TwoPDETesta.xmcd. September 1, 2009. This worksheet modifies the PDE Solve Quicksheet to solve the linearized partial differential equations describing undrained, adiabatic shear of a velocity strengthening fault zone. The equations are written in terms of the gradients of pore pressure and of temperature.

In these equations, Φ is the gradient of pore pressure and Ψ is gradient of temperature in non-dimensional form and perturbations from the uniform solution. cth and chy are thermal and hydraulic diffusivities, z is a parameter that gives the magnitude of the velocity strengthening (shear rate strengthening) and Hc is a measure of magnitude of the shear heating (all in nondimensional form). Representative values are given below.

cth :=
$$10^{-2}$$
 Hc := 0.3 chy := $1 \cdot 10^{-4}$ z := 40

Linearized solution for temperature and pressure (and their gradients) is unstable (grows exponentially) for wavenumbers less than a critical value given by (Critical value of the velocity is slightly different because of the effect of the time dependence of the homogeneous solution.

Ncrit :=
$$\frac{1}{\pi} \cdot \sqrt{\frac{z \cdot Hc}{(cth + chy)}}$$
 Ncrit = 10.972

$$N1 := floor(Ncrit)$$
 $floor(Ncrit) = 10$

$$N2 := ceil(Ncrit)$$
 $ceil(Ncrit) = 11$

$$\Phi 0 := 1$$
 $\Psi 0 := 0$

Given

$$\begin{split} &\Psi_t(y,t) = \mathsf{cth} \cdot \Psi_{yy}(y,t) + \mathsf{Hc} \cdot z \cdot \Phi(y,t) \\ &\Phi_t(y,t) = \left(\mathsf{chy} \cdot \Phi_{yy}(y,t) + \mathsf{cth} \cdot \Psi_{yy}(y,t) \right) + \mathsf{Hc} \cdot z \cdot \Phi(y,t) \end{split}$$

Initial conditions (for single Fourier mode):

$$\Phi(y,0) = \Phi0 \cdot \sin(\pi \cdot \text{Nnum} \cdot y)$$

$$\Psi(y,0) = \Psi 0 \cdot \sin(\pi \cdot \text{Nnum} \cdot y)$$

Boundary conditions (since solution is anti-symmetric about y = 0, bc's given for half the domain

$$\Psi(L,t) = 0 \qquad \qquad \Phi(L,t) = 0$$

$$\Psi(0,t) = 0 \qquad \qquad \Phi(0,t) = 0$$

Solve over the ranges 0 to L in y and 0 to T in t.

$$\begin{pmatrix} \Phi_{num} \\ \Psi_{num} \end{pmatrix} := Pdesolve \begin{bmatrix} \Phi \\ \Psi \end{pmatrix}, y, \begin{pmatrix} 0 \\ L \end{pmatrix}, t, \begin{pmatrix} 0 \\ T \end{pmatrix}, spacepts, timepts \end{bmatrix}$$

Exact solution (verified and tested in LinearSolFulla.xmcd. Solutions are of the form $exp(pt) \sin(N^*\pi Y)$ (because of the boundary conditions). Then p must satisfy a quadratic equation with the following coefficients::

$$Bc(n) := \frac{1}{2} \cdot \left[(\pi \cdot n)^2 (cth + chy) - z \cdot Hc \right]$$

$$Cc(n) := (\pi \cdot n)^4 \cdot (cth \cdot chy)$$

$$Discrim(n) := \sqrt{(Bc(n))^2 - Cc(n)}$$

Two solutions are:

$$pplus := -Bc(Nnum) + Discrim(Nnum)$$
 $pminus := -Bc(Nnum) - Discrim(Nnum)$

pplus =
$$-0.497$$
 pminus = -9.932

$$\Phi plus := \frac{pplus + cth \cdot \left(Nnum \cdot \pi\right)^2}{pplus - pminus} \cdot \left[\Phi 0 - \frac{\Psi 0}{Hc \cdot z} \cdot \left[pminus + cth \cdot \left(Nnum \cdot \pi\right)^2\right]\right]$$

$$\Phi$$
minus := Φ 0 – Φ plus

$$\Psi plus := \frac{Hc \cdot z \cdot \Phi plus}{\left[pplus + cth \cdot (Nnum \cdot \pi)^{2}\right]} \qquad \qquad \Psi minus := \frac{Hc \cdot z \cdot \Phi minus}{\left[pminus + cth \cdot (Nnum \cdot \pi)^{2}\right]}$$

 $\Psi time(s) := \Psi plus \cdot exp(pplus \cdot s) + \Psi minus \cdot exp(pminus \cdot s)$

 $\Phi time(s) := \Phi plus \cdot exp(pplus \cdot s) + \Phi minus \cdot exp(pminus \cdot s)$

 Ψ anal $(y, s) := \Psi$ time $(s) \cdot \sin(\text{Nnum} \cdot \pi \cdot y)$ Φ anal $(y, s) := \Phi$ time $(s) \cdot \sin(\text{Nnum} \cdot \pi \cdot y)$

Compare Exact and Numerical Solutions

$$L\equiv 1 \hspace{1cm} T\equiv 3 \hspace{1cm} spacepts \equiv 100 \hspace{1cm} timepts \equiv 1000 \hspace{1cm} Nnum \equiv 15$$

$$y := 0,0.01..L$$
 $t := 0,0.01..T$ Ncrit = 10.972

