Angle of Attack during Rate One Turns

Author / Contact

Philip Oakley
OPDS

Systems Engineer

Description

Description

This worksheet calculates the increase in angle of attack as an aircraft proceedes around a turn, relative to straight and level. This increase in angle of attack provides the increase in aerofoil lift required to supply the centripetal turning forces and, for a level turn, sets the aircraft bank angle (no side slip).
http://en.wikipedia.org/wiki/Angle of attack
http://en.wikipedia.org/wiki/Stall_(flight) for animated force diagram
http://en.wikipedia.org/wiki/ROT (aviation)

- Maths

$$
\begin{array}{ll}
\text { ROT }:=3 \frac{\mathrm{deg}}{\mathrm{sec}} & \text { Rate One Turn } \\
\text { OV }:=120 \mathrm{knot} & \text { Own ship Velcity } \\
\mathrm{CI}:=\frac{1.0}{[4 \mathrm{deg}-(-5.5 \mathrm{deg})]} & \text { Lift Coefficient (per AoA) } \\
\mathrm{CI}=0.105 \cdot \mathrm{deg}^{-1} & \text { Typical Value from Wiki articles } \\
\text { TurnRate }:=1 \cdot \text { ROT } & \text { Bank }=18.243 \cdot \mathrm{deg} \\
\text { Bank }:=\text { atan }\left(\frac{\text { OV•TurnRate }}{\mathrm{g}}\right) & \text { Lift }=1.053 \cdot \mathrm{~g} \\
\text { Lift }:=\sqrt{\mathrm{g}^{2}+(\mathrm{OV} \cdot \text { TurnRate })^{2}} & \\
\text { ExtraAoA }:=\left(\frac{\text { Lift }}{\mathrm{g}}-1\right) \cdot \mathrm{CI} & \text { ExtraAoA }=18.287 \cdot \mathrm{deg}
\end{array}
$$

Project Reference
Issue \#

- Summary, Recommendations, Conclusion

This worksheet actually shows that the Angle units would be of great benefit to users.
You did spot the mistake didn't you?

Summary, Recommendations, Conclusion

