ResearchGate

See discussions, stats, and author profiles for this publication at:

Arbitrarily shaped reinforced concrete

members subject to biaxial bending and axial
load

Article /1 Computers & Structures - November 1993

DOI: 10.1016/0045-7949(93)90069-P

CITATIONS READS
35 343
2 authors:
i
Cukurova University Cukurova University
42 PUBLICATIONS 264 CITATIONS 1 PUBLICATION 33 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject  FRP reinforced high strength concrete deep beams

All content following this page was uploaded by on 17 July 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/250695978_Arbitrarily_shaped_reinforced_concrete_members_subject_to_biaxial_bending_and_axial_load?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/250695978_Arbitrarily_shaped_reinforced_concrete_members_subject_to_biaxial_bending_and_axial_load?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/FRP-reinforced-high-strength-concrete-deep-beams?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cengiz_Dundar?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cengiz_Dundar?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cukurova_University?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cengiz_Dundar?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Besir_Sahin2?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Besir_Sahin2?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cukurova_University?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Besir_Sahin2?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cengiz_Dundar?enrichId=rgreq-8e814825e1409812ae15814696afc60a-XXX&enrichSource=Y292ZXJQYWdlOzI1MDY5NTk3ODtBUzoxMTk5Mjc3NjM2NDAzMjBAMTQwNTYwNDQxNTIxNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Computers & Structures Vol. 49, No. 4, pp. 643662, 1993 0045-7949/93 $6.00 + 0.00
Printed in Great Britain. © 1993 Pergamon Press Lid

ARBITRARILY SHAPED REINFORCED CONCRETE
MEMBERS SUBJECT TO BIAXIAL BENDING
AND AXIAL LOAD

C. DunDAR and B. SAHIN
Department of Civil Engineering, Cukurova University, 01330 Adana, Turkey

(Received 29 June 1992)

Abstract—An approach to the ultimate strength calculation and the dimensioning of arbitrarily shaped
reinforced concrete sections, subject to combined biaxial bending and axial compression, is presented, The
analysis is performed in accordance with the American Concrete Institute (ACI) code. A computer
program is presented for rapid design of arbitrarily shaped reinforced concrete members under biaxial
bending and axial load. In the proposed method the equilibrium equations are expressed in terms of the
three unknowns, e.g. location of neutral axis and amount of total reinforcement area within the
cross-section, which lead to three simultaneous nonlinear algebraic equations which are solved by a
procedure based on the Newton—Raphson method. One design problem, available in the literature, is
solved by this program to provide possible design procedures. A listing of the computer program is given
in the Appendix.



1. INTRODUCTION

Arbitrarily shaped reinforced concrete members sub-
jected to biaxial bending and axial compression are
frequently used in multistorey tall buildings and
bridge piers. These types of cross-sections are en-
countered as L-shaped columns at the corners of
framed structures, and as channel- and hollow-box
sections in staircases and elevator shafts. The design
such members subjected to biaxial bending and axial
load is more complex than rectangular shaped mem-
bers with uniformly distributed reinforcement and is,
therefore, treated inadequately or ignored by most
designers in current practice. These members are
usually over-designed which may cause the structure
to be stiffer and may result in a loss of ductility when
applied to seismic regions.

In recent years some methods have been presented
for the ultimate strength analysis of various concrete
sections, such as L-, T-, and channel-shaped and
polygonal, under combined biaxial bending and axial
compression [1-5]. These methods compute the ulti-
mate flexural capacity of section. For design purposes
they require trial and error procedures.

Several investigators [6, 7] have suggested a nu-
merical solution for the design of arbitrarily shaped
reinforced concrete members subjected to biaxial
bending and axial compression and have developed
computer programs. In these methods, a section with
the reinforcement pattern and the area of total re-
inforcement have first to be assumed, then a trial
adjustment procedure is required to find the incli-
nation and depth of the neutral axis satisfying the
equilibrium conditions, and then one has to compute
the capacity of this particular section. The reinforce-

ment area must then be successively corrected until

Finally, a computer program based on the as-
sumptions stated above, is described briefly and one
design problem, available in the literature, is solved
by the computer program presented here to provide
possible design procedures.

2. PROBLEM FORMULATION

Material properties

In the analysis two types of steel may be used with
different stress—strain relationships.

The stress—strain relation for the mild steel is
assumed to be elasto-plastic and is determined as
follows:

the section capacity reaches the strength require-
ments. For designing irregular shaped sections such
as L., T- and channel-shaped, empirical approxi-
mations or design charts to represent the failure
surfaces have been suggested [3-5].

The primary objective of this paper is to develop a
computer program for the rapid design of arbitrarily
shaped reinforced concrete members subjected to
combined biaxial bending and axial load. This paper
is an expansion of the previous papers [8, 9] covering
the same problem in which arbitrarily shaped con-
crete members were not considered. In the proposed
method, the equilibrium equations are expressed in
terms of the three unknowns, e.g. location of
modified axis and amount of total reinforcement area
within the cross-section, which leads to three simul-

taneous nonlinear algebraic equations which are
solved by a procedure based on the Newton-
Raphson method.

The proposed design method is based on the
following assumptions: (1) sections remain plane
after deformation; (2) the reinforcement is subjected
to the same variations in strain as the adjacent
concrete; (3) the maximum strain in the extreme fibre
of concrete in compression is 0.003; (4) the distri-
bution of concrete stress of 0.85f, and a depth from
the compressed edge k, x,, where x, is the neutral axis
depth and the value of k, is taken according to
recommendations of ACI code; (5) the effect of creep
and the tensile strength of concrete and any direct
tension stresses due to shrinkage, etc. are ignored; (6)
the stress—strain relation for the reinforcing bar may
be considered as for cold-work steel and/or mild steel;
(7) shear deformation is neglected; and (8) the mem-

ber does not buckle before ultimate load is attained.

Calculation of strains for the reinforcing bars

Consider an arbitrarily shaped reinforced
concrete member, channel-shaped for instance,
subject to a biaxially eccentric load as shown
in Fig. 2. The origin of the x-y axis system is
chosen to be the most heavily stressed point of the
cross-section. This point is determined with respect
to the location of the biaxially eccentric load
Ny(xy, Yy).

The assumption, that plane sections remain
plane and there is no bond-slip between the re-
inforcement and the concrete, implies that the strain
distribution is linear across the reinforced concrete
section. The strain in the steel may be found by



| <e,, f.=E.gé, (1a)
BETS f;=|-Ei|f,,, (1b)

where f, and ¢, are the stress and strain values of the
reinforcing steel, f, and E are the yield strength and
the modulus of elasticity of steel, respectively.

For the case of using cold-work steel, the
stress—strain relationship is determined by six
points as shown in Fig. 1. First two points and
the last two define the linear region and the remain-
ing points define the nonlinear region of the
stress—strain curve. Stress values for intermediate
strains are computed by using the Lagrange interp-
olation method.

In the analysis the distribution of concrete stress
is assumed to be rectangular with a main stress
of 0.85. and a depth from the most heavily
compressed edge of k,x,, where x; is the
neutral axis depth. The value of k, is determined as
follows:

k, =085, f <27.6MPa (2a)

k, =0.85—0.0073(/. — 27.6), f.>27.6 MPa (2b)

in which /7 is the ultimate compression strength of
concrete.
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Fig. 1. Stress-strain relation for cold-work steel.

considering the similar triangles of the strain dia-
gram of Fig. 1 as

€= (“‘(5’: — I). (3)
Xo

Here z,=(y;+ x;tana)cosx; tana =c/a; cosuo =
k x,/c, in which @ and ¢ are the horizontal and
vertical distances between the origin of the x—y axis
system and the modified axis (see Fig. 1). The strain,
¢, for the ith reinforcing bar can now be deter-
mined by using eqn (3) as

4)

where x; and y; are the coordinates of the ith
reinforcing bar with respect to the x—y axis system
which has the origin at the most heavily stressed
corner of the cross-section.

Determination of the geometric properties of the con-
crete compression zone

In order to determine compressive force and its
location in the concrete compression zone, the area
and the coordinates of the centroid of the com-
pression zone must be computed. The compression

zonc will now be described in terms of the distances
a and c¢. Consider an arbitrarily shaped section in
the x—y axis system as shown in Fig. 3. The modified
axis is located with the distances a and ¢ from the
origin of the x--y axis system; the compression zone
of the section is indicated above this axis by the
shaded area. To determine the area of the com-
pression zone (A4..) and the coordinates of its cen-
troid (x,y), the nodes of the cross-section are
numbered in the clockwise or anticlockwise direction
from 1 to n. Then, the points of intersection with the
modified axis and the sides of the boundary are
indicated as i,i+1 or i —1,i if the intersection
takes place in going from i to i+ 1 or i —1 to i,
respectively.

With these points of intersection the shaded area



Loading of arbitrarily shaped concrete members
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Fig. 2. Stresses and strains in concrete section under biaxial bending and axial compression.

can be described in terms of the triangles. Now the eefy_Xusr s5b)
coordinatcs of the points intcrsection for i, i + | are Yusr 3 7 (
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c—=y+8,,,x b Yis1 — )i
Yin = cla+3,,, (5a) 6"’“-;:-‘—. (5c)
x

Fig. 3. Determination of concrete compression zone.
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Fig. 4. Concrete section with void.
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may be obtained.

the boundary of the void. Hence, the nodal point
numbering must proceed in the opposite direction to
that of the external boundary of the cross-section as
indicated in Fig. 4.

Equilibrium equations

If the coordinates of the biaxially eccentric load are
indicated by x, and y, in the x—y axis system,
equilibrium equations can be written with respect to
the axis system x'-y’, through the biaxially eccentnc
load and parallel to x and y» axes, respectively.
Therefore, equilibrium equations can be written as
follows:

A -
fi=fid. .- —"i‘ SLfi—Ny=0 (9a)

Ay

fr="F Ll — xnlfu] = LR = xx)A =0 (9b)

A =
fi= ':' L=yl =15 = yy)A. =0 (%)

in which f7 =085/, 4,, is the total area of the main
reinforcement within the cross-section, and x; and y,
are the coordinates of the reinforcing bars with
respect to the x—y axis system. [t is assumed that the
reinforcing bars are identical.

In view of eqns (1), (4) and (7), eqn (%) can now be
expressed in terms of the parameters a, ¢, A, as
follows:



The area of the concrele compression zone can be
computed as follows:

Ao=1L 4l (7a)

where 4, is the area of triangle (i = D) () (i + 1)
—‘"[.'=%[I.[Fj_u_}'uq-l}"'Ir.i+|[.}’r'_}';_u}

+ X I,i{.l"u 1= }Irjl‘ {Tb}

The triangles that form below the modified axis are
not considered. Finally, the centroid of the shaded
area with respect to x—y axis system can be written
as follows:

1
i =fd_}_‘,|.4,.(x,+xu, vhxo) (Ba)

1
f=3_£“1‘$[-‘r{_}'l+}'r.n1 + ¥l (Bb)

Cross-sections with voids can easily be described
by nodal coordinates, defining the boundary. If nodal
point numbering is done in the clockwise direction for
the outer boundary of the section, nodal point num-
bering must be done in the anticlockwise direction for

component of the starting triplet can be chosen to
be A,=001A4, since the minimum requirement
of the steel percentage in the gross cross-sectional
area is 1% according to the ACI building
code [10].

Initial approximations for a and ¢ are chosen
by the user of the computer program. If the
initial values of a and c¢ are taken to be the length
of contour lines which intersect at the origin of the
x-y axis system, it is observed that the sequence
generated by the above-mentioned iterative algor-
ithm has converged for many different problems
tested in six to seven iterations. If the iterative
algorithm diverges then the program gives a warning
that the user should choose new initial values for a
and c.

Regarding the domain restriction for the
solution, if the section selected by the user is an
unnecessarily big one, then the iterative algorithm
may converge to a negative value for the reinforce-
ment. In this case, the program gives a warning
again that the user should either decrease the
section dimensions or use the minimum percentage
of steel reinforcement required by the building
code.

3. DESIGN EXAMPLE

Let us consider a previously studied staircase
core section [6] for a compression member subject

fila, e, 4,)=0 (10a)
f]{ﬂu C. Au}=ﬂ {!l}h}
fila, e, A, )=0 (10¢)

or in matrix form

fix) =10, (1)
where x =[a, ¢, A,]; T=[/,./5. /). Here the super-
script ¢ designates transpose. The recursive formula
of the Newton—Raphson method for finding the root
of eqn (11) is
‘nlzxa_'a‘xn i=0,1,2,.... (12)
where the increment Ax; is the solution of the
equation
AAx, =T i13)
in which A, = 2f(x,)/dx (Jacobian matrix); [, = f(x,).
In the determination of the Jacobian matrix, the
partial derivatives are expressed in terms of finite
differences.
The algorithm presented above requires us to
start with an assumed triplet [a, ¢, A,). The third

to biaxial bending to carry the following design
loads
N,=1737.14kips, (7731.1kN)

M, =103,714.3 kips-in, (11,725.5 kN-m)

M, =94971.4 kips-in, (10,737.0kN-m). (14)
The material properties will be taken as
Si=4ksi, (27.6 MPa)
f,=319ksi, (220.1 MPa). (15)

Solution

Step 1: try a staircase core section as shown in
Fig. 5.

Step 2: try 84-bar reinforcement as shown in Fig. 5.

Step 3: the computer program requires the input
data given below.

The coordinates (xy, yy) must first be determined
from the design loads as follows:

949714
T 173714

e, = 54.67in,

(1388.62 mm)

Xy=49.20 — 54.67 = —547in, (—138.94 mm)

(16a)



Staircase core section

78.8"

+25 |3

«22 +|36
+23 -|35

3 31

*26 * :: -Zjo

17.7

| 9.8 | 78.8" | 9.8~
I 1 1
f: *I3F12 CIT 710 *9 " 8_ 77 -6 *5 4 -3 -2 -1

63 =|75

¥
Fig. 5. Graphical output of example problem (1 in = 25.4 mm).
Table 1. Echo print of input data
Staircase core section (Mapgalhaes)
General information
k1=085 Epscu=0.003 fyd=31900 fcd=4000
Es=20e+6 Nd=1737142.9 xN=-5467 yN=-19.79
ao=40 co=40
Polygon coordinaies
P=1 X=0 Y=0
P=2 X=984
P=3 ¥=984
P=4 X=807
P=6 X=791 Y=B8S6
P=6 X=886
p=7 Y=98
P=8 X=98
P=3 ¥ =88.6
P=10 X=133
P=11 X=177 Y¥=984
P=12 X=00
Reinforcemants
R1 =1 RZ=13 X1=1 ¥1=1 X2=974 Y¥2=1 Milds =1
R1=13 R2=27 X1=974 ¥1=1 X2=974 ¥2=974
R1=27 R2=29 X1=974 ¥1=974 MXN2=B17 Y¥2=974
R1=28 HRAZ=31 X1=B16 Y1=974 X2=B01 Y2=8986
R1=32 ARZ=44 X1=896 Y1=896 X2=896 Y2Z=88
R1=44 HR2=54 X1=896 Y1=88 X2=88 Y2=88
R1 =54 R2=66 X1=88 ¥1=88 X2=88 ¥2=896
R1=67 AR2=69 X1=183 Y1=896 X2=167 Y2=974
R1=68 R2Z=71 X1=167 ¥Y1=974 X2=1 ¥2=974
RZ=84 X1=1 ¥1=974 X2=1 ¥2=8.8

R1=T1

End of data




103,714.3

E‘.l = W = Sgﬂ] mn,

(1516.38 mm)

Yy =39.91 —59.70 = —19.79in, (—502.67 mm).

(16b)

The coordinates of the centroid of the gross cross-sec-
tion with respect to the x-y axis system (x,, y,) are
49.20 and 39.91 in, respectively, which are automati-
cally computed by the program.

The input data of the example problem are given
in Table 1. The input data have three data blocks
which are: ‘general information’, ‘polygon coordi-
nates’ and ‘reinforcements’. For the ‘reinforcements’
block, the program has the facility of data generation.
For example, to generate the coordinates of reinfore-
ing bars, first coordinates and the last coordinates
may be given. So the program equally spaces the
intermediate reinforcing bars in the section. The
coordinates of the reinforcing bars may also be given
one by one.

To specify the type of steel used for the section, the
parameters ‘milds’ for mild steel, ‘coldws’ for cold-
work steel are used, respectively.

If the program is run with the input data given in
Table 1, an output whose echo print is given in
Table 2 is produced. The program also has a graphi-
cal output which indicates the section geometry,

location of the reinforcing bars with corresponding
numbers and the position of the modified axis with
respect o x—p axis sysiem.

The numerical procedure converges to the solution
a = 59.6%in (1516.12 mm), ¢ = 34.23 in (869.44 mm),
A,=4902in* (31,625.74mm%) in five iterations.
|Ax, || = € is used in the program as the convergence
criterion, where ¢ is the convergence factor which is
chosen to be 107,

Step 4 choose 84 #7 bars, p, =4,/
A, = (84 = 0.6)/2871.4 = 0.0175, say 1.75% which is
between 1% and 8% of the gross area as permitted
by the ACI building code.

Step 5. design the ties as required by the ACI
building code.

This example problem has also been solved by
Magalhaes [6]. In this study, lollowing the determi-
nation of the position of the neutral axis by iterative
numerical algorithm, the ultimate capacity of the
section is computed. The reinforcement area is then
successively corrected until the section capacity
reaches the strength requirement, The area of the
total reinforcement was found to be 48in’
(30,967.68 mm?) by Magalhaes.

The computer program, prcscnted here, computcs
the location of neutral axis and the total area of the
reinforcement in one iterative procedure.

A computer program which is developed for
the ultimate strength design of arbitrarily shaped

Table 2. Echo print of program output

Staircase cora section (Magalhaes)
General information

k1 =0.85
Es = 29,000,000

ecu=0.003 fcd=4000 fyd=31900

Nd=1.737,142.9 yn=-19.79 =xn=-5467

ao=40 co=40

Polygon coordinates
P=1 X=0.000 Y=0.000
P=12 X=0.000 Y=98400

Reinforcements
Ry=1 X=1.000
Ry=84 X=1.000

c=40.000
¢=28.256
c=34319
c=34223
c=34.228
c=34228

o b=
@
]
&
2

Reinforcemant strasses
R=1 es=-31,900.000
R=42 as=31.900.000

Saction
x=49200 Ac=2871.400
y=239.908

Compression zone
a=53690 x=19535% Acc=713.081
c=34228 y=92393

Total reinforcement area = 49025358

Asgl=28.713989
Ast=45.022427
Ast=48.362925
Ast = 49.021301
Ast=49.026357
Ast = 49 025368

R=43 eos=31,900.000
R=84 os=-31.900.000




reinforced concrete members under biaxial bending
and axial compression is prepared in QuickBASIC.
The full listing of the computer program is provided
in the Appendix.
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APPENDIX 1

APPENDIXI : LISTING OF THE CONPUTER PROGRAM

DEFDBL A-2
DEFINT I-N

DEFSTR U

DECLARE SUB Reads (U, Uoku, okun, Ls)
DECLARE SUB Plot (Ugn, UDat)

DECLARE SUB Area ()

'DECLARE SUB Prep (f1, £2, £3, dkl, dNp)

DECLARE SUB Gnrt (U, Itype, n, Ls)

COMMON SHARED Epscu, fyd, fcd, Es, Ac, xl1, yl, yn, xn, Eps(), z()
COMMON SHARED x(), y(), Sigma(), Ast, np, nd, a, c, Itype()

CONST npara = 6000, FALSE = 0, TRUE = NOT FALSE

DIM x(npara), y(npara), Sigma(npara / 2), Itype(npara / 2), Eps(6),z(6)
KEY 15, CHRS(&HO) + CHRS(&H1) 'ESC key

ON KEY(10) GOSUB Ciz
ON KEY(15) GOSUB Son
PRINT

IF COMMANDS = "" THEN INPUT "Input File = ", UDat ELSE UDat = COMMANDS

OPEN UDat FOR INPUT AS 1
FORm = 1 TO LEN(UDat)
U = MID$(UDat, m, 1)
IF U= "," THEN EXIT FOR
UDoca = UDos + U
NEXT m



UDat = UDos + MIDS(UDat, m, 4)
UDos = UCASES(UDos) + ".OUT"
KEY (10) ON
KEY(15) ON
CLS
LINE INPUT #1, Ugn
COLOR 15
PRINT Ugn
LOCATE 25, 1
PRINT "Esc"; : COLOR 7: PRINT " Exit, ";
COLOR 15: PRINT " F10"; : COLOR 7: PRINT " Plot";
COLOR 15: PRINT TAB(52); "Output File = "; UDos;
COLOR 7
VIEW PRINT 3 TO 23
GOSUB Format
DO

LINE INPUT #1, Ug: Ug = UCASES(Ug)

IF Ug = "END OF DATA" THEN EXIT DO

PRINT

SELECT CASE Ug

CASE "GENERAL INFORMATION"
PRINT Ug
LOCATE CSRLIN, 1: PRINT "Reading..."; : LOCATE CSRLIN, 1

Do
LINE INPUT #1, U: IF U = ":" THEN EXIT DO
CALL Reads(U, "K1", okun, Le): IF Ls THEN dkl = okun
CALL Reads(U, "EPSCU", okun, Les): IF Ls THEN Epscu = okun
CALL Reads (U, "FYD", okun, Ls): IF Le THEN fyd = okun
CALL Reads(U, "FCD", okun, Ls): IF Ls THEN fcd = okun



CALL
CALL
CALL
CALL
CALL
CALL

FOR § = 1 TO 6
CALL Reads (U,

Reads (U,
Reads (U,
Reads (U,
Reada (U,
Reads (U,
Reads (U,

"ES5", okun,
"ND", okun,
"¥YN", okun,
"XN", okun,
"AO", okun,
"Co", okun,

Les): IP
La): IF
Le): IF
La): IF
La): IF
Le): IF

IF Ls THEN Eps(j) = ockun

CALL Reads (U,

IF Le THEN z(j) = okun

NEXT
LOOP
PRINT
PRINT
PRINT
PRINT
PRINT
FOR j

PRINT "Eps(" + RIGHTS$(STRS(j).

3

"kl ="; dkl; TAB(17);

TAB(55); "
"Ee ="; Es

fyd ="; fyd

"Np ="; dNp; TAB(17);
"ao ="; aoj TAB(17);

= 1 TO &

PRINT TAB(36);

NEXT 3

“z(" + RIGHTS(STRS(3).,

CASE "POLYGON COORDINATES"
PRINT Ug

DO

Ls
Ls
Ls
L=
La
Ls

"Z{(" + RIGHTS(STRS(3j).

THEN
THEN
THEN
THEN
THEN
THEN

"EPS("™ + RIGHTS(STRS(3).

"ecu ="; Epscu;

Es = okun
dNp = okun
yn = okun
xn = okun
ac = okun
co = okun

1)

TAB (36);

"yn ="; yn; TLB{3E};
"co ="; CcoO

1)

LINE INPUT #1, U: IF U = ":" THEN EXIT DO
CALL Reads(U, "P", okun, Ls): np = okun
IF NOT Ls THEN
PRINT : PRINT "There is no information about 'P'...":
END IF
IF np <> i + 1 THEN
PRINT : PRINT "The order of P is not correct...": GOTO Er
ELSE
i =np
END IF
CALL Reads(U, "X", okun, Ls): x(np) = okun
IF NOT Ls THEN
IF np = 1 THEN

PRINT :PRINT "There is no information about

ELSE
x(np) = x(np - 1)

END IF

END IP

CALL Reads(U,

IF NOT Ls THEN

IF np = 1 THEN
PRINT :PRINT "There is no information about 'Y'..."

ELSE

"Y", okun, Ls): y(np) = okun

+ )", okun,

Le)

1y + ")y", okun, L8B)

"fed =";fod;

"xn =" xn

1y + ") ="; Eps(j);
+ ")y ="; =z(3)

.x.....

GOTO Er

:GOTO EBr

:GOTO Er



y(np) = y(np = 1)
END IF
END IF
PRINT "P ="; np;
PRINT TAB(1ll); "X ="; USING U43; x(np);
PRINT TAB(28); "Y ="; USING U43; y(np)
LooP

CASE "REINFORCEMENTS"
PRINT Ug
LOCATE CSRLIN, 1: PRINT "Reading..."; : LOCATE CSRLIN, 1
IF np = 0 THEN
PRINT
PRINT "Please, input polygon coordinates firstly...": GOTO Er
END IF
Itype = 1
DO
LINE INPUT #1, U: IF U = ":" THEN EXIT DO
CALL Reads(U, "R", okun, Ls)
IF Ls THEN n = okun ELSE n = 0
CALL Reads (U, "MILDS", okun, Ls)
IF Ls THEN
Itype(n) = TRUE
ELSE
CALL Reads(U, "COLDWS", okun, Ls)
IF Ls THEN Itype(n) = FALSE ELSE Itype(n) = Itype
END IF
Itype = Itype(n)
IF Itype = 1 THEN
PRINT
PRINT "There is no information about 'COLDWS' or 'MILDS' ..."
GOTO Er
END IF



CALL Reads(U, "R1"; okun, Ls)
IF Ls THEN
CALL Gnrt(U, Itype, n, Ls)
IF NOT Ls THEN PRINT:PRINT "Rl is greater than R2...":GOTO Er
ELSE
CALL Reads(U, "X", okun, Ls): x(np + n) = ockun
IF NOT Ls THEN x(np + n) = xtemp
xtemp = x(np + nj
CALL Reads{U, "Y", okun, Le): y{np + n) = okun
IF NOT Ls THEN y(np + n) = ytemp
ytemp = y(np + n)
END IF
IF nd <n THEN nd = n
LOOP
FOR 1 = 1 TO nd
PRINT "R";
IF Itype(l) THEN PRINT "y ="; 1; ELSE PRINT "s ="; 1;
PRINT TAB(1l1l); "X ="; USING U43; x(np + 1);
PRINT TAB(28); "Y ="; USING U43; y(np + 1)
NEXT 1

CASE ELSE
PRINT :PRINT "No need the data block named '";Ug; "'...": GOTO Er
END SELECT

LOOP
CLOSE 1
IP nd = 0 THEN PRINT : PRINT "Please, input reinforcements...": GOTO Er
PRINT Ug: PRINT
OPEN UDos FOR OUTPUT AS 2
PRINT #2, UDcs
PRINT #2,



PRINT #2, Ugn
PRINT #2,
PRINT #2, "GENERAL INFORMATION

PRINT #2, "kl ="; dkl; TAB(17):
PRINT #2, TAB(55); "fyd ="; fyd

PRINT #2, "Es ="; Es

PRINT #2, "Np ="; dNp; TAB(17);

PRINT #2, "aoc ="; ao; TRAB(17);
FOR j = 1 TO &

PRINT #2, "Eps(™ + RIGHTS(STRS(j).
PRINT #2, TAB(36); "z(" + RIGHTS(STRS(j).

NEXT 3

PRINT #2,

fcd = .85 * fcd
zmaxx = x{1l)
zmaxy = y(1)
zminx =

zminy = zmaxy
FOR i = 1 TO np

EZmaxix

IF zmaxx < x(i) THEN zmaxx =

IF zmaxy < y(i) THEN zmaxy =

IF zminx > x(i) THEN zminx =

IF zminy > y(i) THEN zminy =
NEXT i

FOR L = 1 TO np + nd
x(i) = x(i) - zminx
y(i) = y(i) = zminy
NEXT i
zmaxx = zmaxx - zminx
zmaxy = zmaxy - zminy
x(0) = x(np): y(0) = y(np)
a = zmaxx + zmaxy: a = 2 * a
c=a

CALL Area

PRINT "Center of Gravity : x =";
PRINT " Yy ="i
PRINT

IF xn > x1 THEN 'x -Axis Convereion

FOR 1 = 1 TO np + nd
x(i) = zmaxx - x(1i)

NEXT i

XN = zmaxx - xn

xl = zmaxx - xl

x(0) = x(np)

PRINT "x-coord. transformed w.r.t. most heavily stressed point..."

PRINT

"ecu ="; Epscu;

"yn ="; yn; TAB(36);
"co ="; co

x(i)
yii)
x(i)
yii)

USING U43 + " "; xl
USING U43; yl

TAB(36);

"xn ="; xXn

="; Epa(j);

fed;

PRINT #2,"x-coord. transformed w.r.t. most heavily streesed point..."

PRINT #2,
END IF



IF yn > yl THEN 'y —Axis Conversion
FOR { = 1 TO np + nd
y(i) = zmaxy - y(i)
NEXT 1
yn = IMaxy - yn
dMy = =dMy

yl = zmaxy - yl
y(0) = y(np)
PRINT "y=coord. transformed w.r.t. most heavily streseed point..."
PRINT
PRINT #2,"x-coord. transformed w,r.t. most heavily stressed point..."
PRINT #2,
END IF
PRINT #2, "POLYGON COORDINATES :"
FOR 1 = 1 TO np
PRINT #2, "P ="; i;
PRINT #2, TAB(ll); "X ="; USING U43; x(i);
PRINT #2, TAB(2B); "Y ="; USING U43; y(i)
NEXT i
PRINT #2,
PRINT #2, "REINFORCEMENTS :"
FOR i = 1 TO nd
PRINT #2, "R";
IF Itype(i) THEN PRINT #Z, "y ="; 1; ELSE PRINT #2, "8 ="; i;
PRINT #2, TAB(11l); "X ="; USING U43; x(np + 1);
PRINT #2, TAB(28); "Y ="; USING U43; y(np + i)
NEXT i
PRINT #2,
PRINT "Prese any key to continue...”
WHILE INKEYS = ""
WEND



LOCATE CSRLIN - 1, 1

Actemp = AC

xltemp = xl

yltemp = yl

' Newton—Raphson

' Iteration begins...

a = aoc: ¢ = co: Ast = Ac * .0l

PRINT TAB(12); "a ="; USING U43; a;
PRINT TAR(31l); "ec ="; USING U43; o;
PRINT TAB(49); "Ast ="; USING U46; Ast
PRINT #2, "ITERATION :"

PRINT #2, TAB(12); "a ="; USING U43; a;
PRINT #2, TAB(3l1); "c ="; USING U43; c;
PRINT #2, TAB(49); "Ast ="; USING U46; Asat
dela = .001: delc = .001: delhAst = .000001
atemp = a

ctemp = C

Asttemp = ABt

CALL Prep(fl, f2, £3, dkl, dNp)

rfl = £1: rf2 = f2: rf3 = £3

atmp = a + dela

ctmp = c + delc

Asttmp = Ast + delAst

DO

Iter = Iter + 1

PRINT Iter; ",";

PRINT #2, Iter; ",";

c = ¢ctemp: a4 - atmp: Ast = Asttemp



CALL Prep(fl, f2, f£3, dkl, dNp)

dfla = (f1 - rfl) / dela

df2a = (f2 - rf2) / dela

dfla = (£f3 - rf3) [/ dela

c = ctmp: a = atemp: Ast = Asttemp

CALL Prep(fl, £2, £3, dkl, dNp)

dflc = (f1 - rfl) / delc

df2ec = (f2 - rf2) [/ delc

df3c = (f3 - rfl) / delc

c = ctemp: a = atemp: Ast = Asttmp

CALL Prep(fl, £2, £3, dkl, dNp)

dflast = (f1 - rfl) / delAst

df2Ast = (f2 - rf2) [ delast

df3ast = (f3 - rf3) / delhst

Di = dfla * (df2c * df3Ast - df2Ast * df3c) - df2a * (dflc * df3nst -
dflast * dfic) + dfia * (dflc » dfZaet - dflAst * df2c)

Deltaa = (dflc * df2Aast * rf3 - dflec * df3Ast * rf2 - df2ec * dflAst +
rf3l + df2c * df3ast * rfl + df3c * dflRet * rf2 - df3c * df2ast*rfl)/Di
Deltac = —(dflAst * rf2 * df3la - dflAst * rf3 = df2a -df2Ast * rfl »
df3a + df2ast * rf3 * dfla + df3Ast * rfl * df2a -df3lpat * rf2=dfla)/Di

Deltahst = (dflc * rf2 * dfla - dflc * rf3 » df2a - df2c * rfl * df3a
+ df2c * rfl * dfla + df3c * rfl » df2a -df3c » rf2 » dfla) / Di

a = a — Deltaa

¢ = ¢ - Deltac

ARst = Ast - Deltahst

PRINT TAB(12); "a ="; USING U43; a;

PRINT TAB(31); "c ="; USING U43; c;



PRINT TAB(49); "Ast ="; USING U46; Ast
PRINT #2, TAB(12); "a ="; USING U43; a;
PRINT #2, TAB(31); "c ="; USING U43; c;
PRINT #2, TAB(49); "Ast ="; USING U46; Ast
ctemp = ¢: atemp = a: Asttemp = Ast
ctmp = ¢ + delc: atmp = a + dela: Asttmp = Ast + delAst
CALL Prep(fl, f2, £3, dkl, dnp)
rfl = £1: rf2 = £f2: rf3 = £3
LOOP UNTIL ABS(Deltaa)<.001 AND ABS{Deltac)<.001 AND ABS(DeltaAst)<.001
PRINT #2,
PRINT #2, "REINFORCEMENT STRESSES :"
ii = INT(nd / 2 + .5)
FOR i = 1 TO ii
PRINT #2, "R ="; i; TAB(13); "os ="; USING U73; Sigma(i);
IF i + ii > nd THEN
PRINT #2,
ELSE
PRINT #2, TAB(36); "R ="; i + ii; TAB(55); "os =";
PRINT #2, USING U73; Sigma(i + ii)

END IF
NEXT i
PRINT
PRINT "Section : x ="; USING U43 + " "; xltemp;
PRINT "Ac ="; USING U73; Actemp
PRINT * y ="; USING U43; yltemp
PRINT
PRINT "Compression Zone : a ="; USING U43 + = LI ¥

PRINT "x ="; USING U43 + * i xl;



PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
WHILE
WEND
GOSUB
Er:
BEEP:
Son:
CLOSE
END

"Acc =" USING U73; Ac

" c ="; USING U43 + " "; cj

"y =": USING U43; yl

"Total Reinforcement Area ="; USING U46; Ast

#2,

#2, "Section : x ="; USING U43 + " "; xltemp;

#2, "hAc ="; USING U73; Actemp

#2, " y ="; USING U43; yltemp

#Er

#2, "Compression Zone : a ="; USING U43 + " "; a;
#2, "x ="; USING U43 + " ": x1;

#2, "Acc ="; USING U73; Ac

#2, " c ="; USING U43 + " "r O}
#2, "y ="; USING U43; yl

#2,

#2, "Total Reinforcement Area ="; USING U46; Ast

"Press any key..."

INKEY§ = ""

Son

FRINT : PRINT "ERROR IN DATA I"



Ciz:

Lin = CSRLIN

CALL Plot(Ugn, UDat)
VIEW PRINT 3 TO 23
LOCATE Lin, 1
RETURN

Format:

Ud43 = "#FFE.HET
Ule = " F.#EF#FE"
U46 "#EFE.FEEIEE
Uoe = " .#FFEFFET
U73 = "#E#EFEEE . $44
RETURN

SUB Area
Begin:
Ac = 0: x1 = 0 yl = 0
FOR k = 1 TO np
IF k np THEN
xt x(1l)
yt y(1)
ELSE
xt = x(k + 1)
yt = y(k + 1)
END IF

IF xt = x(k) THEN
xp = x(k)
ELSE



diamdap = (yt - y(k}) / (xt - x(k)})
IFc / a+ diLamdap = 0 THEN ¢ = ¢ + ¢ / 100: GOTO Begin
xp = (¢ = y{k) + dLamdap * x(k)) / (¢ / a + dLamdap)
END IF
yp=c¢c * (1 - xp / a)
IF x(k - 1) = x(k) THEN
xm = x(k)
ELSE
diamdam = (y(k -~ 1) - y(k}) / (x(k = 1} - x(k))
IF ¢ / a + dLamdam = 0 THEN a = a + a / 100: GOTO Begin
xm = (¢ - y{k) + diamdam * x{k}) / (c / a + dLamdam}
END IF
ym =¢ * (1 - xm / a)
sh =0
IF y(k) <= c * {(a - x(k)) / a THEN
sh = (x{k) * (ym - yp) + xp * (y(k) —ym) + xm * (yp - y(k))}) / 2
END IF
Ac = Ac + s8R
x1 = x1 + sA * (x(k) + xp + xm)
yl =yl + sA * (y(k) + yp + ym)
NEXT k
IF Ac <> 0 THEN
xl1 =x1/3/ Ac
¥l =y1 /f 3 [ Ac
END IF
Ac = ABS(Ac)



END SUB

SUB Gnrt (U, Itype, n, Ls8)

CALL Reads(U, "R1",
ndl = okun
CALL Reads{(U, "R2",

okun,

okun,

Ls)

Le): IF NOT Ls THEN EXIT

nd2 = okun: IF nd2 < ndl THEN Ls = FALSE: EXIT SUB

CALL Reads{(U, "X1", okun,

x{np + ndl) = okun
CALL Reads (U, "Y1",
y(np + ndl) = okun
CALL Reads(U, "X2",
x{np + nd2) = okun
CALL Reads (U, "y2",
y(np + nd2) = okun

xa = (x(np + nd2) -
ya = (y(np + nd2) -

Itype(ndl) = Itype

okun,

okun,

okun,

Ls): IF NOT Ls THEN EXIT

Les): IF NOT Ls THEN EXIT

Ls): IF NROT Ls THEN EXIT

Ls): IF NOT Ls THEN EXIT

x(np + ndl)) / (nd2 - ndl)
y(np + ndl)) / (nd2 - ndl)

FOR 1 = ndl + 1 TO nd2
x(np + 1) = x(np + 1 - 1) + xa
y(np + 1) = y(np + 1 - 1) + ya

Itype(l) = Itype
NEXT 1
n = nd2

END SUB

SUB Plot (Ugn, UDat)

SUB

SUB

SUB

SuUB

SUB

STATIC default
DIM Image(1975)
k=20



FOR i = 1 TO 25

IF i = 25 THEN Imcolor = SCREEN(i, 1, 1)

FOR § = 1 TO 79

k =k + 1
Image(k) = SCREEN(i, j)

NEXT 3
NEXT i
CLS
IF default = 0 THEN default = 1
PRINT "Scale Factor <"; default; "> =";
INPUT ™ ", 8Bf
IF 8f = 0 THEN sf = default
default = af
SCREEN 2
PRINT TAB(INT((79 - LEN(Ugn)) / 2)); Ugn
LOCATE 25, 68: PRINT UDat;
zmaxx = x(1)
zmaxy = y(1l)
zminx = zmaxx
zminy = zmaxy
FOR i = 1 TO np

IF zmaxx < x(i) THEN zmaxx = x(i)

IF zmaxy < y(i) THEN zmaxy = y(i)
IF zminx > x(i) THEN zminx = x(1i)
IF zminy > y(1) THEN zminy = y(i)

NEXT i



zmx = ABS(zminx) + ABS(zmaxx)
zmy = ABS(zminy) + ABS(zmaxy)
ratx = gf * 300 / zmx
raty = ratx [/ 3
IF raty * zmy > 160 THEN
raty = ef * 160 / zmy
ratx = raty * 3
END IF

Axes

x = 600 - (600 - zmx * ratx) / 2 - ABS(zminx) * ratx
y = (200 - zmy * raty) / 2 + ABS(zminy) * raty

LINE (x, 10)-(x, 190), , , G&GHFFOO

LINE (0, y)-(600, y), , , GHFFOO

LINE (0, y - B)=(4, y - 4)

LINE (O, vy - 4)-(4, y - 8)

LINE (x + 8, 184)-(x + 10, 186)

LINE (x + B8, 1B8)-(x + 12, 1B84)

Polygonsa
PSET (x - x%(1) * ratx, y(1l) * raty + y)
FOR { = 1 TO np

LINE -(x - x(i) * ratx, y(i) * raty + Y)
NEXT i
LINE ~(x - x(1) * ratx, y(l) * raty + y)

' Reinforcements



FOR L = np + 1 TO np + nd
j=1-np
xx = x - x(i) * ratx
Yy = y(i) * raty + y
CIRCLE (xx, yy), 1
FOR k = 2 TO LEN(STRS(1))
xx = xx + 6
SELECT CASE MIDS$(STR$(3), k, 1)
CASE "1": GOSUB 1
CASE "2": GOSUB
CASE "13": GOSUB
CASE "4": GOSUB
CASE "5": GOSUB
CASE "6": GOSUB
CASE "7": GOSUB
CASE "B": GOSUB
CASE "9": GOSUB
CASE "0": GOSUB
CASE ELSE
END SELECT
NEXT k
NEXT i

O @~ e W N

-
o

' Modified Axis

LINE (x - a * ratx, y)=(x, c * raty + y)



LINE (x - a * ratx, y)=(x, c * raty + y)
WHILE INKEYS = ""

WEND

SCREEN O

k=0

FOR L = 1 TO 25

FOR § = 1 TO 79
IF i=1 OR (i=25 AND (j<4 OR §>51)) OR (i=25 AND §>12 AND j<16)

THEN
COLOR Imcolor
ELSE
COLOR 7
END IF
k =k + 1
LOCATE i, j
PRINT CHR$(Image(k));
NEXT J
NEXT L
COLOR 7
EXIT SUB
1

LINE (xx, yy + 2)=(xx + 3, yy)
LINE —(xx + 3, yy + 4)
RETURN

2 1
CIRCLE (xx + 2, yy + 1), 2, , 0, 3.14
LINE (xx + 4, yy + 1l)-(xx, yy + 4)
LINE -(xx + 4, yy + 4)
RETURN



CIRCLE (xx + 2, yy + 1), 2, , 5, 3.14

CIRCLE (xx + 2, yy + 3), 2, , 4, 0
RETURN

LINE (xx + 4, yy + 3)=(xx, yy + 3)
LINE =-(xx + 3, yy)

LINE —-(xx + 3, yy + 4)
RETURN

LINE (xx + 4, yy)-(xx, yy)
LINE -(xx, yy + 2)

LINE —(xx + 3, yy + 2}
LINE ~(xx + 4, yy + 3)
LINE —-(xx + 3, yy + 4)
LINE -(xx, yy + 4)

RETURN

CIRCLE (xx + 2, yy + 3), 2
LINE (xx, yy + 2)~(xx, yy + 1)
LINE -{xx + 1, ¥Y)

LINE -{xx + 3, yy)

RETURN



Tz
LINE (xx, yy)-(xx + 4, yy)
LINE =(xx + 1, yy + 4)
RETURN

B :
CIRCLE (xx + 2, yy + 1), 2
CIRCLE (xx + 2, yy + 3), 2
RETURN

CIRCLE (xx + 2, yy + 1), 2
LINE (xx + 4, yy + 2)-(xx + 4, yy + 3)
LINE ~(xx + 3, yy + 4)
LINE =(xx + 1, yy + 4)
RETURN

10 :
CIRCLE (xx + 2, yy + 2), 2, , + » 1
RETURN

END SUB

SUB Prep (f1, £2, £3, dkl, dNp)
£f1 = 0;: £f2 = 0: £3 = 0
zmnx = x{1l)
zmny = y(1)
FOR L = 1 TO np
IF zmnx < x(i) THEN zmnx = x(i)
IF zmny < y(i) THEN zmny = y(i)

FOR i = 1 TO np
IF y(i) = O THEN IF zmnx > x(i) THEN zmnx = x(i)
IF x(i) = O THEN IF zmny > y(i) THEN zmny = y(i)
NEXT i
z =a*¢c [ SQR(a " 2 + ¢ " 2)



zll = (a - zmnx) *c / SQR(a " 2 + ¢ ~ 2)
z12 = (c - zmny) *a / SQR(a " 2 + ¢ © 2)
IF z11 > z12 THEN z1 = z11 ELSE z1 = zl2
Epsc = Epscu * z / 2zl
FOR i = 1 TO nd

Epss = Epsc * (dkl * (x(np + i) / a + y(np + 1) / c) - 1)

IF Itype(i) THEN 'MILD STEEL

IF ABS(Epss) < fyd / Es THEN
Sigmas = Es * Epss

ELSE
Sigmas = Epss * fyd / ABS(Epss)
END IF
ELSE 'COLD-WORK STEEL

i1 =0: i2 =0
IF ABS(Epss) <= Eps(6) THEN il = S5: 12 = 6
IF ABS(Epss) <= Eps(5) THEN il = 2: i2 = §
IF ABS(Epss) <= Eps(2) THEN il = 1: i2 = 2
Sigmas = 0
FOR j = i1 TO i2

p=1

FOR k = il TO i2

IF j<>k THEN p = p * (ABS(Epss) - Eps(k)) / (Eps(j) -Eps(k))

NEXT k

Sigmas = Sigmas + p * z(J)
NEXT 3



Sigmas = Sigmas * Epss / ABS(Epss)

END IF

Sigma(i) = Sigmas

fl1 = f1 + Sigmas

f2 = f2 + (x(np + i) - xn) * Sigmas

f3 = f3 + (y(np + i) - yn) * Sigmas
NEXT i
CALL Area
fl = fcd * Ac - f1 * Ast / nd - dNp .
f2 = £f2 * pst / nd - fcd * (x1 - xn) * Ac
£f3 = £f3 * Ast / nd - fcd * (yl - yn) * Ac

END SUB

SUB Reads (U, Uoku, okun, Ls)
U=" "+ UCASES(U) + " "
Uoku = " " + Uoku
Ls = FALSE
UB = ""
FOR i = 1 TO LEN(U)
IF RIGHTS(MIDS(U, 1, i), LEN(Uoku)) = Uoku THEN Ls = TRUE: EXIT FOR
NEXT i
IF NOT Ls THEN EXIT SUB
FOR i = i TO LEN(U)
IF RIGHTS(MIDS(U, 1, i + 1), 1) = "=" THEN
Ls = TRUE: EXIT FOR
ELSE

ELSE
IF RIGHTS(MIDS(U, 1, 1 + 1), 1) <> " " THEN Ls = FALSE: EXIT FOR
END IF
NEXT i

IF NOT Ls THEN EXIT SUB

FOR i = 1 + 1 TO LEN(U)
IF RIGHTS(MIDS(U, 1, i + 1), 1) <> " " THEN EXIT FOR
NEXT i
FOR j = 1 TO LEN(U)
UB = UB + MIDS(U, i + 3, 1)
IF RIGHTS(UB, 1) = " " THEN EXIT FOR
NEXT 3
okun = VAL({UB})
END SUB
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