I don't know what f_dist(s_cur,s_next) does; so building f_next_s(s_cur) will be just a function:

$$
\text { f_next_s(s_cur) := s_cur + } 1
$$

n nathcad starts matrices and arrays at index 0
don't need a second index, the for loop will increment i

The program above loops thru n times. Each time it creates a scalar variable s_i and assigns it value s_1. It then creates a scalar s_j and assigns it value s_i (which is always f_next_s(s_1).) Then it returns the scalar value.

The subscript 0 beside s is telling Mathcad that s is an array.

Each pass thru the for loop applies the next function to the last pass and adds it to the array.

And the whole array is returned.

```
f_set_chain \((2,1)=3\)
    no matter how many times we exercise the loop, we only get the next
f_set_chain \((2,4)=3\) step.
```

But the array does what you want!

$$
\text { F_set_chain }(2,1)=\binom{2}{3}
$$

