Parametri nucleari

$$
\begin{aligned}
& \omega:=1 \\
& \omega i:=0.001 \\
& \Omega 1:=393.4 \\
& \Omega 2:=1952
\end{aligned}
$$

Funzione di sollecitazione ed accoppiamento

$$
\begin{aligned}
& \mathrm{s} 1:=0.1 \cdot 10^{20} \\
& \sigma \mathrm{v}(\mathrm{Ti}):=5.1 \cdot 10^{-22} \cdot(\ln (\mathrm{Ti})-2.1)
\end{aligned}
$$

I've modified some of these functions in the light of my manipulations below

$$
\begin{aligned}
& \mathrm{P}(\mathrm{n}, \mathrm{ni}, \mathrm{Te}):=5 \cdot 10^{-37} \cdot[2 \cdot(\mathrm{ni}-\mathrm{n})] \cdot(|\mathrm{Te}|)^{0.5} \cdot\left(1.6 \cdot 10^{-19}\right)^{-1} \cdot \frac{2}{3} \cdot 10^{-3} \\
& \omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}):=\mathrm{n} \cdot \frac{\ln (18)}{2 \cdot 9.99 \cdot 10^{18} \cdot \mathrm{Te}^{\frac{3}{2}}} \\
& \omega \mathrm{\omega e}(\mathrm{ni}):=\frac{1 \quad}{2.5 \cdot 10^{-21} \cdot \mathrm{ni} \cdot 5^{\frac{1}{2}} \cdot 1.2^{2} \cdot 6}
\end{aligned}
$$

Modified versions - see further below for why l've done this

$$
\begin{gathered}
\mathrm{P}(\mathrm{Te}):=5 \cdot 10^{-37} \cdot\left[2 \cdot\left(\frac{\mathrm{~s} 1}{\omega}\right)\right] \cdot(|\mathrm{Te}|)^{0.5} \cdot\left(1.6 \cdot 10^{-19}\right)^{-1} \cdot \frac{2}{3} \cdot 10^{-3} \rightarrow 0.041666666666666666667 \cdot(|\mathrm{Te}|)^{0.5} \\
\omega \mathrm{eq}(\mathrm{~m}, \mathrm{Te}):=\mathrm{m} \cdot \mathrm{~s} 1 \cdot \frac{\ln (18)}{2 \cdot 9.99 \cdot 10^{18} \cdot \mathrm{Te}^{\frac{3}{2}}} \rightarrow \frac{0.5005005005005005005 \cdot \mathrm{~m} \cdot \ln (18)}{\frac{3}{\frac{3}{2}}} \\
\mathrm{Te}^{2}
\end{gathered}
$$

$$
\omega \mathrm{e}(\mathrm{~m}):=\frac{1}{2.5 \cdot 10^{-21} \cdot \mathrm{sl} \cdot\left(\mathrm{~m}+\frac{1}{\omega}\right) \cdot 5^{\frac{1}{2}} \cdot 1.2^{2} \cdot 6} \rightarrow \frac{0.023148148148148148148 \cdot \sqrt{5}}{0.025 \cdot \mathrm{~m}+0.025}
$$

These are your first two equations

$$
\begin{gathered}
\mathrm{s} 1-\mathrm{n}^{2} \cdot \sigma \mathrm{v}(\mathrm{Ti})-\omega \cdot \mathrm{n}=0 \\
2 \cdot \mathrm{~s} 1-\mathrm{n}^{2} \cdot \sigma \mathrm{v}(\mathrm{Ti})-\omega \cdot \mathrm{ni}=0
\end{gathered}
$$

Subtract the first from the second to get

$$
\mathrm{s} 1-\omega(\mathrm{ni}-\mathrm{n})=0
$$

$$
\text { or } \quad \mathrm{ni}=\mathrm{n}+\frac{\mathrm{s} 1}{\omega}
$$

So get rid of ni in the equations to be solved. They then become:

$$
\begin{aligned}
& \mathrm{s} 1-\mathrm{n}^{2} \cdot \sigma \mathrm{v}(\mathrm{Ti})-\omega \cdot \mathrm{n}=0 \\
& (\Omega 1+\mathrm{Ti}) \cdot \frac{\mathrm{n}^{2} \cdot \sigma \mathrm{v}(\mathrm{Ti})}{\mathrm{n}+\frac{\mathrm{s} 1}{\omega}}+\left(\omega-\omega \operatorname{eq}(\mathrm{n}, \mathrm{Te})-\omega \mathrm{i}-\frac{2 \cdot \mathrm{~s} 1}{\mathrm{n}+\frac{\mathrm{s} 1}{\omega}}\right) \cdot \mathrm{Ti}+\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \mathrm{Te}=0 \\
& \Omega 2 \cdot \frac{\mathrm{n}^{2} \cdot \sigma \mathrm{v}(\mathrm{Ti})}{2 \cdot \frac{\mathrm{~s} 1}{\omega}}+\left(-\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \frac{\mathrm{n}+\frac{\mathrm{s} 1}{\omega}}{2 \cdot \frac{\mathrm{~s} 1}{\omega}}-\omega \mathrm{e}\left(\mathrm{n}+\frac{\mathrm{s} 1}{\omega}\right)\right) \cdot \mathrm{Te}+\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \frac{\mathrm{n}+\frac{\mathrm{s} 1}{\omega}}{2 \cdot\left(\frac{\mathrm{~s} 1}{\omega}\right)} \cdot \mathrm{Ti}-\mathrm{P}(\mathrm{Te})=0
\end{aligned}
$$

The first of these can be solved to find n in terms of Ti
$\mathrm{n}(\mathrm{Ti})=\frac{-\omega+\sqrt{\omega^{2}+4 \cdot \sigma v(\mathrm{Ti}) \cdot \mathrm{s} 1}}{2 \cdot \sigma \mathrm{v}(\mathrm{Ti})} \quad$ The positive solution is presumably required

In the other two equations we can replace $\sigma v \cdot n^{2}$ where it occurs by $\mathrm{s} 1-\omega \cdot \mathrm{n}$ to get

$$
\begin{aligned}
& (\Omega 1+\mathrm{Ti}) \cdot \frac{\mathrm{s} 1-\omega \cdot \mathrm{n}}{\mathrm{n}+\frac{\mathrm{s} 1}{\omega}}+\left(\omega-\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te})-\omega \mathrm{i}-\frac{2 \cdot \mathrm{~s} 1}{\mathrm{n}+\frac{\mathrm{s} 1}{\omega}}\right) \cdot \mathrm{Ti}+\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \mathrm{Te}=0 \\
& \Omega 2 \cdot \frac{\mathrm{~s} 1-\omega \cdot \mathrm{n}}{2 \cdot \frac{\mathrm{~s} 1}{\omega}}+\left(-\omega \operatorname{eq}(\mathrm{n}, \mathrm{Te}) \cdot \frac{\mathrm{n}+\frac{\mathrm{s} 1}{\omega}}{2 \cdot \frac{\mathrm{~s} 1}{\omega}}-\omega e\left(\mathrm{n}+\frac{\mathrm{s} 1}{\omega}\right)\right) \cdot \mathrm{Te}+\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \frac{\frac{\mathrm{n} 1}{\omega}+\frac{\mathrm{s} 1}{\omega}}{2 \cdot\left(\frac{\mathrm{~s} 1}{\omega}\right)} \cdot \mathrm{Ti}-\mathrm{P}(\mathrm{Te})=0
\end{aligned}
$$

The above three equations can be written as

$$
\mathrm{m}(\mathrm{Ti}):=\frac{-\omega+\sqrt{\omega^{2}+4 \cdot \sigma \mathrm{v}(\mathrm{Ti}) \cdot \mathrm{s} 1}}{2 \cdot \sigma \mathrm{v}(\mathrm{Ti}) \cdot \mathrm{s} 1} \quad \text { this function is obtained by dividing } \mathrm{n} \text { by } \mathrm{s} 1
$$

and
$(\Omega 1+\mathrm{Ti}) \cdot \frac{1-\omega \cdot \frac{\mathrm{n}}{\mathrm{s} 1}}{\frac{\mathrm{n}}{\mathrm{s} 1}+\frac{1}{\omega}}+\left(\omega-\omega e q(\mathrm{n}, \mathrm{Te})-\omega \mathrm{i}-\frac{2}{\frac{\mathrm{n}}{\mathrm{s} 1}+\frac{1}{\omega}}\right) \cdot \mathrm{Ti}+\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \mathrm{Te}=0$

$$
\Omega 2 \cdot \frac{1-\omega \cdot \frac{\mathrm{n}}{\mathrm{~s} 1}}{2 \cdot \frac{1}{\omega}}+\left(-\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \frac{\frac{\mathrm{n} 1}{\mathrm{~s} 1}+\frac{1}{\omega}}{2 \cdot \frac{1}{\omega}}-\omega \mathrm{e}\left(\frac{\mathrm{n}}{\mathrm{~s} 1}\right)\right) \cdot \mathrm{Te}+\omega \mathrm{eq}(\mathrm{n}, \mathrm{Te}) \cdot \frac{\frac{\mathrm{n}}{\mathrm{~s} 1}+\frac{1}{\omega}}{2 \cdot\left(\frac{1}{\omega}\right)} \cdot \mathrm{Ti}-\mathrm{P}(\mathrm{Te})=0
$$

Now with $\mathrm{m}=\frac{\mathrm{n}}{\mathrm{s} 1}$ and simplifying equations and functions (already done above) even more:
Note: m is the function above, but l've just written it as m in the next two equations for clarity. It needs to be written fully in the solve block.

$$
(\Omega 1+\mathrm{Ti}) \cdot \frac{1-\omega \cdot \mathrm{m}}{\mathrm{~m}+\frac{1}{\omega}}+\left(\omega-\omega \mathrm{eq}(\mathrm{~m}, \mathrm{Te})-\omega \mathrm{i}-\frac{2}{\mathrm{~m}+\frac{1}{\omega}}\right) \cdot \mathrm{Ti}+\omega \mathrm{eq}(\mathrm{~m}, \mathrm{Te}) \cdot \mathrm{Te}=0
$$

$$
\Omega 2 \cdot \frac{1-\omega \cdot \mathrm{m}}{2 \cdot \frac{1}{\omega}}+\left(-\omega \mathrm{eq}(\mathrm{~m}, \mathrm{Te}) \cdot \frac{\mathrm{m}+\frac{1}{\omega}}{2 \cdot \frac{1}{\omega}}-\omega \mathrm{e}(\mathrm{~m})\right) \cdot \mathrm{Te}+\omega \mathrm{eq}(\mathrm{~m}, \mathrm{Te}) \cdot \frac{\mathrm{m}+\frac{1}{\omega}}{2 \cdot\left(\frac{1}{\omega}\right)} \cdot \mathrm{Ti}-\mathrm{P}(\mathrm{Te})=0
$$

Solve the last two for Ti amd Te

Initial guesses

$$
\begin{aligned}
& \mathrm{Ti}:=100 \\
& \mathrm{Te}:=10
\end{aligned}
$$

Given

$$
\begin{gathered}
(\Omega 1+\mathrm{Ti}) \cdot \frac{1-\omega \cdot \mathrm{m}(\mathrm{Ti})}{\mathrm{m}(\mathrm{Ti})+\frac{1}{\omega}}+\left(\omega-\omega \mathrm{eq}(\mathrm{~m}(\mathrm{Ti}), \mathrm{Te})-\omega \mathrm{i}-\frac{2}{\mathrm{~m}(\mathrm{Ti})+\frac{1}{\omega}}\right) \cdot \mathrm{Ti}+\omega \mathrm{eq}(\mathrm{~m}(\mathrm{Ti}), \mathrm{Te}) \cdot \mathrm{Te}=0 \\
\Omega 2 \cdot \frac{1-\omega \cdot \mathrm{m}(\mathrm{Ti})}{2 \cdot \frac{1}{\omega}}+\left(-\omega \mathrm{eq}(\mathrm{~m}(\mathrm{Ti}), \mathrm{Te}) \cdot \frac{\mathrm{m}(\mathrm{Ti})+\frac{1}{\omega}}{2 \cdot \frac{1}{\omega}}-\omega \mathrm{e}(\mathrm{~m}(\mathrm{Ti})) \cdot \mathrm{Te}+\omega \mathrm{eq}(\mathrm{~m}(\mathrm{Ti}), \mathrm{Te}) \cdot \frac{\mathrm{m}(\mathrm{Ti})+\frac{1}{\omega}}{2 \cdot\left(\frac{1}{\omega}\right)} \cdot \mathrm{Ti}-\mathrm{P}(\mathrm{Te})=0\right.
\end{gathered}
$$

$$
\left(\begin{array}{l}
\mathrm{Ti} \\
\mathrm{Me} \\
\mathrm{Te}
\end{array}\right):=\operatorname{Find}(\mathrm{Ti}, \mathrm{Te})
$$

$$
\binom{\mathrm{Ti}}{\mathrm{Te}}=\binom{86.908}{13.037}
$$

$$
\text { so } \quad \mathrm{m}(\mathrm{Ti})=0.988
$$

therefore

$$
\mathrm{n}:=\mathrm{m}(\mathrm{Ti}) \cdot \mathrm{s} 1 \quad \mathrm{n}=9.882 \times 10^{18}
$$

$$
\text { and } \quad \mathrm{ni}:=\mathrm{n}+\frac{\mathrm{s} 1}{\omega} \quad \mathrm{ni}=1.988 \times 10^{19}
$$

