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a  b  s  t  r  a  c  t

This  article  presents  closed-form  analytic  solutions  to three  illustrative  problems  in  biochemical  kinetics
that  have  usually  been  considered  solvable  only  by  various  numerical  methods.  The  problems  solved
concern  two  enzyme-catalyzed  reaction  systems  that  obey  diversely  modified  Michaelis–Menten  rate
equations,  and  biomolecule  surface  binding  that  is  limited  by  mass  transport.  These  problems  involve
the  solutions  of  transcendental  equations  that  include  products  of  variables  and  their  logarithms.  Such
equations  are  solvable  by the  use  of  the Lambert  W(x)  function.  Thus,  these  standard  kinetics  examples  are
eywords:
iokinetics
iosensors
nzymes
ntegrated rate equation
inetic parameters

solved in  terms  of  W(x)  to  show  the  applicability  of this  commonly  unknown  function  to the  biochemical
community.  Hence,  this  review  first  of  all  describes  the  mathematical  definition  and  properties  of  the  W(x)
function  and  its  numerical  evaluations,  together  with  analytical  approximations,  and  then  it  describes  the
use  of  the  W(x)  function  in biochemical  kinetics.  Other  applications  of  the  function  in various  engineering
sciences  are  also  cited,  although  not  described.

© 2012 Elsevier B.V. All rights reserved.
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. Introduction

A function that is convenient for solving transcendental equa-
ions of the type y + ln(y) = x was derived and used independently

be traced back to Johann Lambert in around 1758, and it was con-
sidered later by Leonhard Euler [for references, see 5]. These two
mathematicians developed a series solution for the trinomial equa-
y several researchers [1–3] before Corless et al. settled on a com-
on  notation in the mid-1990s [4,5]. They called it the Lambert

 function (the letter W was chosen following the use of early
aple software [4]), on the consideration that this function can

∗ Tel.: +386 1 5437669; fax: +386 1 5437641.
E-mail address: marko.golicnik@mf.uni-lj.si

369-703X/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.bej.2012.01.010
tion, although they left it unnamed. However, in the years during
the Lambert/Euler era and through the modern history of Maple
[4], this function did not disappear entirely, even if the literature
remained widely scattered and obscure until the function acquired
the name of the Lambert W function. Meanwhile, Wright [1] ana-

lyzed the solution of the equation z exp(z) = a, in 1959, and later, in
1973, Fritsch et al. [2] presented an efficient algorithm for the root
computation of such nonlinear transcendental equations. However,

dx.doi.org/10.1016/j.bej.2012.01.010
http://www.sciencedirect.com/science/journal/1369703X
http://www.elsevier.com/locate/bej
mailto:marko.golicnik@mf.uni-lj.si
dx.doi.org/10.1016/j.bej.2012.01.010
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Fig. 1. The three real branches of the Lambert W(x) function for the correspond-
ing  values of argument x. Region 1 (- · -) x > 0, region 2 (· · ·) −exp(−1) < x < 0 and
M.  Goličnik / Biochemical Eng

ven a decade later, in the early 1980s, Beal still evaluated the solu-
ions to the Michaelis–Menten equation using either a table for the
o-called function ‘F’ [3] or a relatively slow Newton’s root-finding
ethod [6].
However, across numerous scientific disciplines, the modern

nowledge of the Lambert W function as a mathematical tool
as allowed the derivation of closed-form solutions for models

or which explicit or exact solutions were not known, and there-
ore where alternative iterative methods or approximate solutions
ad been used. Thus the Lambert W function can arise in a wide
cope of practical problems in mathematics, computer science [5],
athematical physics [5,7] and engineering (see [8] and references

herein), although it received little attention in biochemistry and
iotechnology. In these latter disciplines, the solutions to relatively
imple model equations are frequently given by a standard family
f transcendental equations of the following type:

 · y + ln(B + C · y) = ln(D) (1)

here A, B, C and D do not depend on y. For many life scientists
hat are faced with Eq. (1) in this implicit form, the usual next step
s to search for an available and efficient root-finding computer
lgorithm that can numerically evaluate the dependent variable y.
hus, they are not aware that Eq. (1) has the solution as given in its
losed form:

 = 1
A

·  W
(

A · D

C
·  exp

(
A · B

C

))
− B

C
(2)

here W stands for the Lambert W function. Therefore, I believe
hat it is expedient to illustrate here this function and how to use it
n practice. This is the subject of the present article, in which exam-
les of specific biochemical kinetics are given that can be solved
lgebraically and expressed in the closed form only in terms of the
ambert W function. Other applications of the use of the Lambert

 function in various engineering disciplines are also cited at the
nd of this review, although these are not described in detail.

. Mathematical properties of the Lambert W function

The Lambert W function is defined as the solution to the follow-
ng transcendental equation:

 · exp(y) = x (3)

lthough using a logarithmic transformation, Eq. (3) can also be
ewritten as:

 + ln(y) = ln(x) (4)

owever, the solution to Eqs. (3) and (4) is the Lambert W function,
nd it is written as:

 = W(x) (5)

Actually, when x is a general complex number, there are an infi-
ite number of solution branches that can be labeled with an integer
ubscript, as Wk(x) for k = 0, ±1, ±2, . . ..  However, if x is a real num-
er, the only two branches that take on real values are W0(x) and
−1(x). This function is real valued for the interval [−exp(−1),∞)
here it takes on values from −∞ to ∞,  although it is two  val-
ed for negative x. As can be seen in Fig. 1, a branching point

ocated at (−exp(−1),−1) separates the two branches of the Lam-
ert W function; i.e. the upper branch, W0(x), and the lower branch,
−1(x). These two branches are the only ones that are needed in
he applications of this article, although for practical reasons, W0(x)
s frequently separated into two regions for positive and negative
rgument x (see Fig. 1). Both of these branches have a common
ertical tangent at the branching point. The upper branch, W0(x),
0  > W(x) > −1; region 3 (—) −exp(−1) < x < 0 and W(x) < −1. Regions 1 and 2 divide the
principal W0(x) branch as W0

+(x) and W0
−(x), respectively, while region 3 represents

the lower W−1(x) branch.

is usually called the principal branch: it passes through the coor-
dinate origin, as for the lower branch W−1(x), and it has a negative
singularity and a vertical asymptote for x → 0−.

The main properties and calculus of W(x) are given in [5,7], but
I present here a brief survey, and in particular the expressions for
power series, derivatives and integrals of W are given in Appendix
A.

3. Computing the Lambert W function

A specificity of the Lambert W function is that it is defined
as an inverse function, and it cannot be expressed in terms of
elementary mathematical functions. As a consequence, arbitrary
precision evaluations can be obtained through iterative root-
finding techniques. Numerous numerical methods are available
for this purpose. The choice has to find the trade-off between com-
plexity of implementation, conditions, and number of iterations
to convergence at a given precision. These properties are usually
controllable via the order of the method.

Newton’s method [6,9] is a simple method with a second order
in convergence that is appropriate, but with relatively slow con-
vergence. The Newton iteration for Eq. (3) is available in the
Supplementary Materials, provided by an initial guess of y0, as
described in [9].  However, near to the point (−1, −exp(−1)), where
the Lambert W function has a horizontal tangent, the Newton
method only converges linearly, and can even fail to converge
because of the cancellation errors in the denominator of Eq. (SM5)
given in Supplementary Materials.  Additionally, for x near, although
below, zero, while the Newton method for W−1(x) is numerically
stable, it can take many iterations to converge.

Hence, a better compromise is realized by the Halley method [5],
which is a third-order method. This leads to high-precision evalua-
tion in reasonable time. The Halley method is based on the iteration
scheme given in Supplementary Materials,  which is provided by an
initial guess for y0, as described in [5].  However, supplying this iter-
ation technique with a sufficiently accurate first approximation of
the order of 10−4 will give a machine-size floating-point precision
of 10−16 in at least two iterations.

Furthermore, a fourth-order method was  proposed in 1973 by
Fritsch et al. [2],  which is even faster, although it is also more
complicated. Their algorithm 443 is based on an efficient itera-
tion scheme and is also available in Supplementary Materials.  This
algorithm was  superseded by algorithm 743 in 1995 [10].

The procedures described in this section are implemented in

various technical mathematics software (e.g. Maplesoft Maple,
Mathworks Matlab, Wolfram Mathematica). While the Lambert
W function is simply called W in Maple and Matlab, in the
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Fig. 2. Relative errors of the three different approximations of the Lambert W
function. W0

+*(x) (- · -) for x > 0 on the exponential �-scale, although on the lin-
ear  x-scale: W0

−*(x) (· · ·) and 10 × W−1
*(x) (—) on the intervals −exp(−1) < x < 0

and for −exp(−1) < x < 0, respectively. The infinite x range interval (0,∞) has been

 exp

 + ex

(1 + 
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athematica computer algebra framework this function is built-in
nder the name of ProductLog.

. Analytic approximations for the Lambert W function

Although the Lambert W function is useful in many scientific
isciplines, it is not yet available in the standard mathematical soft-
are libraries that are also widely used in the life sciences. Hence,

t is very interesting to express it approximately with other ele-
entary mathematical functions that are readily available with

ny computer program. Thus, in this section, I will present such
pproximations for W−1(x) and W0(x) from [8],  although some
ther approximations for W−1(x) have also been described over the
ast decade [11,12].

The upper branch of W(x) can be broken into the two  portions,
nd most applications are confined to either of these: W0

−(x) and
0

+(x). Therefore, Barry et al. [8] provided three simple analytical
unctions that can accurately approximate W(x) for three different
egions (see Fig. 1):

a) Region 1, for x ≥ 0: with the W0
+*(x) approximation to the pos-

itive principal branch W0
+(x), as in Eq. (6):

W+
0 (x) ≈ W+∗

0 = 1.45869 · ln
(

1.2 · x

ln(2.4 · x/(ln(1 + 2.4 · x)))

)

− 0.45869 · ln
(

2 · x

ln(1 + 2 · x)

)
(6)

It should be noted here that for x = 0, the logarithmic terms in
Eq. (6) are not defined, although when x tends to 0, both of these
terms tend to the limit 0. Consequently, the W0

+(x) approaches
0 at x = 0. For the approximation of Eq. (6),  the maximum relative
error is below 0.2%.

b) Region 2, for −exp(−1) ≤ x < 0: with the W0
−*(x) approximation

to the negative principal branch W0
−(x), as in Eq. (7):

W−
0 (x) ≈ W−∗

0 (x) = −1 +
√

2 · (1 + exp((
1 + ((N1(x) ·

√
2 · (1 + exp(1) · x))/(N

where

N1(x) =
(

1 − 1√
2

)
· (N2(x) +

√
2) (8)

N2(x) = 3
√

2

W−
0 (x) ≈ W−∗

0 (x)

= −1 +
√

2 · (1 +
(1 + (((3.4142 + 0.5799 ·

√
2 · (1 + exp(1) · x)) ·

√
2 · (1

W−1(x) ≈ W∗
−1(x)

= ln(−x) − 5.9506 ·

⎛
⎝1 − (

1 + ((0.3361 ·
√

−(1 + ln(−x))/2)/(
+ 6 − ((2237 + 1457
√

2) · exp(1) − 4108
√

2 − 5764)

(215 + 199
√

2) · exp(1) − 430
√

2 − 796

·
√

2 · (1 + exp(1) · x) (9)
)

+
√

2 · (1 + exp(1) · x)))
) (7)

mapped onto the interval (0,1) with the aid of the exponential �-scale � = 1 − 1/ln(x
+ exp(1)).

The definition of N1(x) and N2(x) is taken so that the approxi-
mation of the W0

−*(x) is exact at x = −exp(−1) and 0, and the
relative error of Eq. (7),  the maximum of which is less than
0.15%, vanishes at these limits. Setting N1(x) and N2(x) in Eq.
(7) gives the condensed expression of Eq. (10):

(1) · x)

p(1) · x))/(10.2426 + 2.9798 ·
√

2 · (1 + exp(1) · x))))
(10)

(c) Region 3, for −exp(−1) ≤ x < 0: with the W−1
*(x) approximation

to the lower branch W−1(x) with a maximum relative error of
only 0.025%, as in Eq. (11):

1

0.0042 · (1 + ln(−x)) · exp(−0.0201 ·
√

−(1 + ln(−x))))))
)

⎞
⎠ (11)

All of these three equations, Eqs. (6), (10) and (11), represent easily
computable approximations for W(x), with argument-x-depending
relative errors as shown in Fig. 2. It should be noted here that the
approximation equations Eqs. (6), (10) and (11) are constrained to
give the correct values for W and the derivative dW/dx  at the end
points of their intervals. Consequently, the approximation equa-
tions are also continuous at the points x = 0 and x = −exp(−1).

5. Use of the Lambert W function in biochemical kinetics

The Lambert W function is nowadays mostly applied in compu-
tational sciences and mathematical physics [5],  where it has been
discussed in great detail. However, over the last decade, the use of

the Lambert W function has broadened widely in chemical kinet-
ics [13–16] and engineering [17–19].  In contrast, biochemistry and
biotechnology are still seldom used to demonstrate the use of the
Lambert W function, although biochemical kinetics provide the
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Fig. 3. Simulated progress curves of substrate concentrations for
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represent the data directly calculated from Eq. (13).
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Scheme 1.

pportunity to apply it readily, as illustrated with the following
hree case problems.

.1. Case I: classical and generalized Michaelis–Menten enzyme
eaction systems

Traditionally, the kinetics of enzyme-catalyzed reactions have
een described by the mechanism proposed by Henri [20], which
an be schematically represented as illustrated in Scheme 1:

This is thus a reversible reaction between enzyme E and
ubstrate S, giving the enzyme–substrate complex ES, which irre-
ersibly yields product P. The rate equation that is associated with
his mechanism was largely resolved by Michaelis and Menten [20],
hrough the expression nowadays known as the Michaelis–Menten
quation, as shown in Eq. (12):

 = −d[S]
dt

= V · [S]
Km + [S]

(12)

here V is the limiting rate under saturation conditions, and Km is
he Michaelis constant. It should be noted that the latter two  kinetic
arameters can also be apparent (inhibitor-dependent) constants
hen the quantitative kinetics of inhibited enzyme-catalyzed reac-

ions is studied in terms of the correlation between initial rate
easurements according to the expression given in Eq. (12) [21].
owever, this equation is of fundamental importance in enzyme
inetics for both theoretical and practical reasons, although little is
nown about its closed-form solution, which was reported for the
rst time by Beal in 1982 [3].  Fifteen years later, in 1997, Schnell
nd Mendoza [22] recognized that this solution can actually be
xpressed by the Lambert W function as:

S]t = Km · W0

{
[S]0

Km
· exp

(
[S]0 − V · t

Km

)}
(13)

Eq. (13) can be obtained from the widely known implicit inte-
rated Michaelis–Menten equation [20], which can also be written
s:

[S]t

Km
+ ln

(
[S]t

Km

)
= ln

(
[S]0

Km

)
+ [S]0 − V · t

Km
(14)

ubstituting y = [S]t/Km in Eq. (14) simplifies this to Eq. (15):

 + ln(y) = ln
(

[S]0

Km
· exp

(
[S]0 − V · t

Km

))
(15)

Eq. (15) shows similar relationships to those given in Eq. (1),
ith the identification of the closed-form solution, as in Eq. (16):

 = W0

{
[S]0

Km
· exp

(
[S]0 − V · t

Km

)}
(16)

Substituting for y in terms of [S]t and Km results in Eq. (13),
here the argument of W from Eq. (13) is positive at all times

ecause Km, [S]0 and the exponential function are always posi-
ive. Therefore, a unique solution to Eq. (13) exists for any progress
urve of interest when this solution to the basic Michaelis–Menten
eaction mechanism is applied, as shown in Fig. 3. This algebraic
ntegration approach is certainly the most appropriate, because
nzyme-catalyzed reactions are typically presented in the form
f time–concentration ([S]t) measurements. Hence, time-course

ata analyses that use the integrated rate equations in its closed
orms avoid the differentiation of concentrations into rates or com-
utation of intensive numerical approaches for solving the rate
quations in different forms (e.g. the Runge–Kutta integration and
k- 2k-1 k- 3

Scheme 2.

Newton–Raphson root-finding method for solving Eqs. (12) and
(14), respectively).

However, real-world enzymes generally do not obey the mech-
anism of Scheme 1, although the experimental conditions can
sometimes be manipulated so that this is a very good approx-
imation [20]. The forward velocities of many enzyme-catalyzed
reactions are affected by product inhibition if the enzyme and prod-
uct form an unproductive complex, EP, although more realistic
reactions are also reversible. Thus, the sequence of elementary pro-
cesses during the reaction involves two central complexes, ES and
EP, that are mutually convertible at velocities that are character-
ized by the rate constants k2 and k−2, respectively, as illustrated in
Scheme 2.

These kinetics of enzyme-catalyzed reactions presented in
Scheme 2 are governed by the general Michaelis–Menten equation
[20], as shown in Eq. (17):

v = d[P]
dt

= −d[S]
dt

= (Vf /Kf ) · [S] − (Vr/Kr) · [P]
1 + ([S]/Kf ) + ([P]/Kr)

(17)

Vf and Kf, and Vr and Kr, represent the limiting velocities and
Michaelis constants in the forward and reverse directions, respec-
tively. However, when such a reversible reaction is started with
only the substrate and free enzyme, and when the free enzyme
converts the substrate to product until it reaches its final equilib-
rium concentration [S]∞, the time-course of the reaction can be
described by the closed-form solution [5],  given as Eq. (18) (for its
derivation, see Supplementary Materials):

[S]t = [S]0 − �[S]∞ + K∗
m · W0

{
�[S]∞

K∗
m

· exp
(

�[S]∞ − V∗ · t

K∗
m

)}
(18)

where

�[S]∞ = (Vf · [S]0/Kf )
(Vf /Kf + Vr/Kr)

= [S]0 − [S]∞ (19)

V∗ = (Vf /Kf + Vr/Kr)
(1/Kf − 1/Kr)

(20)

(1 + [S] /K )

K∗

m = 0 f

(1/Kf − 1/Kr)
− �[S]∞ (21)

Eq. (18) is conceptually equal to Eq. (13), but the value of K∗
m

depends on [S]0 (see Eq. (21)). The solutions of Eq. (18) (i.e. the
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Fig. 4. Simulated progress curves of substrate concentrations for general-
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Fig. 5. Simulated progress curves of substrate concentrations for
Michaelis–Menten-type enzyme-catalyzed reactions (V = 1 �M/s, Km = 1 �M)
in  systems with different initial substrate concentrations (0, 1, 2, 3, 5 �M)  and
various endogenous rates of substrate production. The lines represent the data
directly calculated from Eq. (23), with respect to two different cases: (A) with R > V
zed  Michaelis–Menten-type (reversible) enzyme-catalyzed reactions (Vf = 1 �M/s,
r = 1 �M/s, Kf = 0.67 �M,  Kr = 0.33 �M)  with different initial substrate concentra-
ions (3, 5, 8 �M).  The lines represent the data directly calculated from Eq. (18).

alues of [S]t) at time zero and at times that tend to infinity are
 and [S]∞, respectively (for details see Supplementary Materials).
n interesting feature of Eqs. (20) and (21) is that V* and K∗

m can
ave negative values if Kf > Kr, although they must both have the
ame sign. Additionally, Eq. (18) indicates that argument x in this
quation can be either positive (when Kf < Kr) or negative (when
f > Kr), as �[S]∞ in Eq. (19) is always positive, while the sign of
∗
m depends on the relationship between Kf and Kr. Nevertheless,
hether argument x is positive or negative, the required solution

o Eq. (18) as shown in Fig. 4 is from the principal branch of the
ambert W function; i.e. W0(x) ≥ −1 [5,23].

Eqs. (13) and (18) have been used for progress-curve analyses
or enzyme and microbial kinetic reactions that apply powerful

athematical software with a built-in W function [22–25].  Unfor-
unately, the standard software libraries that are most widely used
n the life sciences are not set up to handle equations that involve
he W function. To avoid this problem, the replacement of the
ntegrated Michaelis–Menten equation with an empiric integrated

 − exp alternative model equation was proposed recently by Keller
t al. [26], although this reformulation causes a distortion in the
ichaelis constant and deviations between both integrated model

olutions can increase significantly with time [27]. However, it is
nown now that the replacement of model equations is not neces-
ary at all, as the use of approximations to the Lambert W function
as been recommended recently for those who use standard com-
uter programs without implemented W code [27–29].

.2. Case II: Michaelis–Menten enzyme reaction systems with
ndogenous substrate production

There are many exceptional biological kinetics systems that can-
ot be described by only the classical Michaelis–Menten equation;
.g. sediments, anaerobic digestor sludge, and rumen fluid [30–32].
n these systems, the substrate being consumed is also endoge-
ously produced, and hence Eq. (22) must be modified to include
n additional parameter R, as:

 = d[S]
dt

= − V · [S]
Km + [S]

+ R (22)

here R is the rate of endogenous substrate production. Robinson
nd Characklis [31] published an implicit integral form of Eq. (22) in
984, although Goudar recently identified an error in that equation
33] and re-derived. The complete closed-form analytical solution

f this equation [53] which has remained unnoticed since its first
se in 2007 [34].

The solutions of this modified Michaelis–Menten rate equation
see Eq. (22)) under the particular initial conditions depend on
(R = 1.1 �M/s) when Eq. (23) is expressed with the lower branch W−1 of the Lambert
W  function and (B) with R < V (R = 0.6 �M/s) when Eq. (23) is expressed with the
principal branch W0 of the Lambert W function.

factor b, which denotes the difference between the rate parameters
R and Vmax (b = R − Vmax), as shown in Eq. (23) [35]:

[S]t =

⎧⎪⎪⎨
⎪⎪⎩

−R · Km

b
− V · Km

b
· W−1[x(t)], b > 0

−Km +
√

(Km + [S]0)2 + 2 · V · Km · t, b = 0

−R · Km

b
− V · Km

b
· W0[x(t)], b < 0

(23)

where x(t) represents the time-dependent argument of this func-
tion, as expressed as in Eq. (24):

x(t) = − (R · Km + b · [S]0)
V · Km

· exp

(
− (R · Km + b · [S]0 + b2 · t)

V · Km

)
(24)

Eq. (24) indicates that the argument of the Lambert W function
has a limit, lim

t→∞
x(t) = 0, although x(t) is negative (−exp(−1) < x < 0)

for b > 0 (i.e. R > V) at all times, as the initial concentration [S]0, the
Michaelis constant Km, the rates R and V, and the exponential func-
tion are always positive. This is in agreement with the solution
of Eq. (23), which is expressed via W−1(x), which is defined only
for the interval [−exp(−1),0). Thus, for b > 0, the progress curves
always increase with time, as shown in Fig. 5B, although simulta-
neously the slopes of these progress curves decline and approach
the limit b (=R  − V). However, for b < 0 (i.e. R < V), x(t) can be either
negative (for the interval [−exp(−1),0)) or positive (for the inter-
val [0,∞)).  The sign of x depends on the following relationships: (i)
if R > V·[S]0/(Km + [S]0), then x is negative and the progress curves
increase; and (ii) if R < V·[S]0/(Km + [S]0), then x is positive and the

progress curves decrease. However, in both cases, the solutions
of the model Eq. (23) asymptotically approach the steady-state
concentration [S]* = −R·Km/(R − V), as shown in Fig. 5A, when R < V.
Simultaneously the slopes of these progress curves are negative or
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Scheme 3.

ositive, although they flow together to zero when steady-state is
ttained.

The closed-form solution of Eq. (22) has been used for progress-
urve analysis for describing one-compartment pharmacokinetics
odel with constant drug input [34], although recently, the appro-

riate substitution with approximations to the Lambert W function
ere suggested [35].

.3. Case III: kinetics of analyte binding to the surface by
ass-transport limitation

In a typical experiment using surface plasmon resonance detec-
ion, a selective surface is created by covalent immobilization of

 specific ligand to a surface of a sensor chip. A sample (analyte)
olution is then injected at a constant flow rate and the molecules
f analyte bind with noncovalent interactions to the surface ligand
ver time. The response signal detected is based on the changes of
efractive index, which are proportional to the level of accumula-
ion of mass at the binding surface [36]. However, during sample
njection, the analyte concentration at the surface is lower than in
he bulk flow, as a consequence of mass-transport limitations. Thus,

 simple model based on this assumption was proposed by Myzska
t al. [37], where the observed binding is treated as a two-step
rocess, as shown in Scheme 3.

This two-step process represents transport of the analyte to
he surface (first step), followed by a binding interaction with the
mmobilized ligand (second step). This has been termed the two-
ompartment model.

Within the two-compartment model, the binding kinetics of
he association phase as shown in Fig. 6 (where the analyte bulk
oncentration is kept constant by a continuous injection of fresh
nalyte solution at a constant flow rate) can be described in the
teady-state approximation by the following nonlinear differential
quation [38,39]:

dR

dt
= ka · (Rmax − R) ·

(
[A]0 + kd · R/km

1 + ka · (Rmax − R)/km

)
− kd · R (25)

In Eq. (25), ka (M−1 s−1) and kd (s−1) are the association and dis-

ociation rate constants, respectively; [A]0 (M)  is the initial analyte
oncentration; Rmax and R are the maximum and current response
ntensities expressed in response units (RU), and Km (RU M−1 s−1)
s the phenomenological mass-transport constant. For the initial

ig. 6. Simulated response curves for analyte binding kinetics to the sur-
ace by mass-transport limitation (ka = 1.8 × 106 M−1 min−1, kd = 0.18 min−1,
m = 9 × 106 RU M−1 min−1, Rmax = 1000 RU) in system with different initial analyte
oncentrations (100, 200, 300, 500 nM). The ascending and descending lines
epresent the data directly calculated from Eqs. (26) and (30), respectively.
g Journal 63 (2012) 116– 123 121

condition R(0) = 0, the analytical solution of Eq. (25) in the closed-
form reading is as follows:

R(t) = R∞ ·
(

1 − W0(  ̨ · exp(  ̨ −  ̌ · t))
˛

)
(26)

where

R∞ = Rmax · [A]0

(KD + [A]0)
(27)

 ̨ = ka · [A]0 · Rmax

kd · Rmax + km · (KD + [A]0)
(28)

ˇ = ka · [A]0 + kd

(1 + (kd · Rmax/(km · (KD + [A]0))))
(29)

Furthermore, it should be noted that ligand equilibrium dissocia-
tion constants from surfaces are defined as the ratio between the
dissociation and association rate constants (KD = kd/ka).

In the dissociation phase, the differential equation still holds,
although since [A]0 = 0, it follows that the analytical closed-form
solution in this case is:

R(t) = −� · W0

(
−R0

�
· exp

(−ka · R0 − km · kd · (t − t0)
ka · �

))
(30)

where

� = ka · Rmax + km

ka
(31)

and R = R0 at time t0, which is the start of the dissociation phase. It
should be noted that there are negative signs in Eq. (30), although
the argument to W in the equation always lies between −exp(–1)
and zero whenever t > t0, implying that the Lambert W function is
defined and negative here. The negative sign at the start of Eq. (30)
then makes the total value of this expression positive (see Fig. 6).

As Eq. (25) takes into consideration the entire processes of mass
transport and binding kinetics in the solution, Eqs. (26) and (30)
present the complete analytical solutions that allow both deter-
mination of the active concentrations and accurate and precise
measurements of the association and dissociation rate constants of
the binding interactions from response curves (see Fig. 6). The main
advantage of these solutions is that global progress-curve analysis
explicitly shows the reliability of the results.

6. Other uses of the Lambert W function in engineering and
life sciences

Although this review is mainly focused on problems considering
the Lambert W function that appear in the biochemical and biotech-
nological disciplines [22–29,34–39], and in chemical engineering
[13–19], other applications of W of practical import have been dis-
covered in various engineering and life sciences, and I cite here only
recently published literature. Thus, W appears in solutions to a large
family of equations that describes situations in physiology [40,41],
hydrology [42,43],  colloid and interface science [44,45],  materials
and transport research [46–48],  electrochemistry [49], and droplet
microfluidics [50]. Furthermore, many delay differential equations,
where the present rate of change in some quantity depends on the
value of the quantity at an earlier moment, can be solved in terms
of W (see [51] and references therein). The equations of this kind
can be frequently found in population dynamics, economics, and
control theory, although these fields are not within the scope and
interests of the readers of this journal.
7. Conclusion

In this review, I have presented some of the calculus proper-
ties of the Lambert W function, along with its numerical evaluation
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nd the approximation functions to W(x). I have combined these
ith some biochemical kinetics examples of its applications and

he available references on this function. Furthermore, I believe that
wareness of the Lambert W function in the fields of biochemistry
nd biotechnology will also increase in the years to come [15,52],
nd many more applications will be recognized in these scien-
ific disciplines. Consequently, the aim of this article is to facilitate
his process, which will help in the identification of the practical
spects of the Lambert W function for the life-sciences research
ommunity.
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ppendix A.

The principal branch of W is analytical at x = 0, and its power
eries expression about the origin can be given as:

0(x) =
∑
n≥1

(−n)n−1 xn

n!
(A1)

he radius of convergence of this series is equal to exp(−1) where
W(x)| < 1.

The rules for integration and differentiation of W are as follows:

W(x)dx = x ·
(

W(x) − 1 + 1
W(x)

)
+ C (A2)

′(x) = W(x)
x · (1 + W(x))

(A3)

here Eq. (A3) is valid for x /= 0. At zero, the derivative is defined
n the form of the limit:

im
→0

W ′
0(x) = 1 (A4)

ppendix B. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.bej.2012.01.010.

eferences

[1] E.M. Wright, Solution of the equation z exp(z) = a, Proc. R. Soc. Edinb. A 65 (1959)
193–203.

[2] F.N. Fritsch, R.E. Shafer, W.P. Crowley, Algorithm 443: solution of the transcen-
dental equation wew = x, Commun. AMC  16 (1973) 123–124.

[3] S.L. Beal, On the solution to the Michaelis–Menten equation, J. Pharmacokinet.
Biopharm. 10 (1982) 109–119.

[4] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, Lambert’s W function in
Maple, Maple Tech. Newslett. 9 (1993) 12–22.

[5]  R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert
W  function, Adv. Comput. Math. 5 (1996) 329–359.

[6] S.L. Beal, Computation of the explicit solution to the Michaelis–Menten equa-
tion, J. Pharmacokinet. Biopharm. 11 (1983) 641–657.

[7] S.R. Valluri, D.J. Jeffrey, R.M. Corless, Some applications of the Lambert W func-
tion to physics, Can. J. Phys. 78 (2000) 823–831.

[8] D.A. Barry, J.Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, F. Stagnitti, Analyt-
ical approximations for real values of the Lambert W-function, Math. Comput.
Simul. 53 (2000) 95–103.

[9] W.  Gautschi, The Lambert W-function and some of their integrals: a case study
of  high-precision computation, Numer. Algor. 57 (2011) 27–34.

10] D.A. Barry, S.J. Barry, P.J. Culligan-Hensley, Algorithm 743: a Fortran routine for
calculating real values of the W-function, ACM Trans. Math. Softw. 21 (1995)
172–181.

11] J.Y. Parlange, D.A. Barry, R. Haverkamp, Explicit infiltration equations and the

Lambert W-function, Adv. Water Resour. 25 (2002) 1119–1124.

12]  D.A. Barry, J.Y. Parlange, L. Li, D.S. Jeng, M.  Crapper, Green-Ampt approxima-
tions, Adv. Water Resour. 28 (2005) 1003–1009.

13] I.A. Vinokurov, J. Kankare, Kinetics of multilayer Langmuirian adsorption, Lang-
muir 18 (2002) 6789–6795.

[

g Journal 63 (2012) 116– 123

14] G.S. Yablonsky, D. Constales, G.B. Marin, Coincidences in chemical kinetics:
surprising news about simple reactions, Chem. Eng. Sci. 65 (2010) 6065–
6076.

15] B.W. Williams, The utility of the Lambert function W[a exp(a − bt)] in chemical
kinetics, J. Chem. Educ. 87 (2010) 647–651.

16] B.W. Williams, Alternate solutions for two particular third order kinetic rate
laws, J. Math. Chem. 49 (2011) 328–334.

17] J.R. Sonnad, C.T. Goudar, Explicit reformulation of the Colebrook–White equa-
tion  for turbulent flow friction factor calculation, Ind. Eng. Chem. Res. 46 (2007)
2593–2600.

18] D. Clamond, Efficient resolution of Colebrook equation, Ind. Eng. Chem. Res. 48
(2009) 3665–3671.

19] K. Sun, A. Kasperski, Y. Tian, L. Chen, New approach to the nonlinear analysis
of  a chemostat with impulsive state feedback control, Int. J. Chem. React. Eng.
8  (2010) A99.

20] I.H. Segel, Enzyme Kinetics, John Wiley & Sons, New York, 1993.
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