Electricity poles have to be erected along a line, $L[\mathrm{~km}]$ long. The deflection of the wires due to their weight increases with the span (S) between adjacent poles. In order to keep a requirement of a minimum clearance $(\boldsymbol{C L})$ between the wires and the ground, taller poles are needed for longer spans. The height of a pole is $h=0.001 * S^{\alpha}+C L[\mathrm{~m}]$ (rounded to the nearest higher 1 m), where $1.5<\boldsymbol{\alpha}<2.5$. The maximum allowable h is $\boldsymbol{H} \boldsymbol{M}$ [m]. The cost of a pole is $c=\$\left(C_{I}+2 \cdot h^{\beta}\right)$, where \boldsymbol{C}_{I} is a fixed added cost and $1.5<\boldsymbol{\beta}<2$. A crew of $\boldsymbol{N W} \mathbf{1}$ workers is needed to erect poles of up to $h=\boldsymbol{H L}[\mathrm{m}]$, and $\boldsymbol{N W} \mathbf{2}(>N W 1)$ workers for taller poles. A crew can erect up to $\boldsymbol{N P}$ poles per day. The cost of a worker is \boldsymbol{C}_{2} [$\$ /$ day $]$. A worker is paid for a full day even when the daily work is done in less than a day.

Assuming that all the spans are equal (uniform division), what are the optimal uniform span (S) and total number of poles (N) to minimize the cost of the operation? What is then that total cost?

Formulate the problem. Then write a text based computer program that solves the problem for various combinations of input parameters.

On the due date (Fri., 17 February, 2012, 2:30 p.m.) you have to submit a brief written report with a summary of the optimization equations and solution procedure (using the optimization procedure as shown in class), a flowchart, the text of the computer program and 6 examples (including printouts of input and output data for each example). You also have to submit one of the examples, for comparison and verification, using hand calculation optimization.

