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A rigorous and simple method for the determination of the modulation transfer function 1MTF2 of a
sampled imaging system is presented. One calculates the MTF by imaging bar patterns and calculating
the reduction in amplitude of the fundamental frequency components. The optimal set of bar-pattern
frequencies that reduce errors from aliased frequency components is derived. Theoretical and experimen-
tal data are presented.
1. Introduction

The modulation transfer function 1MTF2 has become a
standard measure for the determination of the imag-
ing performance of precision optical-imaging systems.
It has also been shown to be an effective measure of
overall imaging-system performance because theMTF
may be used to describe many sensors 1e.g., film2, as
well as optical components. In recent years, how-
ever, the move toward digital imaging systems that
use sampled detectors has introduced ambiguity into
how the MTF should be defined and measured for
sampled imaging systems. The MTF was originally
defined with the assumption that the image could be
measured over a continuous region. Considerable
debate over the definition of the MTF for sampled
systems has led to a definition that is consistent with
the original formulation of the measure.1 This paper
presents a method for the accurate measurement of
the MTF of sampled imaging systems from imaged
bar patterns. The key aspect of the method is the
proper choice of spatial frequencies, which avoids
errors introduced by aliasing.
In most cases, the method described in this article

will allow one to specify the MTF of a sampled
imaging system rather than to have to use the
commonly used contrast transfer function 1CTF2.2
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Traditionally, the MTF is determined by measure-
ment of the reduction in modulation that occurs when
a gray-scale sinusoid is imaged. The CTF, on the
other hand, measures the overall reduction in con-
trast that occurs when a bar pattern is imaged.
Unlike the MTF, the CTF includes the effects of
higher harmonic terms, which are introduced by the
bar pattern. The MTF is a superior measure for
system analysis because it describes the system re-
sponse to individual sinusoidal components. This
property permits the MTF of an entire linear system
to be given by the product of the MTF’s of each linear
component.
Section 2 of this paper provides a brief review of the

definition of the MTF for continuous and sampled
imaging systems. Section 3 presents the method for
measurement of the MTF of sampled systems. Sec-
tion 4 describes a bar target that was developed from
the method and presents some experimental results.

2. Definition of the Modulation Transfer Function

The concept of the optical transfer function 1OTF2
developed from the application of Fourier analysis to
optical-image formation. The OTF defines the spa-
tial-filtering effect of the optical system on the object
spectral distribution.3 The OTF was originally de-
fined for continuous-imaging applications that fulfill
the isoplanatic condition 1i.e., local-space invariance2.
The effect of the OTF on the object spectrum can be
expressed by the following equation written in the
spatial frequency domain:

I1u, n2 5 H1u, n2O1u, n2

5 0H1u, n2 0exp3 juH1u, n24O1u, n2, 112



where I1u, n2 represents the Fourier transform of the
image, O1u, n2 represents the Fourier transform of
the object, and H1u, n2 is the OTF. The last part of
Eq. 112 shows that the OTF can be expressed as the
product of an amplitude term, which represents the
MTF, and a phase term, which defines the phase
transfer function 1PTF2. Thus the MTF defines the
reduction in amplitude of spatial frequency compo-
nents caused by aberration and diffraction effects.
The PTF describes any phase shift introduced by the
imaging system.
For continuous systems the OTF may also be

defined equivalently as the Fourier transform of the
point-spread function 1or impulse response2 of the
system, as given by
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Once the image is sampled, however, the property
of space invariance of the system is lost.4 Depending
on the relative position on the sampling grid and the
point-spread function, the sampled-image distribu-
tion will be different. The discrete-space Fourier
transform of the sampled point-spread function is
given by
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where D represents the sample spacing. As Eq. 132
describes, the sampling process causes the OTF of the
continuous system to be replicated in the frequency
domain. If the spatial-frequency content ofH1u, n2 is
high enough, the distributions will overlap. In this
case, some of the high spatial frequencies of H1u, n2
appear as low spatial frequencies in the sampled
distribution; this effect is referred to as aliasing.5
Where frequency components overlap, the magnitude
of the sum of the frequency components depends on
the relative phases of the overlapped frequencies and
therefore on the position of the point-spread function
relative to the sampling grid. Thus, if the MTF were
defined as the magnitude of the discrete-space Fou-
rier transform of the point-spread function, the MTF
would not be uniquely defined for frequencies for
which overlapping were present.
Many sampled imaging systems can be modeled as

a continuous linear space-invariant system followed
by a sampling function, as illustrated in Fig. 1. The
continuous linear space-invariant system may in-
clude spatial-filtering effects that are introduced by
the detector 1e.g., by finite detector apertures2 as well
as by the optical system. It follows that if one could
remove the effects that aliasing introduces through
the sampling function, the frequency response of the
system could be accurately and reliably measured.
In terms of imaging systems, we could measure the
MTF of the effective continuous system. Section 3
presents a method to measure the MTF of a sampled
system at specific frequencies in such a way that the
aliasing effects are negligible.

3. Measurement of the MTF of Sampled Imaging
Systems from Imaged Bar Targets

It is well known that for continuous imaging applica-
tions one may calculate the MTF by imaging bar-
target patterns and determining the reduction in
amplitude of the fundamental frequency component.6
In this section, a similar method for sampled imaging
systems is presented. The spatial frequencies of the
bar patterns are chosen specifically to avoid aliasing
and to provide an accurate measure of the system
MTF. Although theMTF is a two-dimensional quan-
tity, it is common to measure only one-dimensional
slices of the MTF 1usually in the horizontal and
vertical planes of the detector2. Throughout the rest
of this paper, the analysis will be restricted to the
measurement of a one-dimensional slice of the MTF
in the direction of the bar-pattern periodicity.
The black and white bar pattern that is recorded on

the target is represented schematically in Fig. 2 and
is modeled by the function

o1x2 5 c 1 a o
n52`
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where L represents the width of a bright or white bar
as measured in the image plane, d represents the
spatial period of the pattern asmeasured in the image
plane, and the rect1x2 function is defined by

rect1x2 5 51 if 0x 0 , 0.5

0 otherwise
. 152

Fig. 1. Linear sampled system that is modeled as a continuous
linear filtering operation and that is followed by a sampling
operator.

Fig. 2. Schematic diagram of the square-wave input with a period
d and a duty cycle L@d that was used for the MTF test.
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The constant c in Eq. 142 represents the measured
irradiance in the image of a uniform black region
recorded on the target. The value of a 1 c represents
the measured irradiance in the image of a constant
white region recorded on the target. Thus, Eq. 142
actually describes the continuous image distribution
that would be measured in the image plane if the
imaging system were ideal and therefore able to
image the object without a reduction in contrast.
The Fourier transform of the object distribution is

given by
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where

sinc1x2 5
sin1px2
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and d1x2 represents the Dirac delta function. The
Fourier transform of the bar pattern is a series of
discrete frequency components that correspond to the
harmonic components of the periodic bar pattern.
Practical analysis of the imaged bar pattern re-

quires the use of the discrete Fourier transform 1DFT2,
which uses a finite number of N samples for analysis.
The DFT of the sampled image is given by
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where ı3n4 represents the sampled values of the image
given by

ı3n4 5 i1nD2, n 5 0, 1, . . . , N 2 1, 192

in which D represents the sample spacing in the
image plane.
The DFT of the sampled image of the bar pattern is

related to the Fourier transform of the bar pattern by
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where W1u2 represents the Fourier transform of the
effective rectangular window function 1inherent to the
definition of the DFT2, which is given by

W1u2 5 ND sinc1NDu2, 1112

andwhere the asterisk denotes the convolution opera-
tion as defined by

f 1x2 p g1x2 5 e
2`

1`

f 1j2g1x 2 j2dj. 1122

To simplify the analysis, it is assumed for the rest
of the paper that frequency components greater than
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twice the Nyquist rate of the detector 11@2D2 are not
passed by the system. For most imaging systems,
this assumption is well justified. This simplification
allows one to consider only the aliased frequency
components that originate from the neighboring repli-
cas above and below the spectrum that is centered on
zero frequency. In fact, because only the positive
frequency components of the spectrum need to be
analyzed to calculate the MTF, only the aliasing
effects caused by the positively shifted replica need to
be considered.
Through a similar approach for the calculation of

theMTF for continuous systems, theMTF for sampled
systems is determined through measurement of the
reduction in amplitude of the fundamental frequency
component of the bar pattern. This method is suc-
cessful only if the fundamental frequency component
does not overlap with an aliased harmonic component.
Figure 3 illustrates the Fourier spectrum of the
imaged bar targets. The fundamental frequency com-
ponent at frequency 1@d and the mth harmonic 1lo-
cated at frequency 1@D 2 m@d2 of the positively shifted
replica overlap when the fundamental frequency of
the bar pattern is given by

1

d
5

1

1m 1 12D
, m 5 1, 2, 3, . . . , . 1132

Equation 1132 indicates that overlapping between the
fundamental frequency component and aliased har-
monics occurs for a discrete set of frequencies. It
follows that, to minimize the effects of aliasing, one
should choose the test frequencies that are farthest
from the overlapping condition. To find these fre-
quencies, one may solve for the set of fundamental
frequencies that are equally distant from the aliased
mth harmonic and the aliased 1m 1 12th harmonic, as
given by
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Fig. 3. Illustration of the fundamental frequency component and
aliased harmonic components of the imaged-bar-pattern input in
the spatial frequency domain. Only the fundamental frequency
component and the aliased mth and 1m 1 12th harmonic compo-
nents are shown. The dashed curves illustrate the envelope of the
MTF of the system.



The left-hand side of Eq. 1142 corresponds to the
frequency separation between the fundamental fre-
quency and the aliased 1m 1 12th harmonic; the right-
hand side corresponds to the frequency separation
between the fundamental frequency and the aliased
mth harmonic. Solving for the fundamental fre-
quency in Eq. 1142 yields
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12m 1 32D
, m 5 1, 2, 3, . . . . 1152

Figure 4 illustrates the set of MTF test frequencies
that incur the minimum aliasing effects. Restricting
the fundamental frequency to the discrete set of
sample frequencies provided by the DFT 11@d 5
k@ND2 yields

k 5
2N

2m 1 3
, m 5 1, 2, 3, . . . , 1162

where the values of k̄ and N must be integers. By
choosing k̄ to be an even integer, onemay solve Eq. 1162
for the corresponding number of data samples, N.
The value of k̄ defines the number of cycles of the bar
pattern for analysis. In addition, if k̄ is chosen to be
the same for all the MTF test frequencies, then, as is
shown in Appendix A the sensitivity to magnification
errors is identical for each test frequency.
It should be noted that, because the spectra in the

Fourier domain are convolved with the Fourier trans-
form of the window function 3as described by Eq. 11024,
some leakage may occur from the sidelobes of each
spectral component. By substituting Eq. 1152 into
either side of Eq. 1142, one can show that the distance
in terms of the number of frequency samples between
the fundamental frequency peak and the nearest
aliasing component is given by N@12m 1 32. Thus,
increasing N generally decreases noise effects and
error contributions from sidelobes, but at the expense
of one’s having more data to analyze. In addition,
the imaged target area should be as small as possible
to maintain local space invariance. Amore practical
solution for reducing cross talk arising from sidelobes
may be to apply a window function with low sidelobes
to the data before taking the DFT.7
Because aliasing effects are minimal at the funda-

mental frequencies defined above, one may solve Eq.
1102 using Eqs. 162 and 1112 directly, to give the system
MTF as

0H11d20 5 0 dI3k4

NaL sinc1L@d2 0 . 1172

Fig. 4. Set of spatial frequencies 1k̄ 5 1, 2, 3, 4, 5, 62 that intro-
duce minimal aliasing effects during the measurement of the
MTF. The filled circles indicate the set of points k̄ 5 7, 8, 9, . . . ,
which cannot be represented adequately in the figure.
To apply Eq. 1172, one must know the values of a and
L@d. The value of a can be determined if a large
uniform white area and a large uniform black area
are included on the bar target. The mean of the
uniform black area in the image provides an estimate
for c, and the mean of the uniform white area in the
image provides an estimate for a 1 c. The difference
of the white mean and the black mean gives an
estimate for a. In addition, if the duty cycle of each
bar pattern 1L@d2 is not known, it can be estimated
from the zero spatial frequency value of the DFT of
the bar pattern. Because, by definition, the MTF for
the zero spatial frequency is equal to unity, one may
solve Eq. 1102 at the zero frequency to give

L

d
5
I304@N 2 c

a
, 1182

where a and c are determined as described above.
If, on the other hand, the duty cycle of the bar pattern
is accurately known, Eq. 1182 can be solved for the
value of a to compensate for slowly varying nonuni-
form illumination effects across the target.

4. Experimental Results

A bar target was designed at the Oak Ridge National
Laboratory with the principles given in Section 3.
The chart was drawn in AUTOCAD 1a trademark of
Autodesk, Inc.2, which permitted it to be easily scaled
to test systems that work at different imaging magni-
fications. The chart was photographically reduced
to the proper size. Figure 5 shows the chart, which
includes six sets of bar patterns to test theMTF in the
vertical and horizontal directions and fiduciarymarks
for automatic location and verification of the proper
orientation of the chart in the digital image. It

Fig. 5. Bar-target chart for measurement of the MTF of a
sampled imaging system. The chart includes six sets of bar
patterns for measuring the MTF in the vertical and horizontal
directions. The long solid black bars are used to verify the proper
magnification of the system. Fiduciary markings 1pluses2 border
the chart to permit location and verification of the proper orienta-
tion of the target in the digital image.
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Fig. 6. Plot of the computed MTF in the vertical and horizontal directions of a commercial scanner. The bar-target chart shown in Fig. 5
was used along with the analysis described in this paper.
should be noted that the target was developed for a
sensor with equal sample spacing in the vertical and
horizontal directions. For detectors with unequal
sample spacing in the vertical and horizontal direc-
tions, the bar patterns in the vertical and horizontal
directions would have to be scaled appropriately.
The chart includes large vertical and horizontal black
bars whose lengths correspond to 500 pixels in the
sampled image. The lengths of the bars can be
measured in the digital image to verify the proper
magnification of the optical system. In addition, the
large black region within the bars provides a uniform
area in the image for the estimation of c, as described
above. There is also sufficient white area on the
chart to obtain a measurement of a 1 c. The set of
bar periods, 5dm6, was chosen by substitution ofm 5 1,
2, 3, 4, 6, 9 into Eq. 1152. These frequencies defined a
sufficiently dense sampling of the system’s frequency
range for our application. The value of k̄ was chosen
to be 20. Thus, 20 cycles of the bar patterns were
analyzed for each test frequency. 1Twenty-five cycles
are printed on the target to alleviate positioning
errors and edge effects.2
The chart was scanned with a commercial scanner

that used filtered blue light illumination. The cap-
tured digital image was analyzed in the following
way: We estimated the value for c by averaging pixel
values in a 20 pixel 3 20 pixel array that was located
in the middle of the large black bars. We determined
the value for a by averaging pixel values in a 20
pixel 3 20 pixel array that was located in the ex-
tended white area below the top fiduciary marks and
by subtracting the value of c. Then, from the center
of each bar pattern, a one-dimensional vector of data
was taken in the direction of the periodicity. Be-
cause the exact duty cycle of the bar patterns in the
final target was not known, the duty cycle for each bar
pattern was determined by application of Eq. 1182.
The MTF for each bar region was computed with Eq.
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1172. Figure 6 shows a plot of theMTF of the sampled
imaging system.

5. Discussion

A new method for the measurement of the MTF of
sampled imaging systems has been presented. The
optimal set of measurement frequencies that mini-
mize aliasing effects has been derived. Initial experi-
mental tests have shown the measurement technique
to be repeatable and robust. In addition to sampled
imaging and detector systems, the general analysis
method described in this paper may be applied to
other sampled systems. An AUTOCAD drawing file of
the chart developed at the Oak Ridge National Labo-
ratory can be obtained upon request from the authors.

Appendix A

The method presented in this paper determines the
MTF of a sampled system through the measurement
of the fundamental frequency components of imaged
bar-target patterns. The frequency components are
calculated through determination of the DFT of the
imaged bar patterns. However, if the magnification
between the object and the image plane is slightly off,
the peak of the fundamental frequency component
does not coincide with the correct frequency sample.
Thus, a fraction of the true value is measured because
the peak lies somewhere between frequency samples.
Because the peaks in the Fourier transform are
sharp, magnification errors can contribute significant
errors to the estimation of the MTF. In this appen-
dix it is shown that, if k̄ is chosen to be the same for
each bar-pattern group, then the sensitivity to magni-
fication errors is the same for each MTF measure-
ment.
If the fundamental frequency of a bar pattern is

chosen such that it coincides with a frequency sample
of the DFT, then the fundamental frequency is given



by

u 5
1

d
5

k

ND
, 1A12

where d is the spatial period of the bar pattern and k̄
represents the corresponding sample index in the
N-point DFT. If a magnification error exists such
that the bar pattern is scaled by 1 1 E, where E
represents an error in the magnification, then the
fundamental peak is shifted to

u8 5
11 1 E2
d

5
k11 1 E2
ND

. 1A22

Thus the shift in the frequency domain that is intro-
duced by the error in magnification is given by

kE
ND

. 1A32

By substitution of expression 1A32 into Eq. 1112, one
can show that the error in the magnification reduces
the measured value of the main lobe by a factor of

sinc1Ek2. 1A42

From expression 1A42, it follows that if k is chosen to be
the same for each bar pattern, then the sensitivity to
magnification errors is the same for all test frequen-
cies.
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