Dr. John H. Bickel

This MATHCAD 11 spread sheet calculator simulates the space-time heatup of an XLPE cable subject to an external fire. The model: (a) calculates initial temperature profile as a function of radius due to dissipation of electrical heat from continuous current flows, (b) the effects of both convective and radiative heat trasfer to the exterior of the cable, (c) effects of different material properties as a function of radius. Values hightlighted in GREY are adjusted to match different types of electrical cables.

Number of Conductor Strands:
Strand diameter in inches:
Insulation thickness in inches:

Steady State Pre-Fire Initial Conditions:

Calculation of Heat dissipation per foot:
Steady State RMS Current (Amps):

Cable Resistance per foot(Ohms/ft):

Ambient air temperature "pre-fire" in deg. F:

$$
\begin{aligned}
& \mathrm{Ns}:=7 \\
& \mathrm{~d}:=0.1285 \mathrm{in} . \\
& \text { tins }:=0.06 \text { in. }
\end{aligned}
$$

RMS Power dissipation in Cable per foot (Watts/foot):
\quad - this is the volumetric heat genertion rate and
assumes current is distributed evenly in cable strands-
RMS Power dissipation in Cable per foot (Watts/foot):
\quad - this is the volumetric heat genertion rate and
assumes current is distributed evenly in cable strands-
RMS Power dissipation in Cable per foot (Watts/foot):
\quad - this is the volumetric heat genertion rate and
assumes current is distributed evenly in cable strands-

Cross-sectional area of Conductor in sq.ft.:

Conversion of Watts/ft to BTU/sec.ft.via
multiplying by $9.478 \cdot 10^{-4}$:

Conversion of heat dissipation in BTU/sec. ft to volumetric heat disspation in BTU/sec.cu.ft. via dividing by Volume/ft or: Acu

Iss : $=0.0$

$$
\text { Rcable }:=\frac{0.67}{1000}
$$

$$
\text { Rcable }=6.7 \times 10^{-4}(\mathrm{Ohms} / \mathrm{ft})
$$

$$
\text { Prms }:=\text { Iss }^{2} \cdot \text { Rcable }
$$

$$
\text { Prms }=0 \quad \text { Watts/ft }
$$

$$
\operatorname{Acu}:=\mathrm{Ns} \cdot \pi \cdot\left(\frac{\frac{\mathrm{~d}}{12}}{2}\right)^{2}
$$

$$
\mathrm{Acu}=6.304 \times 10^{-4} \quad \text { sq. ft. }
$$

$$
\text { Qo }:=\operatorname{Prms} \cdot\left(9.478 \cdot 10^{-4}\right)
$$

$$
\mathrm{Qo}=0
$$

BTU/sec.ft.

$$
\mathrm{qo}:=\frac{\mathrm{Qo}}{\mathrm{Acu}}
$$

$$
\mathrm{qo}=0
$$

BTU/sec.cu.ft

XLPE Insulation Thermal and Materials Property Data:

Softening Temperature of XLPE 105 C-115 C is conservatively used as material temperature limit for onset of electrical hot-shorting.

Ths := 221
deg. F
Melting Point Temperature of XLPE 124 C - 131 C is an upper limit on insulation material integrity

Tmelt $:=255$ deg. F

Using data from NUREG-1821 Vol. 6 Table 5-1:

Thermal conductivity of the Insulation layer: gives $0.00021 \mathrm{~kW} / \mathrm{m}$ degK

Material density (same source) $\rho=1375 \mathrm{~kg} / \mathrm{cu} . \mathrm{m}$.

Heat Capacity (same source) $\mathrm{Cp}=1.566 \mathrm{~kJ} / \mathrm{kg}$ degK

Copper Thermal and Materials Property Data

Source: Kreith: "Principles of Heat Transfer", p. 593

Temp $_{\mathrm{i}}:=$ ThermalCondData $_{\mathrm{i}, 0} \quad \mathrm{kc}_{\mathrm{i}}:=$ ThermalCondData $_{\mathrm{i}, 1}$

| Copper Thermal Conductivity in Btu/sec.ft.deg F
 requires dividing by 3600sec/hr: | $\mathrm{kcu}:=\frac{215}{3600}$ | $\mathrm{kcu}=0.06$ |
| :--- | :--- | :--- |$\quad \mathrm{Btu} / \mathrm{sec} . \mathrm{ft} . \mathrm{deg} \mathrm{F}$

Equation governing "pre-fire" steady state heat transfer from cable surface to free air:

Assume surface convection from cable surface to surrounding free air.
qo $V=$ qo $\left(\pi \cdot R s^{2} \cdot L\right)=2 \pi R s L h c($ Tins(Rs) - Tair $)$ then: Tins $(R s)=T s=$ Tair + qo Rs/hc hc $:=\frac{5}{3600} \quad$ hc $=1.389 \times 10^{-3}$ BTU/sec sq.ft.F

Ts $:=$ Tair $+\frac{\text { qo } \cdot \text { Rs }}{\text { hc }} \quad$ Ts $=65$

Equation governing "pre-fire" steady state heat transfer in the Insulator layer:

$0=-k s h / r \frac{d}{d r}\left[r \cdot\left(\frac{d}{d r} \operatorname{Tins}(r, 0)\right)\right]$, has no internal volumetric heat source - only heat transfer Integrating this expression yields: $\frac{\mathrm{d}}{\mathrm{dr}} \operatorname{Tins}(\mathrm{r}, 0)=\frac{-\mathrm{Co}}{\mathrm{r}}$, integrating again yields:
$\operatorname{Tins}(\mathrm{r})=\mathrm{C}_{1}-\mathrm{Co} \cdot \ln (\mathrm{r})$
Applying the boundary condition: Tins(Rs) = Ts and solving for C_{1} yields:
$C_{1}=T s+C o \ln (R s)$, thus: Tins(r) $=T s-C o \ln (r / R s)$
To solve for Co , the boundarv condition related to the temperature drop across a cylindrical shell from a heat source qo $\cdot \pi \cdot \mathrm{Ro}^{2} \cdot \mathrm{~L}(\mathrm{BTU} / \mathrm{sec})$ is used:

$$
\mathrm{qo} \cdot \pi \cdot \mathrm{Ro}^{2} \cdot \mathrm{~L}=\frac{2 \cdot \pi \cdot \mathrm{~L} \cdot \mathrm{k}_{\mathrm{sh}} \cdot(\operatorname{Tins}(\mathrm{Ro})-\operatorname{Tins}(\mathrm{Rs}))}{\ln \left(\frac{\mathrm{Rs}}{\mathrm{Ro}}\right)}
$$

Simplifying the expression and solving for Tins(Rs) yields:
$\operatorname{Tins}(\mathrm{Ro})=\operatorname{Tins}(\mathrm{Rs})+\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{Rs}}{\mathrm{Ro}}\right)$
$\operatorname{Tins}(\mathrm{Rs})+\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{Rs}}{\mathrm{Ro}}\right)=\operatorname{Tins}(\mathrm{Rs})-\mathrm{Co} \cdot \ln \left(\frac{\mathrm{Ro}}{\mathrm{Rs}}\right)$
Solving for Co then yields: $\mathrm{Co}=\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}}$, thus: $\quad \operatorname{Tins}(\mathrm{r}):=\mathrm{Ts}-\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{Rs}}\right)^{\mathbf{1}}$

$$
\operatorname{Tins}(\mathrm{r}):=\mathrm{Tair}+\frac{\mathrm{qo} \cdot \mathrm{Rs}}{\mathrm{hc}}-\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{Rs}}\right) \quad \operatorname{Tins}(\mathrm{Ro})=65 \quad \mathrm{Ts}=65
$$

Equation governing "pre-fire" steady state heat transfer in the Conductor:

$\mathrm{qr}=-\mathrm{kcu} \frac{\mathrm{d}}{\mathrm{dr}}\left[\mathrm{r} \cdot\left(\frac{\mathrm{d}}{\mathrm{dr}} \mathrm{T}(\mathrm{r}, 0)\right)\right]$ for volumetric heat source $\mathrm{q}(B T U /$ sec cu.ft.) with boundary conditions:
$\left(\frac{d}{d r} T(r, t)\right)=0 \quad$ when $r=0$, and $T(R o, 0)=T o$
Integrating this yields:
$\frac{-\mathrm{q}}{\mathrm{kcu}} \cdot \int \mathrm{rdr}+\mathrm{Co}=\mathrm{r} \cdot\left(\frac{\mathrm{d}}{\mathrm{dr}} \mathrm{T}(\mathrm{r}, 0)\right)$
$\frac{-\mathrm{q} \cdot \mathrm{r}}{\mathrm{kcu}}+\frac{\mathrm{Co}}{\mathrm{r}}=\frac{\mathrm{d}}{\mathrm{dr}} \mathrm{T}(\mathrm{r}, \mathrm{t}) \quad$ Using the boundary condition: $\left(\frac{\mathrm{d}}{\mathrm{dr}} \mathrm{T}(\mathrm{r}, 0)\right)=0 \quad$ when $\mathrm{r}=0$ Co must be $\mathrm{Co}=0$

Integrating again yields: $T(r, t)=C_{1}-\frac{q \cdot r^{2}}{4 k c u}$

Solving for C_{1} using $T(R o, 0)=T o$, yields: $C_{1}=T o+\frac{q \cdot R^{2}}{4 \cdot k c u} \quad$ Thus:
$\mathrm{T}(\mathrm{r}):=\left\{\begin{array}{l}\text { Tair }+\frac{\mathrm{qo} \cdot \mathrm{Rs}}{\mathrm{hc}}-\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{Ro}}{\mathrm{Rs}}\right)+\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{4 \cdot \mathrm{kcu}} \cdot\left(1-\frac{\mathrm{r}^{2}}{\mathrm{Ro}^{2}}\right) \text { if } \mathrm{r} \leq \mathrm{Ro} \\ \text { Tair }+\frac{\mathrm{qo} \cdot \mathrm{Rs}}{\mathrm{hc}}-\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{Rs}}\right) \text { if } \mathrm{Ro}<\mathrm{r} \leq \mathrm{Rs} \\ \text { Tair otherwise }\end{array}\right.$

Specification of the material properties and Misc. constants as a function of region:

$$
\begin{aligned}
\mathrm{q}(\mathrm{r}, \mathrm{t}):= & \left\lvert\, \begin{array}{l}
\mathrm{qo} \text { if }(\mathrm{r} \leq \mathrm{Ro}) \wedge(\mathrm{t} \geq 0) \quad \text { Heat Source (BTU/s } \\
0 \text { otherwise }
\end{array}\right. \\
\mathrm{To}(\mathrm{r}, \mathrm{t}):= & \begin{array}{l}
\text { Tair }+\frac{\mathrm{qo} \cdot \mathrm{Rs}}{\mathrm{hc}}-\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{Ro}}{\mathrm{Rs}}\right)+\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{4 \cdot \mathrm{kcu}} \cdot\left(1-\frac{\mathrm{r}^{2}}{\mathrm{Ro}^{2}}\right) \text { if } \mathrm{r} \leq \mathrm{Ro} \\
\text { Tair }+\frac{\mathrm{qo} \cdot \mathrm{Rs}}{\mathrm{hc}}-\frac{\mathrm{qo} \cdot \mathrm{Ro}^{2}}{2 \cdot \mathrm{ksh}} \cdot \ln \left(\frac{\mathrm{r}}{\mathrm{Rs}}\right) \text { if } \mathrm{Ro}<\mathrm{r} \leq \mathrm{Rs} \\
\text { Tair otherwise }
\end{array}
\end{aligned}
$$

Heat Source (BTU/sec.cu.ft.) vs. r Temperature (deg F) distribution before fire.
kair $:=\frac{0.02}{3600} \quad$ kair $=5.556 \times 10^{-6} \quad$ BTU/sec.ft.F - based on kair at 400 F, Kreith, p. 595

$$
\mathrm{k}(\mathrm{r}):=\left\lvert\, \begin{aligned}
& \mathrm{kcu} \text { if } \mathrm{r} \leq \mathrm{Ro} \\
& \mathrm{ksh} \text { if } \mathrm{Ro}<\mathrm{r} \leq \mathrm{Rs} \\
& \text { kair otherwise }
\end{aligned}\right.
$$

$$
\begin{aligned}
& \rho(\mathrm{r}):=\left\lvert\, \begin{array}{ll}
556.85 & \text { if } \mathrm{r} \leq \mathrm{Ro} \\
85.837 & \text { otherwise }
\end{array}\right. \\
& \mathrm{C}(\mathrm{r}):=\left\lvert\, \begin{array}{ll}
0.091 & \text { if } \mathrm{r} \leq \mathrm{Ro} \\
0.374 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\text { Tfire }(\mathrm{t}):=\left\lvert\, \begin{aligned}
& 0.0014 \cdot \mathrm{t}^{2}+\text { Tair if } 0 \leq \mathrm{t} \leq 600 \\
& 0.0014 \cdot(600)^{2}+\text { Tair otherwise }
\end{aligned}\right.
$$

$$
\varepsilon:=0.9
$$

$$
\sigma:=\frac{1.714 \cdot 10^{-9}}{3600}
$$

$$
\sigma=4.761 \times 10^{-13} 3 \mathrm{TU} / \text { sec.sq.ft.deg } \mathrm{R}
$$

Conductance(Btu/sec.ft.deg F) vs. r Inner region is copper conductor, outer region is insulator, followed by air.

Mass Density (lb./cu.ft.) vs. r Inner region is copper, outer is insulator

Heat Capacity (BTU/lb.deg F) vs. r Inner region is copper, outer is insulator

This simplified model for fire-related heatup assume time-square fire growth rate which assumes heat conduction to an ultimate heat sink such as concrete walls and other surfaces.

Emissivity recommended value per NUREG-1821

Stefan-Boltzman constant converted from BTU/hr.sq.ft.deg R to units of BTU/sec.sq.ft.deg R -- Source:
Kreith, Principles of Heat Transfer, p. 12

Partial Differential Equation of Space-Time Dependent Temperature:

spacepts $:=1000 \quad$ timepts $:=100 \quad$ time $:=1000$

Given
$T_{t}(r, t)=\frac{k(r)}{\rho(r) \cdot C(r)} \cdot\left(T_{r r}(r, t)+\frac{1}{r} \cdot T_{r}(r, t)\right)+\frac{q(r, t)}{\rho(r) \cdot C(r)}$

$$
\mathrm{T}(\mathrm{r}, 0)=\mathrm{To}(\mathrm{r}, 0)
$$

$\mathrm{T}_{\mathrm{r}}(0.0001, \mathrm{t})=0$

Space-Time equation for temperature distribution based upon energy balance

Sets the initial temperature ditribution to pre-fire values based upon internal heat generted by electrical cable resistive heat loss.

This is the standard symmetry boundary condition. NOTE: $r=0$ cannot be used as this results in singularity in PDE solver routine.

$$
\mathrm{T}_{\mathrm{r}}(\mathrm{Rs}, \mathrm{t})=\frac{-\mathrm{hc}}{\mathrm{k}(\mathrm{Rs})} \cdot(\mathrm{T}(\mathrm{Rs}, \mathrm{t})-\mathrm{Tfire}(\mathrm{t}))-\varepsilon \cdot \frac{\sigma}{\mathrm{k}(\mathrm{Rs})} \cdot\left[(\mathrm{T}(\mathrm{Rs}, \mathrm{t})+459.67)^{4}-(\text { Tfire }(\mathrm{t})+459.67)^{4}\right]
$$

This boundary condition incorporates the convective and radiative heat source terms.

$$
\mathrm{T}:=\operatorname{Pdesolve}\left[\mathrm{T}, \mathrm{r},\binom{0.0001}{\mathrm{Rs}}, \mathrm{t},\binom{0}{\text { time }} \text {, spacepts, timepts }\right]
$$

This expression executes the standard MATHCAD PDE solver routine.

Q
$\mathrm{M}:=$ CreateMesh(T, 0.001, Rs, 0, time $)$

M

XLPE insulator temperature: $\mathrm{T}(\mathrm{Rs}, \mathrm{t})$ vs assumed hot-short failure temperature: Ths and ambient air temperature during fire: Tfire(t)

Temperature vs. Time

Time in Seconds

Comparison of Convective vs. Radiative Heat Flux Source Terms

$$
\begin{array}{ll}
\operatorname{Qconv}(\mathrm{t}):=-\mathrm{hc} \cdot(\mathrm{~T}(\mathrm{Rs}, \mathrm{t})-\mathrm{Tfire}(\mathrm{t})) & \text { BTU/sec.sq.ft. } \\
\operatorname{Qrad}(\mathrm{t}):=-\varepsilon \cdot \sigma \cdot\left[(\mathrm{T}(\mathrm{Rs}, \mathrm{t})+459.67)^{4}-(\mathrm{Tfire}(\mathrm{t})+459.67)^{4}\right] & \text { BTU/sec.sq.ft. }
\end{array}
$$

Convective vs. Radiative Heat Sources

