
Parametri nucleari

ω 1:=

ωi 0.001:=

Ω1 393.4:=

Ω2 1952:=

Funzione di sollecitazione ed accoppiamento
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I've modified some of these functions in the light of my manipulations below 
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Modified versions - see further below for why I've done this 
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These are your first two equations
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Subtract the first from the second to get s1 ω ni n−( )− 0=
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So get rid of ni in the equations to be solved. They then become:
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The first of these can be solved to find n in terms of Ti
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The above three equations can be written as 
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Now with m
n

s1
=  and simplifying equations and functions (already done above)  even

more:  
Note: m is the function above, but I've just written it as m in the next two equations for
clarity.  It needs to be written fully in the solve block.
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Solve the last two for  Ti amd Te

Initial guesses
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Te 10:=
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