I don't know what f_dist(s_cur,s_next) does; so building f_next_s(s_cur) will be just a function:

$$f_next_s(s_cur) := s_cur + 1$$

$$f_set_chain(s_1,n) := \begin{cases} \text{for } i \in 0..n-1 \\ s_i \leftarrow s_1 \\ j \leftarrow i+1 \\ s_j \leftarrow f_next_s(s_i) \end{cases} \begin{array}{c} \text{Mathcad starts matrices and arrays at index 0} \\ \text{don't need a second index, the for loop will increment i} \\ \end{array}$$

The program above loops thru n times. Each time it creates a scalar variable s_i and assigns it value s_1. It then creates a scalar s_j and assigns it value s_i (which is always f_next_s(s_1).) Then it returns the scalar value.

$$F_set_chain(s_1,n) := \begin{cases} s_0 \leftarrow s_1 \\ for \ i \in 1..n \\ s_i \leftarrow f_next_s(s_{i-1}) \\ s \end{cases}$$

The subscript 0 beside s is telling Mathcad that s is an array.

Each pass thru the for loop applies the next function to the last pass and adds it to the array.

And the whole array is returned.

 $f_{set_chain(2,1)} = 3$

 $f_set_chain(2,4) = 3$

no matter how many times we exercise the loop, we only get the next step.

 $\binom{2}{2}$

But the array does what you want!

$$F_set_chain(2,1) = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad F_set_chain(2,4) = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$$