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71 INTRODUCTION

As manufacturing companies pursue higher quality products, they spend much of their efforts mon-
itoring and controlling variation. Dimensional variation in production parts accumulate or stack up
statistically and propagate through an assembly kinematically, causing critical features of the final
product to vary. Such variation can cause costly problems during assembly, requiring extensive
rework or scrapped parts. It can also cause unsatisfactory performance of the finished product, dras-
tically increasing warranty costs and creating dissatisfied customers.

One of the effective tools for variation management is tolerance analysis. This is a quantitative
tool for predicting the accumulation of variation in an assembly by performing a stack-up analysis.
It involves the following steps:

1. Identifying the dimensions which chain together to control a critical assembly dimension or feature.

2. The mean, or average, assembly dimension is determined by summing the mean of the dimen-
sions in the chain.

3. The variation in the assembly dimension is estimated by summing the corresponding component
variations. This process is called a “stack-up.”

4. The predicted assembly variation is compared to the engineering limits to estimate the number of
rejects, or nonconforming assemblies.

5. Design or production changes may be made after evaluating the results of the analysis.

It the parts are production parts, actual measured data may be used. This is preferred. However,
if the parts are not yet in production, measured data is not available. In that case, the engineer
searches for data on similar parts and processes. That failing, he or she may substitute the tolerance
on each dimension in place of its variation, assuming that quality controls will keep the individual
part variations within tolerance. This substitution is so common in the design stage that the process
is generally called tolerance analysis.

The four most popular models for tolerance stack-up are shown in Table 7.1. Each has its own
advantages and limitations.

7.1



PRODUCT DEVELOPMENT AND DESIGN

TABLE 7.1 Models for Tolerance Stack-Up Analysis in Assemblies

Mode! Stack formula Predicts Application
Worst Case (WC) O = 2 M1 Extreme limits of variation  Critical systems
Not statistical No rejects permitted

Most costly

Statistical (RSS) S Probable variation Reasonable estimate
o Z(EJ Percent rejects Some rejects allowed
- 3 Less costly
Six Sigma (6s) > Long-term variation Drift in mean over
P z T Percent rejects time is expected
ASM 3C,(1-k) High quality levels
desired
Measured Data (Meas) P {20_2 Variation using existing After parts are made
Asm T i part measurements What-if? studies

Percent rejects

72 COMPARISON OF STACK-UP MODELS

The two most common stack-up models are:

Worst Case (WC). Computes the extreme limits by summing absolute values of the tolerances, to
obtain the worst combination of over and undersize parts. If the worst case is within assembly toler-
ance limits, there will be no rejected assemblies. For given assembly limits, WC will require the
tightest part tolerances. Thus, it is the most costly.

Statistical (RSS). Adds variations by root-sum-squares (RSS). Since it considers the statistical
probabilities of the possible combinations, the predicted limits are more reasonable. RSS predicts the
statistical distribution of the assembly feature, from which percent rejects can be estimated. It can
also account for static mean shifts.

As an example, suppose we had an assembly of nine components of equal precision, such that the
same tolerance T, may be assumed for each. The predicted assembly variation would be:

WC: T = O IT1=9x 0.01 =%0.09

RSS: Ty =y 2,17 =49 X 0.01° =0.03
(+ denotes a symmetric range of variation)

Clearly, WC predicts much more variation than RSS. The difference is even greater as the num-
ber of component dimensions in the chain increases.

Now, suppose T, ,, = 0.09 is specified as a design requirement. The stack-up analysis is reversed.
The required component tolerances are determined from the assembly tolerance.

Here, WC requires much tighter tolerances than RSS to meet an assembly requirement.
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73 USING STATISTICS TO PREDICT REJECTS

All manufacturing processes produce random variations in each dimension. If you measured each
part and kept track of how many are produced at each size, you could make a frequency plot, as
shown in Fig. 7.1.

Generally, most of the parts will be clustered about the mean or average value, causing the plot
to bulge in the middle. The further you get from the mean, the fewer parts will be produced, causing
the frequency plot to decrease to zero at the extremes.

A common statistical model used to describe random variations is shown in the figure. It is called
a normal, or Gaussian, distribution. The mean p marks the highest point on the curve and tells how
close the process is to the target dimension. The spread of the distribution is expressed by its standard
deviation 0, which indicates the precision or process capability.

UL and LL mark the upper and lower limits of size, as set by the design requirements. If UL and
LL correspond to the £3¢ process capability, as shown, a few parts will be rejected (about 3 per 1000).

Any normal distribution may be converted to a standard normal, which has a mean of zero and ¢
of 1.0. Instead of plotting the frequency versus size, it is plotted in terms of the number of standard
deviations from the mean. Standard tables then permit you to determine the fraction of assemblies
which will fail to meet the engineering limits. This is accomplished as follows:

1. Perform a tolerance stack-up analysis to calculate the mean and standard deviation of the assem-
bly dimension X, which has design requirements X, and X, .

2. Calculate the number of standard deviations from the mean to each limit:

where X and O, are the mean and standard deviation of the assembly dimension X, and Z = 0
and 0, = 1.0 are the mean and standard deviation of the transformed distribution curve.

3. Using standard normal tables, look up the fraction of assemblies lying between Z,and Z,,
(the area under the curve). This is the predicted yield, or fraction of assemblies which will
meet the requirements. The fraction lying outside the limits is (1.0 — yield). These are the pre-
dicted rejects, usually expressed in parts per million (ppm).

Note:  Standard tables list only positive Z, since the normal distribution is symmetric.

Mean
Standard Deviation
-16 | +1o
Rejects
L -30 +30 uL
3o Capability

FIGURE 7.1 Frequency plot of size distribution for a process with random error.
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TABLE 7.2 Comparative Quality Level vs. Number of Standard Deviations in Z;, and Z,,

Z,andZ Yield fraction Rejects per million Quality level
20 0.9545 45500 Unacceptable
3o (.9973 2700 Moderate
4o 0.9999366 63.4 High
50 0.999999426 0.57 Very high
60 0.999999998 0.002 Extremely high

Expressing the values Z,, and Z,,, in standard deviations provides a nondimensional measure
of the quality level of an assembly process. A comparison of the relative quality in terms of the
number of ¢ is presented in Table 7.2.

74 PERCENT CONTRIBUTION

Another valuable, yet stmple, evaluation tool is the percent contribution. By calculating the percent
contribution that each variation contributes to the resultant assembly variation. designers and pro-
duction personnel can decide where to concentrate their quality improvement efforts. The contribu-
tion is just the ratio of a component standard deviation to the total assembly standard deviation:

N

WC: %Cont = 100— RSS: %Cont = 100
ASM G/-\SM

75 EXAMPLE 1—CYLINDRICAL FIT

A clearance must be maintained between the rotating shaft and bushing shown in Fig. 7.2. The min-
imum clearance must not be less than 0.002 in. The max is not specified. Nominal dimension and
tolerance for each part are given in Table 7.3, below:

The first step involves converting the given dimensions and tolerances to centered dimensions and
symmetric tolerances. This is a requirement for statistical tolerance analysis. The resulting centered

—— Dimension B

Dimension S
Shaft —

Bushing

V)

\

FIGURE 7.2 Shaft and bushing cylindrical fit.
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TABLE 7.3 Dimensions and Tolerances—Clylindrical Fit Assembly

Nominal LL UL Centered Plus/minus
Part dimension tolerance tolerance dimension tolerance
Bushing B 0.75 -0 +.0020 0.7510 +0.0010
Shaft § 0.75 -0.0028 -0.0016 0.7478 +0.0006
Clearance C 0.0032 +0.0016 WC
+0.00117RSS

dimensions and symmetric tolerances are listed in the last two columns. If you calculate the maximum
and minimum dimensions for both cases, you will see that they are equivalent.

The next step is to calculate the mean clearance and variation about the mean. The variation has
been calculated both by WC and RSS stackup, for comparison.

Mean clearance: C=B-S§=0.7510—0.7478 = 0.0032 in

(the bar denotes the mean or average value)

WC variation: T, =IT,|+IT,I = 0.0010 + 0.0006 = 0.0016 in

RSS variation: T, =/ 77+ T2 =/0.0010? +0.0006 = 0.00117 in

Note that even though C is the difference between B and S, the tolerances are summed.
Component tolerances are always summed. You can think of the absolute value canceling the nega-
tive sign for WC and the square of the tolerance canceling for RSS.

The predicted range of the clearance is C = 0.0032 + 0.00117 in (RSS),
or, C ., =0.0044, C_. =0.00203 in

Note that C, _and Cinin are not absolute limits. They represent the +3a limits of the variation. It
is the overall process capability of this assembly process, calculated from the process capabilities of
each of the component dimensions in the chain. The tails of the distribution actually extend beyond
these limits.

So, how many assemblies will have a clearance less than 0.002 in? To answer this question, we
must first calculate Z,, in terms of dimensionless o units. The corresponding yield is obtained by
table lookup in a math table or by using a spreadsheet, such as Microsoft Excel:

T.
Oc == =0.00039 in

_LL-C _0.002-0.0032
o, 0.00039

Z, = -3.0870

The results from Excel are:

Yield = NORMSDIST(Z,, ) = 0.998989 Reject fraction = 1.0 — Yield = 0.001011

or, 99.8989 percent good assemblies, 1011 ppm (parts per million) rejects.

Only Z,, was needed, since there was no upper limit specified.
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Mean Shift

Rejects

LL Midpoint ~ Xmean uL
FIGURE 7.3 Normal distribution with a mean shift causes an increase in rejects.
A Z,, magnitude of 3.087¢ indicates a moderate quality level is predicted, provided the specified

tolerances truly represent the +30 process variations. Figure 7.3 is a plot showing a normal distribu-
tion with a mean positive shift. Note the increase in rejects due to the shift.

76 HOWTO ACCOUNT FOR MEAN SHIFTS

It is common practice in statistical tolerance analysis to assume that the mean of the distribution is
stationary, located at the midpoint between the LL and UL. This is generally not true. All processes
shift with time due to numerous causes, such as tool wear, thermal expansion. drift in the electronic
control systems, operator errors, and the like. Other errors cause shifts of a fixed amount, including
fixture errors, setup errors, setup differences from batch to batch, material properties differences, etc.
A shift in the nominal dimension of any part in the chain can throw the whole assembly oft center by
a corresponding amount.

When the mean of the distribution shifts off center, it can cause serious problems. More of the
tail of the distribution is shoved beyond the limit, increasing the number of rejects. The slope of the
curve steepens as you move the mean toward the limit, so the rejects can increase dramatically. Mean
shifts can become the dominant source of rejects. No company can afford to ignore them.

There are two kinds of mean shifts that must be considered: static and dynamic. Static mean shifts
occur once, and affect every part produced thereafter with a fixed error. They cause a fixed shift in
the mean of the distribution. Dynamic mean shifts occur gradually over time. They may drift in one
direction, or back and forth. Over time, large-scale production requires multiple setups, multicavity
molds, multiple suppliers, etc. The net result of each dynamic error source is to degrade the distrib-
ution, increasing its spread. Thus, more of the tails will be thrust beyond the limits.

To model the effect of static mean shifts, one simply alters the mean value of one or more of the
component dimensions. If you have data of actual mean shifts, that is even better. When you calcu-
late the distance from the mean to LL and UL in o units, you can calculate the rejects at each limit.
That gives you a handle on the problem.

Modeling dynamic mean shifts requires altering the tolerance stackup model. Instead of estimat-
ing the standard deviation o, of the dimensional tolerances from 7, = 30, as in conventional RSS tol-
erance analysis, a modified form is used to account for higher quality level processes:

T.=3Cp, o, where Cp is the process capability index

_UL-LL

C,
6o
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FIGURE 7.4 The six sigma model uses a drift factor k and 460 limits to
stmulate high quality levels.

If the UL and LL correspond to +3¢ of the process, then the difference UL — LL = 60, and Cp will
be 1.0. Thus, a Cp of 1.0 corresponds to a “moderate quality level” of +30. If the tolerances corre-
spond to +60, UL — LL = 120, and Cp = 2.0, corresponding to an “extremely high quality level” of
t60.

The Six Sigma model for tolerance stack-up accounts for both high quality and dynamic mean shift
by altering the stack-up equation to include the C p and a drift factor k for each dimension in the chain.

3

T 2
C..., = —_—
ASM Z(3Cp,-(]‘k,)J

As Cp increases, the contribution of that dimension decreases, causing O,y 10 decrease.

The drift factor k measures how much the mean of a distribution has been observed to drift dur-
ing production. Factor k is a fraction, between 0 and 1.0. Figure 7.4 shows that k corresponds to the
shift in the mean as a percent of the tolerance. If there is no data, it is usually set to k = 0.25. The
effects of these modifications are demonstrated by a comprehensive example.

77 EXAMPLE 2—AXIAL SHAFT AND BEARING STACK

The shaft and bearing assembly shown in Fig. 7.5 requires clearance between the shoulder and inner
bearing race (see inset) to allow for thermal expansion during operation. Dimensions A through G
stack up to control the clearance U. They form a chain of dimensions, indicated by vectors added
tip-to-tail in the figure. The chain is 1-D, but the vectors are offset vertically for clarity. The vector
chain passes from mating-part to mating-part as it crosses each pair of mating surfaces. Note that all
the vectors acting to the right are positive and to the left are negative. By starting the chain on the
left side of the clearance and ending at the right, a positive sum indicates a clearance and a negative
sum, an interference.

Each dimension is subject to variation. Variations accumulate through the chain, causing the
clearance to vary as the resultant of the sum of variations. The nominal and process tolerance limits
for each one are listed in Table 7.4 with labels corresponding to the figure.

The design requirement for the clearance U is given below. The upper and lower limits of
clearance U are determined by the designer, from performance requirements. Such assembly
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FIGURE 7.5 Example Problem 2: Shaft and bearing assembly. (Fortini, 1967)

requirements are called key characteristics. They represent critical assembly features, which affect
performance.

Design requirement: Clearance (U) = 0.020 £ 0.015 in

Initial design tolerances for dimensions B. D. E, and F were selected from a tolerance chart,
which describes the “natural variation” of the processes by which parts are made (Trucks 1987). It
is a bar chart, indicating the range of variation achievable by each process. Also note that the range
of variation depends on the nominal size of the part dimension. The tolerances for B, D, E, and F
were chosen from the middle of the range of the turning process, corresponding to the nominal size
of each. These values are used as a first estimate, since no parts have been made. As the variation
analysis progresses, the designer may elect to modify them to meet the design requirements. The
bearings, and retaining ring, however, are vendor-supplied. The dimensions and tolerances for A, C,
and G are therefore fixed, not subject to modification.

The next step is to calculate the mean clearance and variation about the mean. The variation has
been calculated both by WC and RSS stackup. for comparison.

TABLE 7.4 Nominal Dimensions and Tolerances for the Example Problem 2

Nominal Tolerance Process limits

Part Dimension in in Min Tol Max Tol
Retaining ring A* —-.0505 +.0015*% * *
Shaft B 8.000 +.008 +0.003 +0.020
Bearing c* -.5090 +.0025* * *
Bearing sleeve D 400 +.002 +0.0008 +0.005
Housing E -7.705 1.006 +0.0025 +0.0150
Bearing sleeve F 400 +.002 +0.0008 +0.005
Bearing G* ~.5090 +.0025* * *

* Vendor-supplied part



BASIC TOOLS FOR TOLERANCE ANALYSIS OF MECHANICAL ASSEMBLIES 7.9
Mean clearance:

U=-A+B-C+D-E+F-G
=-0.0505 + 8.000 — 0.509 + 0.400 — 7.705 + 0.400 - 0.509
=(0.0265

WC variation:

T, =IT |+ T+ 1T 1T + T +1T ] +1T,
=0.0015 + 0.008 + 0.0025 + 0.002 + 0.006 + 0.002 + 0.0025
= 0.0245

RSS variation:

Ty = TP+ TR+ T2+ T+ TR+ T2+ T

=0.0015% +0.008% +0.0025% +0.002> +0.006* + 0.002 +0.0025
=0.01108

Parts-per-million rejects:

Uy -U  0.035-0.0265
o, 0.00369

Zy, =

=2300 = 10,679 PPM _Rejects

U, -U  0.005-0.0265
o, 0.00369

Z, =

=-5.820 = 0.0030 PPM _Rejects

Percent Contribution. The percent contribution has been calculated for all seven dimensions, for
both WC and RSS. A plot of the results is shown in Fig. 7.6. RSS is greater because it is the square
of the ratio of the variation.

% Contribution

0 10 20 30 40 50 60 % Contribution
wC RSS

] 6.12 1.83

‘ 32.65 52.14

—hss 10.20 5.09

e 8.16 3.26

24.49 29.33

8.16 3.26

10.20 5.09

FIGURE 7.6 Percent contribution chart for Example 2.
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78 CENTERING

The example problem discovered a mean shift of 0.0065 in from the target value, 0.020 in, midway
between LL and UL. The analysis illustrates the effect of the mean shift—a large increase in rejects
at the upper limit and reduced rejects at the lower limit. To correct the problem, we must modify one
or more nominal values of the dimensions B, D, E, or F, since A, C, and G are fixed.

Correcting the problem is more challenging. Simply changing a callout on a drawing to center
the mean will not make it happen. The mean value of a single dimension is the average of many pro-
duced parts. Machinists cannot tell what the mean is until they have made many parts. They can try
to compensate, but it is difficult to know what to change. They must account for tool wear, temper-
ature changes, set up errors, etc. The cause of the problem must be identified and corrected. It may
require tooling modifications, changes in the processes, careful monitoring of the target value, a tem-
perature-controlled workplace, adaptive machine controls, etc. Multicavity molds may have to be
qualified cavity-by-cavity and modified if needed. It may require careful evaluation of all the dimen-
sions in the chain to see which is most cost effective to modify.

In this case, we have chosen to increase dimension E by 0.0065 in, to a value of 7.7115 in. The
results are:

Mean Opsm Z, uL

0.020 in 0.01108 in —4.06 24 ppm 4.06 24 ppm

Rejects Z Rejects

This would be a good solution, if we could successfully hold that mean value by better fixturing,
more frequent tool sharpening, statistical process control, and the like.

79 ADJUSTING THE VARIANCE

Suppose the mean of the process cannot be controlled sufficiently. In that case, we may choose to
adjust the tolerance of one or more dimensions. The largest contributors are dimensions B on the
shaft and E on the housing. We reduce them both to 0.004 in with the results:

Meun Cusm zZ, Rejects Z, Rejects
0.0265 in 0.00247 in -8.72 0 ppm 345 284 ppm

This corresponds to an effective quality level of £3.630, that is, for a two-tailed, centered distribu-
tion having the same number of total rejects (142 at each limit).

710 MIXING NORMAL AND UNIFORM DISTRIBUTIONS

Suppose the shaft (Part B) is jobbed out to a new shop, with which we have no previous experience.
We are uncertain how much variation to expect. How shall we account for this uncertainty? We could
do a worst case analysis, but that would penalize the entire assembly for just one part of unknown
quality. We could instead resort to a uniform distribution, applied to dimension B, leaving the others
as normal.

The uniform distribution is sometimes called the “equal likelihood™ distribution. It is rectangular
in shape. There are no tails, as with the normal. Every size between the upper and lower tolerance
limits has an equal probability of occurring. The uniform distribution is conservative. It predicts
greater variation than the normal, but not as great as worst case.
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For a uniform distribution, the tolerance limits are not +30, as they are for the normal. They are
equal to +4/30. Thus, the stackup equation becomes:

o E(2)5(%]

where the first summation is the squares of the o, for the normal distributions and the second sum is
for the uniform distributions.

For the example problem, dimension B has upper and lower limits of 8.008 and 7.992 in, respec-
tively, corresponding to the ++/30 limits. We assume the assembly distribution has been centered and
the only change is that B is uniform rather than normal. Substituting the tolerance for B in the second
summation and the tolerance for each of the other dimensions in the first summation, the results are:

Mean Lo Z, Rejects Z Rejects
0.020 in 0.00528 in -2.84 2243 ppm 2.84 2243 ppm

The predicted rejects assume that the resulting distribution of assembly clearance U is normal.
This is generally true if there are five or more dimensions in the stack. Even if all of the component
dimensions were uniform, the resultant would still approximate a normal distribution. However, if
one non-normal dimension has a much larger variation than the sum of all the others in the stack, the
assembly distribution would be non-normal.

711 SIX SIGMA ANALYSIS

Six Sigma analysis accounts for long-term drift in the mean, or dynamic mean shift, in manufactured
parts. It uses the process capability index Cp and drift factor k to simulate the long term spreading
of the distribution, as mentioned earlier. In the following, Six Sigma is applied to two models for
example Problem 2. The first uses Cp = 1.0 for comparison directly with RSS, corresponding to a
130 quality level, with and without drift correction. The second case uses Cp = 2.0 for comparison
of £60 quality levels with £30. The results are presented in Table 7.5 alongside WC and RSS results
for comparison. All centered cases used the modified nominals to center the distribution mean.

TABLE 7.5 Comparison of Tolerance Analysis Models for Example 2

Mean Ousm 2,7, Rejects Quality
Model in in o ppm o

Centered

wC 0.020 0.00820" N/A N/A N/A
RSS—Uniform 0.020 0.00640 +2.34 19027 2.34
RSS—Normal 0.020 0.00369 +4.06 48 4.06
6Sigma—Cp = 1 0.020 0.00492 +3.05 2316 3.05
6Sigma—Cp =2 0.020 0.00246 16.1 0.0011 6.10
Mean Shift

RSS—Uniform 0.0265 0.00640 -3.36/1.33 92341 1.68
RSS—Normal 0.0265 0.00369 -5.82/2.30 10679 2.55
6Sigma—Cp = | 0.0265 0.00492 -4.37/1.73 42162 2.03
6Sigma—Cp =2 0.0265 0.00246 —~8.73/3.45 278 3.64

“WC has no ¢. This is calculated from T

sy!3 for comparison with RSS methods.
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Noncentered cases used a mean shift of 0.0065 in. The RSS—uniform results were not presented
before, as this case applied uniform distributions to all seven dimensions for comparison to WC.

712 REMARKS

The foregoing discussion has presented techniques for predicting tolerance stacking, or the accumu-
lation of variation, in mechanical assembly processes. There is quite a wide range of results, depend-
ing on the assumptions, available data, and the quality goals involved. As with any analytical
modeling, it is wise to verity the results by measurements. When production data become available,
values of the mean and standard deviation of the measured dimensions may be substituted into the
RSS stack equation. This will give real-world data to benchmark against.

In 1-D stacks, the means do add linearly and standard deviations do add by root-sum-squares, as long
as the variations are independent (not correlated). There are tests for correlation, which may be applied.
Verification will build confidence in the methods. Experience will improve your assembly modeling
skills and help you decide which analytical models are most appropriate for given applications.

There are many topics which have been omitted from this introduction, including:

1. Modeling variable clearances, such as the clearance around a bolt or shaft, which can introduce
variation into a chain of dimensions as an input rather than a resultant assembly gap.

2. Treating errors due to human assembly operations, such as positioning parts in a slip-joint before
tightening the bolts.

Available standards for tolerancing, such as cylindrical fits, or standard parts, like fasteners.
How to apply GD&T to tolerance stacks.

Tolerance allocation algorithms, which assist in assigning tolerances systematically.

A

When and how to use Monte Carlo Simulation, design of experiments, response surface method-
ology, and method of system moments for advanced applications.

7. How to treat non-normal distributions, such as skewed distributions.
8. Methods for modeling 2-D and 3-D assembly stacks.
9. CAD-based tolerance analysis tools.

The results here presented were obtained using an Excel spreadsheet called CATS 1-D, which is
available as a free download, along with documents, from the ADCATS web site, listed in the
References.

For further reading, see below. Additional papers which discuss many of these topics are avail-
able on the ADCATS web site.
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