, wavenumbers are plotted in decreasing order):

5 10
3 4.8 10

3 4.6 10
3 4.4 10

3 4.2 10
3

0

2 10
3

4 10
3

6 10
3

8 10
3

A
bs

or
ba

nc
e

Wavenumber

Two things are apparent looking at this data:

1) There is no part of the spectrum that can be used to easily
distinguish one dosage from another – they all have the same basic
form and close absorbance values.

2) Most of the data are redundant. We have 236 points in each
spectrum, which means 236 measured variables (absorbance for a
particular wavelength of light), but the variation of these points is
clearly interrelated.

Start by reducing the dimensionality of the data, and then use
the reduced data to determine dosage. First, split X
(independent variables - the wavenumbers) and Y (dependent
variables - the measured absorbances) data into a vector and a
matrix. To match the common convention, put the spectra for
each tablet across a row (transpose) so that each column
corresponds to an independent variable.

Wavnum DATA 0

A1 submatrix DATA 0 rows DATA() 1 1 cols DATA() 1()T

The Nipals function mean centers the data, subtracting the
mean spectrum from each row. Remember this when
constructing estimates of the spectra with the results. As in the
previous example, scaling the data is not appropriate. To begin
with we will just get two principal components.

numPC 2 maxiter 10
3

Nout Nipals A1 numPC maxiter "noscale" Acc()

Nipals output

The output nested matrix has the
calculated scores in the first entry, the
loadings in the second entry, the
cumulative percentage of variance
explained in the third entry, and the
eigenvalues in the fourth entry. The last
two nested matrices are used by the
Nipals2 function if you wish to extract
more components.

Nout

{25,2}

{236,2}

{2,1}

{2,1}

{25,236}

{6,1}

Sc Nout
0

 Lo Nout
1

Cumvar Nout
2

 Cumvar
0.69173

0.98806

 PCAvariance Nout()
0.69173

0.98806

We can see that, with 2 components, we've explained 98.8%
of the variance in the system.

Eigenvalues can also be extracted:

PCAeigenvals Nout()
1.06827 10

4

4.5764 10
5

 Nout
3

1.06827 10
4

4.5764 10
5

Estimates of the original spectra can be constructed by
multiplying the matrix of loading vectors by the matrix of scores,
and adding the mean spectrum subtracted by Nipals. The first
spectrum is the first column of the reconstruction matrix, and so
on. The scores represent the proportions in which the loading
vectors are added to recreate the original spectra; they can be
thought of as intensities.

Estimate Lo ScT i 0 cols A1() 1

MeanA
i

mean A1 i

You can pick which spectrum you wish to reconstruct:

spec 12

We see that all the spectra can be well represented using only two
factors.

EstSpec1 Estimate spec
MeanA

5 10
3 4.8 10

3 4.6 10
3 4.4 10

3 4.2 10
3

0

2 10
3

4 10
3

6 10
3

8 10
3

Wavenumber

A
bs

or
ba

nc
e

Using the Principal Components

Let's examine the new variables, i.e. the scores, and see what
they tell us about the system of spectra.

We will rearrange our scores into two matrices. Each column of
the matrix represents the scores for one of the 5 tablet
dosages.

p 0 4 q 0 4

Ydata
p q Sc 1

p q 5
Xdata

p q Sc 0
p q 5

We can plot the scores for the first factor against those
for the second. Each dosage is shown in a different
color.

4 10
3 2 10

3 0 2 10
3 4 10

3
3 10

3

2 10
3

1 10
3

0

1 10
3

2 10
3

3 10
3

Some grouping of the data is evident, but we still cannot
adequately distinguish each dosage from the others. Adding a
third score to the plot might help. We can use the Nipals2
function to calculate a few more principal components without
having to repeat the previous calculations.

morePC 4 Nout Nipals2 Nout morePC()

The output matrix is of the same
form as that for Nipals, but with
additional columns and rows in the
nested entries to correspond to
the additional calculated
components. Note that the
number of scores and loadings has
now increased to 6.

Nout

{25,6}

{236,6}

{6,1}

{6,1}

{25,236}

{6,1}

S1 Nout
0

 L1 Nout
1

Note that

L1 loadings Nout() also finds the loadings.

Cumvar1 Nout
2

 Cumvar1

0.69173

0.98806

0.99416

0.99619

0.99779

0.99844

These are the new estimated spectra:

Estimate L1 S1T

spec 12

EstSpec1 Estimate spec
MeanA

5 10
3 4.8 10

3 4.6 10
3 4.4 10

3 4.2 10
3

0

2 10
3

4 10
3

6 10
3

8 10
3

Wavenumber

A
bs

or
ba

nc
e

Now that we have a larger number of principal components, it's
instructive to look at the behavior of the cumulative explained
variance:

i 0 last Cumvar1()

0 0.833 1.667 2.5 3.333 4.167 5
0

0.5

1

Cumvar1i

i

The fact that only 69% of the variance is explained by the first
PC is perhaps initially a little surprising. If the only source of
variance were the dosage of active ingredient then it would be
possible to describe the data completely with only one
variable. Yet we have at least two significant sources of
variance. We note also that a third PC is required to explain
more than 99% of the variance, and, as we will see below, it is
this third PC that is key to being able to group the data by
dosage.

This brings us to an important point about PCA: it compresses
the data to the most dominant factors, not the most relevant
factors. The amount of active ingredient in each tablet is in fact
quite small, and there are other sources of variation (e.g. light
scattering) that cause bigger changes in the spectra. Each
source of physical variance is distributed between all the
factors. There are factor analysis methods that attempt to
compress to the most relevant factors, but they all require some
sort of a-priori information (otherwise, "most relevant" has no
meaning). PCA requires no such information, and is therefore
applicable to any multivariate data set in which the variables are
at least partially redundant.

Now we can plot any three scores in 3D space.

Xscore 0 Yscore 1 Zscore 2

Xdata
p q Sc Xscore

p q 5

Ydata
p q Sc Yscore

p q 5

Zdata
p q S1 Zscore

p q 5

We can see that the tablets fall into five separate groups. By
reducing the dimensionality of the data from 236 to only the
three most dominant principal components we can visualize the
grouping of the tablets.

Predicting new data

Now that we have a model, we can take the spectrum of an
unknown tablet, and project it into our new variable space.

Unknown
0

0

1

2

3

-51.2847·10
-51.0279·10

-67.884·10

-65.586·10

To do this we use our loadings to get an estimate of the
scores for the new spectrum. We only want to use the first
three loadings, so we will remove the extra columns:

T UnknownT submatrix L1 0 rows L1() 1 0 2()

Ux
0

T
0 0 Uy

0
T

0 1 Uz
0

T
0 2

We see that our unknown tablet (orange) belongs in dosage
group 3.

PCA is an important data preprocessing step for large,
redundant data sets. Data is compressed to a smaller number
of variables reflecting the majority of the variation. In
principle, any analysis (cluster analysis, regression, etc.) can
be performed on the compressed data. We can also use PCA
in the context of exploratory data analysis: we can find the
rank of the data, we can look at the loadings, etc., to
determine what the data tells us and what steps we should
take next.

References

Spectroscopic data courtesy of Bruker Optics, Inc., all
rights reserved, used by permission.

Wold, H. and Krishnaiah, P.R. (Ed) (1966), Multivariate
Analysis, Academic Press, New York. p. 391.

