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WORKSHEET 9: EXAMPLE 7.5 

Relations Between Distributed Load, Shear 
Force, and Bending Moment

This example shows how the shear force and the bending moment along a simply supported 
beam can be determined as a function of the distance from one end.  The method used is based 
on the differential equations that relate the shear force, the bending moment, and the 
distributed load.  This example and its set of equations can be used to solve many problems in 
Section 7.3.  These include Problems 7-3.3. 7-3.6, 7-3.7, 7-3.10,7-3.13, and 7-3.15.

Statemen
t
Use Eqs. (7.4) and (7.5) to determine the shear force and bending moment diagrams for the 
beam in the figure below.

＝――
d

dx
V −w Eq. 

(7.4)

＝――
d

dx
M V Eq. (7.5)

Parameter
s

≔fB ⋅300 ―― end limit of linearly varying distributed load at B

≔fC ⋅100 ―― end limit of linearly varying distributed load at C

≔Dy ⋅300 vertical load at 
D

≔LAB ⋅6 distance between A and 
B



≔LBC ⋅6 distance between B and 
C

≔LCD ⋅6 distance between C and 
D

Solution

Equivalent Concentrated Load Representation of Distributed 
Load

We begin by determining the expression of the distributed load w(x) as a function of position 
x.  Since w(x) is a linear function, we can express it in the form w(x) = cx + d, where c and d 
are constants.  We know w at x = LAB and x = LAB + LBC:

＝fB +⋅c LAB d and ＝fC +⋅c ⎛⎝ +LAB LBC
⎞⎠ d

These can be solved simultaneously to 
give

≔c ―――
−fC fB

LBC

=c −33.333 ――
2

≔d −fB ⋅c LAB =d 500 ――

Thus, the linearly varying distributed load can be written 
as

≔w ((x)) +⋅c x d

We check here that indeed the function gives the right values at the known limits:

=w ⎛⎝LAB
⎞⎠ 300 ―― =w ⎛⎝ +LAB LBC

⎞⎠ 100 ――



To go further, this distributed load can be represented by one resultant force Fd acting at a 
specific location x = xd, where

≔Fd
⌠
⌡ d

LAB

+LAB LBC

w ((x)) x =Fd
⎛⎝ ⋅1.2 103 ⎞⎠

≔xd ―――――

⌠
⌡ d

LAB

+LAB LBC

⋅x w ((x)) x

Fd

=xd 8.5

The free-body diagram of 
the entire beam with the 
distributed load replaced 
by the resultant force Fd
is shown on the right.

We now obtain the reactions Ax, Ay, and Cy from the equilibrium equations.

Since Fx = 0, ≔Ax 0

Since M(point 
A) = 0

＝−−⋅⎛⎝ +LAB LBC
⎞⎠ Cy ⋅xd Fd ⋅⎛⎝ ++LAB LBC LCD

⎞⎠ Dy 0

≔Cy ――――――――――――
⎛⎝ +++⋅xd Fd ⋅Dy LAB ⋅Dy LBC ⋅Dy LCD

⎞⎠
⎛⎝ +LAB LBC

⎞⎠

=Cy
⎛⎝ ⋅1.3 10

3 ⎞⎠

Since Fy = 0 ＝−−+Ay Cy Fd Dy 0

≔Ay −+Fd Dy Cy =Ay 200

We now proceed to determine the shear force and bending moment as functions of x for the 
entire beam, using Eqs. (7.4) and (7.5).



Shear Force 
Diagram
From A to B There is no load between A and B, so the shear force increases by Ay at A and 
then remains constant from A to B:

≔VAB
((x)) Ay

From B to C From our solution between A and B, VAB(LAB)=200 kN . Integrating Eq. (7.4) 
from x = LAB to an arbitrary value of x between B and C:

＝＝⌠
⌡ d

VAB ((LAB))

VBC ((x))

1 V ⌠
⌡ d

LAB

x

−w x ⌠
⌡ d

LAB

x

−(( +⋅c x d)) x

we obtain an equation for V between B and C:

≔VBC
((x)) −VAB

⎛⎝LAB
⎞⎠

⎛
⎜
⎝

+―――――
⋅c ⎛⎝ −x

2
LAB

2 ⎞⎠

2
⋅d ⎛⎝ −x LAB

⎞⎠
⎞
⎟
⎠

From C to D At C, V undergoes an increase of CY=1300 kN due to the force exerted by the 
pin support.  Adding this change to the value of V at C obtained from our solution from B to 
C, the value of V just to the right of C is

=+VBC
⎛⎝ +LAB LBC

⎞⎠ Cy 300

There is no loading between C and D, so V remains constant from C to D:

≔VCD
((x)) +VBC

⎛⎝ +LAB LBC
⎞⎠ Cy

We combine the results for all three sections using Mathcad's if function:

≔V ((x)) ⎛⎝ ,,<x LAB VAB
((x)) ⎛⎝ ,,<x +LAB LBC VBC

((x)) VCD
((x))⎞⎠⎞⎠



The shear force diagram is shown below, after defining a range variable for the distance from 
the left end: 

≔i ‥0 300 ≔x
i

⋅――
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Bending Moment Diagram

From A to B Integrating Eq. (7.5) from x = 0 to an arbitrary value of x between A and B:

＝＝⌠
⌡ d
0

MAB ((x))

1 M ⌠
⌡ d

0

x

VAB
((x)) x ⌠

⌡ d

0

x

Ay x

we obtain:

≔MAB
((x)) ⋅Ay x =MAB

⎛⎝LAB
⎞⎠ ⎛⎝ ⋅1.2 103 ⎞⎠

From B to C Integrating Eq. (7.5) from x = LAB to an arbitrary value of x between B and C:

＝⌠
⌡ d

MAB ((LAB))

MBC ((x))

1 M ⌠
⌡ d

LAB

x

VBC
((x)) x

⌠
⎮
⎮⌡

d

LAB

x

⎛
⎜
⎝

+−⋅――
−c

2
x2 ⋅d x

⎛
⎜
⎝

++⋅―
c

2
LAB ⋅d LAB VAB

⎛⎝LAB
⎞⎠
⎞
⎟
⎠

⎞
⎟
⎠

x

we obtain an equation for V between B and C:

≔MBC
((x)) +−+MAB

⎛⎝LAB
⎞⎠ ⋅――

−c

6
⎛⎝ −x

3
LAB

3 ⎞⎠ ⋅―
d

2
⎛⎝ −x

2
LAB

2 ⎞⎠ ⋅
⎛
⎜
⎝

++⋅―
c

2
LAB

2
⋅d LAB VAB

⎛⎝LAB
⎞⎠
⎞
⎟
⎠

⎛⎝ −x LAB
⎞⎠

Note that at x, 
x:=Lab,

=MBC
⎛⎝LAB

⎞⎠ ⎛⎝ ⋅1.2 10
3 ⎞⎠

=MBC
⎛⎝ +LAB LBC

⎞⎠ ⋅−1.8 10
3



From C to D Integrating Eq. (7.5) from x = LAB + LBC to an arbitrary value of x between C
and D:

＝⌠
⌡ d

MBC (( +LAB LBC))

MCD ((x))

1 M ⌠
⌡ d

+LAB LBC

x

VCD
((x)) x

⌠
⌡ d

+LAB LBC

x

⎛⎝ +VBC
⎛⎝ +LAB LBC

⎞⎠ Cy
⎞⎠ x

we obtain:

≔MCD
((x)) +MBC

⎛⎝ +LAB LBC
⎞⎠ ⋅⎛⎝ +VBC

⎛⎝ +LAB LBC
⎞⎠ Cy

⎞⎠ ⎛⎝ −−x LAB LBC
⎞⎠

We combine the results for all three sections:

≔M ((x)) ⎛⎝ ,,<x LAB MAB
((x)) ⎛⎝ ,,<x +LAB LBC MBC

((x)) MCD
((x))⎞⎠⎞⎠



The bending moment diagram is shown 
below:
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Discussion

Compare this example with Example 7.3, in which we use free-body diagrams to determine the 
shear force and bending moment as functions of x for this beam and loading.


