TwoPDETesta.xmcd. September 1, 2009. This worksheet modifies the PDE Solve Quicksheet to
solve the linearized partial differential equations describing undrained, adiabatic shear of a velocity
strengthening fault zone. The equations are written in terms of the gradients of pore pressure and of
temperature.

In these equations, @ is the gradient of pore pressure and ¥ is gradient of temperature in
non-dimensional form and perturbations from the uniform solution. cth and chy are thermal and
hydraulic diffusivities, z is a parameter that gives the magnitude of the velocity strengthening (shear
rate strengthening) and Hc is a measure of magnitude of the shear heating (all in nondimensional
form). Representative values are given below.

cth:= 102 Hc:= 0.3 chy := 110 z:=40

Linearized solution for temperature and pressure (and their gradients) is unstable (grows
exponentially) for wavenumbers less than a critical value given by (Critical value of the velocity is
slightly different because of the effect of the time dependence of the homogeneous solution.

1 H
Nerit = —- | —2—% Nerit = 10.972
7t y (cth + chy)

N1 := floor(Ncrit) floor(Ncrit) = 10
N2 := ceil(Ncrit) ceil(Ncrit) = 11
P0:=1 v0:=0

Given

‘I’t(y,t) = cth-\Ilyy(y,t) + Hc-z- ®(y,t)
<I>t(y,t) = (chy-quy(y,t) + cth-‘l’yy(y,t)) + He-z-®(y,t)
Initial conditions (for single Fourier mode):

P(y,0) = PO-sin(7w-Nnum-y)
Y(y,0) = WO sin(m-Nnum-y)

Boundary conditions (since solution is anti-symmetric about y = 0, bc's given for half the
domain

vL,t) =0 $(L,t) =0

T(0,t) =0 ®(0,t) =0



Solve over the rangesOtoLinyandOto Tint.
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Exact solution (verified and tested in LinearSolFulla.xmcd. Solutions are of the form exp(pt)
sin(N*zY) (because of the boundary conditions). Then p must satisfy a quadratic equation with the
following coefficients::

1 [ 2 } 4
Bc(n) = E (7-n) (cth + chy) — z-Hc Cc(n) := (7n) -(cth-chy)

Discrim(n) := \/ (Bc(n))2 — Cc(n)

Two solutions are:

pplus := —Bc(Nnum) + Discrim(Nnum) pminus := —B¢(Nnum) — Discrim(Nnum)

pplus = —0.497 pminus = -9.932

2

lus + cth-(Nnum- w0

Pplus = pplus + cth ( 1.1um ™ | ®0 — ~|:pminus + cth~(Nnum~7‘r)2
pplus — pminus Hc-z

Pminus := PO — Pplus

Hc-z- ®plus . Hc-z- ®dminus
Uminus :=

[pplus + cth-(Nnum-'n)Z] I:pminus + cth~(Nnum-7r)2]

Wplus =

Wtime(s) := Wplus-exp(pplus:-s) + ¥minus-exp(pminus:s)
Ptime(s) := Pplus-exp(pplus-s) + Pminus-exp(pminus:s)

Wanal(y,s) := Wtime(s)-sin(Nnum-Tt-y) Panal(y, s) ;= $time(s)-sin(Nnum:-1t-y)



Compare Exact and Numerical Solutions

L=1 T=3 spacepts = 100

y=0,00l.L  t:=0,000..T

1
Ynum(y,0.01)

Wanal(y,0.01)

Ynum(y, 0.25) o}

Wanal(y, 0.25)
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