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1
INTERACTION EM FIELD-CRYSTAL

A crystal is a well ordered system composed by the same atoms or molecules, they are spatially arranged so as to form a regular
lattice and where it is possible to identify an elementary cell. Crystals can be: good conductors, semiconductors and isolators as t
quartz crystal. (Using an energy-band model of the crystal, there prevail the valence energy band and the conduction energy band
One verify that in a good conductor the two bands overlap and the electromagnetic field is reflected on its surface.

If the electromagnetic field is polarized, the electric field vector undergoes a reflection of 180° so that, on the metallic surface the
electric field vector is null. In the same point, instead, the magnetic component of the field doubles. Indeed there is no
electromagnetic propagation in metals. In a semiconductor, however, there is a limited gap between the two bands, while in an
insulator the energy gap is much greater than that of a semiconductor). A dielectric, instead, is an isolator, it can be a non
conducting crystal but also a disordered system of atoms or molecules (no lattice) for example an amorphous substance (formed
by some organic molecules carbon compounds, or polymers) or glass formed, for example, by non crystallized silicon dioxide. Tt
electromagnetic field propagates through semiconductors and dielectrics. In the following pages, it will be analyzed the interactiol
between a polarized electromagnetic field propagating through the crystal. As will be seen, the propagation occur only within a
certain frequency band of the EM field, this band depends on the medium in which the EM wave propagates. (In other words
there are crystals transparent to the visible light, other are opaque to the visible light but transparent at infrared frequency (Ge, Si
and so on).

(Vectors depending from time and position, are written in bold blue fonts, while vectors depending only from the position r are written in bold light

blue fonts).



[ Unit of measure
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Unit of measure of the Magnetic vector potential A

Wb
_If you choose (Electromagnetics, Option 1)) B(r,t) = V x A(r,t), unit of measure: [ A ] = gt

If you choose (Electromagnetics, Option 2)) H(r,t) = V x A(r,t), then the unit of measure is [ A ] = Ampére.

[*] Unit of measure

[»] Electric field

| Dipole approximation

[»*] Spheres




A

Dipoles in a crystal lattice X > a

The electric field is linked to the vector potential by the relation a6):

volt _ 0 Wb . volt
- E(r,t) = -V ¢(r,t) gtA(r,t) m-s_l - 3)

if ¢(r,t) = constant,|E(r,t) = —a—A(r,t)
ot

furthermore the time derivative of the vector potential can be rewritten as the following scalar product:

A, ) =2 A(r,0)Zr=v.VA(r, 4)
ot or ot

[*] A(r,t) time derivative

where ris the position, at time t, of the vector potential.

if ¢(r,t) = constant,|E(r,t) = —a—A(r,t) = —v-V A(r,t) 5)
ot

[*] unites of measure

Considering the propagation of time harmonic fields, the vector v is the speed of the EM field through the lattice,

namely slightly less than the light speed c, that is |V| = % , where 1M is the refraction index of the crystal. The

propagation direction, for time harmonic field, is that of the wave vector k with unit vector m orthogonal to A(r,
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Namely v = s L 6)
n |kl
BIA, E H
Substituting 4) in 3) I get: E(r,t) = -V ¢(r,t) - v-V A(r,t) 7)
[*] unites of measure
furthermore, collecting the gradient operators, considering v constant, I can write:
E(r.t) = -V (¢(r.t) + v-A(r,1)) = -V () 8)
so that I can define the scalar potential: (I)(r , t) = gp(r , t) + V-A(r , t) v constant 9)
while the potential energy is U(r,t) = —qe-(kp(l‘,t) +v-A(r,t)) qe = 1.602x 10" P 10)

which is useful to define the Lagrangian (see below).
if @(r.t) = constant, E(r,t) = ~-Z A(r,t) = —v-V A(r, 1)
ot
<I>(r,t) = V-A(r,t)

U(r,t) = —qo-v-A(r,t)  vconstant

All that I've sad till now is related to the electromagnetic field. But, to study the interactions wave-materials, I have
know the dynamics of one atom of the crystal lattice that, subjected to a em field whose wavelength A is much greate
than the reticular constant, here indicated with letter a, causes the single atom to behave like a dipole.

[¥] Taylor series of the EM vector potential A (moving at light speed)

[*] Lagrange equations system

[*] Approximations for small movements

[rl—Example: System with two degree of freedom

[l The Lagrangian within the Gauss System
Consider as Lagrangian coordinates, the position@, and the momentum p = m-q', .

Electric potential at q: ¢(q,t), while the potential energy is U(q,t) = —qe-(tp(q,t) + q'-A(r,t))

The Lagrangian of the system I deal with is:

~19 A '
qe = 1.602x 10" 7 C FL(q.q',t) = 5P 4 +qe-tp(q) +gq A(r,t) 11)
For one dipole's electron, the Lagrange equation is: %8 g(q,q' ,t) _9 g(q,q' ,t) =0 12)
togq' oq

Remark:

If I define the new Lagrangian Z (q, q', t) =< (q, q', t) + f(t), the differential equation doesn't varies, indeed:

10 (Aq,q.0+1(1) -2 (Lla.a,0+1()) = L9 A(q,q,0) -L Lla.q,) P

since f(t) isn't a function of qand q' 0 f(t) =0 and a_f(t) =0
aq' oq
. . . 0 . .
Accordingly I can add, to the Lagrangian &, the arbitrary, but useful term —qo— (q-A(q,t)) without affecting the
ot



analysis of the dynamic behavior of the system (because q is almost constant and A vary very slowly in space, it

follows that the result is a function of the time only so that 9.0 (q-A(q, t)) = 0and o9 (q-A(q, t)) =0.

0q' ot oqot
I can write: Z(q,q',t) = Z(q,q',t) - qe-%(q-A(q,t)) 14)
after a substitution of 11) Z(q,q' ,t) = %-p-q' + qe-V(q) + qe-q'-A(q,t) - qe-%(q-A(q,t)) 15)
t
the partial derivatives is 2 (q-A(q,1)) = A '+qlA 16
partial derivatives is S q-A(q,t)) = A(q,t)-q +q-g (q,t) )
t t
which substituted in 15) gives:
1 0
Z(a.9',1) = 5p:q' + 9 V(a) +9e'q"-Alq, 1) —qe-[A(q,t)-q' +q-gtA(q,t)] 17)
1 0
or  Z(q.q'.t) = 5pq' +de-V(a) + 9. 'q"A(q,t) — ge-Ald,t)-q' - 90— A(q, 1) 18)
d 2 ot
implifying, I get: 1 0
simplifying, 1 g¢ Z(q’q"t) - 5_p_qv + qe'V(q) _ qe'q'gtA(q’t) 19)

Consider an EM plane wave propagating through the crystal along a path aligned with the optical axis z. This implic
that the electromagnetic field is orthogonal to the z propagation direction. As a result I indicate the electric field as
transversal:

E(4.0 = -V o(a.) -~ A0,

which, for a space constant potential ¢, simplify to:

gA(q,t) = —ET(q,t) transversal electric field intensity 20)
ot

(q,t) E (x y,z,t) i +Ey(x,y,z,‘[)-ierO-iZ

the Lagrangian 19), finally, is: ,g;( 1) = %-p-q'+qe-\/(q) +qe-q-ET(q,t) 21)

[*] Time harmonic Field decomposition

n n n
1
for nelectrons I get: < = 5 Z (pi-q i) + - Z V(ql) + Q- Z (qi-ET(q,t)) 22)
The modified Lagrangian correspondingly is:

Z=2 B (Pi-a's) + 4 V(i) + de-gi-Epla. 1) 23)

i=1 }

For one particle with electric charge Q, I get:

U(q,t) = Q-(¢(q.1) +q"-A(q.1))

1
ZL(a.q4'.1) = 7pa'-QV(a) -Qq"Alg.1)
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,g;(q,q',t) = g(q,q',t) +Q%t(qA(q’t))

1
Za.q',1) = 5pa' -QV(a) -Qq"Alq,1) + Q%(q-A(q,t))

% (q-A(q.1) = A(q.1)-q'+ - L A(q.1)
ot ot
1
Z(a.9',1) = 5p-q' -QV(a) -Qq"A(q, 1) + Q-(A(q,t)-q' + q-%A(q,t)]

1
Z(a.9',1) = 5p-q' - Q'V(a) -Qq"A(q, 1) + Q-A(q,1)-q' + Q-q%A(q,t)

1
Z(4.q',1) = 5pa' -QV(g) + Q-q%A(q,t)

Eq(4.0 = -V V(0.0 - = A0,

which, for a constant potential V, simplify to:

%Am,o = Ep(q.1)

ET(q,t) = EX(x,y,Z,t)-ierEy(x,y,z,t)-iy Ez(x,y,z,t) =0

1
Z(a.9'.9) = 5 pa'-QV(a) -QqEq(q.1)

for n particles with electric charge Q, I get:

n —

Z=3 B-(pi-q'i)—Q-V(qi)—Q-qi'ET(q,t)

i=1




Hamiltonian's calculation

[=]Hamilton equations

Classical Hamilton equations

Kinetic energy : T
Potential energy : U

Hamiltonian : %(ql 5925 --Ap s P] ,pz,...pn,t) =T+U=2T- g(ql 425 »>4'1 ,q'z_n,...q',t)

H =2T-L = 2—2 P;q -Z( - &L= Z[qlaql -

1i=1 i=1 1i=1

The conjugated momenta can be written as functions of the Lagrangian p; = 9 F,i=1,2,3.n
aq’i

F=Y (hai)- 2= Z[qlaql -7

i=1 1i=1

H = Z q;- - &
1
i=1 qu
Hamilton equations: qi= 0 H| 1=1,2,3.n
Ipi
_ O
p'i= —F
oq;
[+] Hamilton equations
e 1
For one electron, the Hamiltonian is: & = p-q' — B?; =pq' - E-p-q' - qe-V(q) - qe-q-ET(q,t) 24)
1
namely: S = E-p-q' - qe-V(a) - qe-q-ET(q,t) 25)

The effect of the electromagnetic field acting on the crystal, is the polarization of each atom or molecule part of it.

¥} The electric dipole

Define the dipole moment as: |u = —q,-d, which, substituted in the previous equation 25), yields:

1
A= pq' —qe'V(a) + p-Eq(q. 1) 27)




(p and Ep are aligned only for isotropic materials) In this relation (27)) I distinguish three Hamiltonians:

1

Unperturbed Hamiltonian: 2 = S pd 28)
Relaxation Hamiltonian: % = —qe-V(q) 29)
Interaction Hamiltonian: % = u-ET(q ,t) 30)
that is: H = A+ A+ F 31)

n
Define the dipole moment for n atoms or molecules as: || = — Z (qe. -di) (Cm) 32)

1
i=

So that the Hamiltonian is:

n 1 n
) [5'(pi'qvi)} Y. (%eV(a)) +urErla.9 33)
= e~
1 i )
the resulting electric potential energy igqe.\/(ql .42 "’qn) - Z (qe'V(Qi))
i=1

that is: | A =

| —

n
> (Pirdi) ~de'V(a15 925+ an) + B Epla, 1) 34)
i=1

[*] Quadrupole approximation of the vector potential

| Quadrupole approximation of the vector potential

I Rewrite the Taylor series of the vector potential but now I trunk the series to the first order term:

o0 k
A(a.0=A(r+R.)= AR+ Y [ki!-(r-V)-A} ~[AR.1)+(r-V)A(r,0)] 35)
k=1
(A=
namely: A(q,t) = A(r +R,t) ~ [A(r,t) + (r-V)-A(r,t)] 36)

then I substitute it in the equation of the electric field 3) namely:

E(r,t) = -V ¢(r,1) - L A(r,1)

ot
E(r,t) =-V I:kp(r,t) + V-I:A(I‘,t) + (r-V)-A(r,t)II =-V (U) 37)
(I)l(r,t) = ap(r,t) +V-|:A(I‘,t) + (r-V)-A(r,t) 38)
Scalar potential ~ (r,t) + v-[A(r,t) +(r-Vv) -A(r,t):| 39)



potential energy  U(r,t) = —q,-®1 = —qg-(r, 1) + v A(r,1) + (r-V)-A(r,1)] 40)
The Lagrangian of n particles is:
1 n
&= EZ (pl q'l) U 41)
i=1
(qj is the ith position and q_ the electron charge)
The Lagrangian of the system I deal with is:
1
V(a) = @(x.y.2,0) ZL(a.9'.1) = 5pd +0eV(a) ~ae-a [A(r.1) + (q-V)-A(r. 1) q=r 42)
v .+.+..3+.8+.8 3+8+8 43)
. = (X1 -1 Z-1 1y — 1., -— 1,-— = X-— - — Z+—
q (ny Z) Xox Yoy %oz ox y@y 0z
0 0
V)A=|x—+y—+z— |-‘A 44
(a-V) (Xa Yoy Zaz) )
0 0 0
X—+y—+z— [[A= x-a—AX + y-a—AX + Z'a—AX iy
ox By 0z Ox ay oz
+ x-a—Ay + y-a—Ay + z-a—Ay -iy
Ox oy 0z
+ x-a—AZ + y-a—AZ + Z'a—AZ i,
ox oy 0z
[«] Quadrupole approximation of the vector potential
Quadrupole Hamiltonian
2
1 1 de ( )2
H = 5pq =4 V(@) - wEp(r,t) -M-B+2-qeq:(q-V) E+ —-(qxB 45)
e
L e .. .
Magnetic Dipole moment M = -qxB  due to the magnetic interaction. 46)
e
Conjugated moment p=mgq'+ qe-(q X B) 47)
1
Quadrupole term 5 90-q"(q' V) E 48)
. . . . de 2
Diamagnetic interaction (quadratic) -(q X B) 49)
‘m
e

The term —u-ET(q,t) — M.B, considering the maximum values, I find: ‘”'ET‘ = Qe |q| "ET

B|.

L

q

IM.B| = — || -m-|r|- e
2-m

Bl = >l |l

de
MB| _ Kg-lql-lq'l- ol _
wer| (sl [Bel) 2 [Ey 2

Furthermore
c

9

B
|j _la B[ _q I bt || < (g) :{(n-lq'l
c’ M



so that:
IM-B| < ‘u-ET‘. 50)

Finally I can write the classical Hamiltonian:

1
H (E'P'Q' ~de-V(a) - u-ET(q,t))
51)

namely, for |q'| < (%j is acceptable the dipole approximation without taking into account of the magnetism.

I look for the corresponding quantum-mechanical Hamiltonian.

10



QM Hamiltonian operator

Given the classical Hamiltonian o = %-p-q' - qe'V(q) - u-ET(q,t) 51')

and the following QM (quantum mechanical) correspondence rules:

Rules 52)
Classical QM
Operator Operator acting on kets or eigenfunctions

p < —-h-V
L « —-hrxV,

p> e %A,

. 2 2
pq _ p —h

= <~ .

2 2-m 2-m

A,

ner ‘T
g .] 9t7

1
L’ = (rxp)(rxp) = r2-(p2 —prz) > r2-|:—ﬁ2-A + hz(g + —ﬂ Sph. coord.
ror

0 o 1
rp < —j-hr— =—j-fhr|— +— |Sph. coord.
or or r

5
A'is the vector potential A-p < JT(V cA+AV).

how I get the quantized Hamiltonian? I substitute to each classical operator the one given by the table of the
correspondences (at first only the energy E).

Classical mechanical energy E = T + U = &# . In QM, E and H are operators acting on a ket: E | v >=H| o>
Namely, applying the previous substitutions rules, I get (vectorial operators are written with bold fonts):

Classical Hamiltonian — QM Hamiltonian
2
1 —-h
A =5 pq e V() ~wEq(q,t) < [H=—-A-qV(q) - W-Eq(q,1)

where  is the unknown QM linear operator corresponding to the vector dipole moment.

2
-
Resulting Hamiltonian operator: |[H = >m A — qe-V(q) - |J.-ET(q,t) 53)
-m
Hamiltonian for macroscopic systems and small interactions close to equilibrium.
I distinguish three partial Hamiltonian:
H-= HO + Hillt + Hl' 54)
Unperturbed Hamiltonian HO 55)
Interaction Hamiltonian Hint
Relaxation Hamiltonian Hl‘
_52
Unperturbed Hamiltonian HO =—"A 56)
2-m
Interaction Hamiltonian Hint = |.L-ET(q , t) 57)
Relaxation Hamiltonian ~ H.. = qe-V(a) 58)

11



Finally after a substitution in eq j hg | w > =H| & >, 1obtain the Schridinger equation of motion:
ot

2
' —h
Jh%| Ty > = (E.A—qe-v(q) - }L-ET(q,t)j | Py > >9)

__.Ek.t
If the system is in a stationary state of energy Ej = fi-w),, with | lIJk(q,t) >=e h | 1|)k(q) >, substituting ir

the previous equation, I get:

i 7.0 e | Yy la) > = | —-A-qoV(q) - p-Erpl(a.t) [ | by () > 60)
ot 2m

On the left side, only the exponential is a function of time, so that the derivative become:
Ek.t.j

—] —] f
Ot |1|)k>=geh | ¥ >=- P
ot ot

which substituted into the equation gives

J
| Py >

Ek.t.j
no. -]
j —=Ej -t
| v >=He i | >

Ek-e
ik
L A

resulting, after a simplification, the following time independent eigenvalue equation:
H| vy (a) > = By | by(a) > 61)
where E is the eigenvalue corresponding to the eigenket | 1|)k(q) >. The set of all eigenvalues constitutes the

discrete spectrum of the operator H. The time independent Schrédinger equation now is:

2
(i-A -4 V(q) - M'ET(q,t)J | by (a) > = By | () > 62)

2-m

expanding the left side, results _2

A > - V(a) | b >~ WEq(q, ) | b >=E| >

Consider the unperturbed Hamiltonian (in absence of V(q) and ET(q, t) ):

_52
H0|‘|)k>:m'A|‘|)k>:Ek|‘bk>°

2
The Schrédinger equation is: Zi-A | Py > = By | Py > 63)
‘m

[»l- Solution of the one-dimensional Schrédinger equation

Impose the condition that the unperturbed Hamiltonian be symmetrical, (or also inversion invariant) that is:

Hy(p.q) = Hy(p.—q) symmetry condition 64)

Asaresult I eanwrite:  Hg(p.q) | by(q) > = Ey | Py(q) > 65)
andalso  Hy(p,—q) | bi(-a) > = Ey | dy(-q) > 66)

and for the hypotheses made  Hy(p,q) | Py (-a) > = Ey | ¥y (-q) > 67)

12



that is possible only if the kets | P (q) > and | P (—q) > are eigenfunctions of the same operator corresponding 1
the same non-degenerated eigenvalue Ej . And therefore the eigenkets | P (q) > and | Py (—q) = are multiple

one of the other. Namely | Pr(=q) = = ¢ | P (q) = where ¢ is a complex constant. As a consequence of that, I

have:
H(p.q) | wi(a) >=Hy(p,q) | dy[-(-a)] > = Hg(p,a)-co | ¥y(-a) > = Hy(p,q)-co” | by(a) > 68)

so that 002 =+1 = | P(—q) > =+ | P (q) > therefore the eigenkets are all even (Even functions: y(t)=y/(-t)

or all odd (Odd functions: y(t)=-y(-t)). Namely the eigenkets form a finite disparity.
What are the consequences of the finite disparity on the interaction Hamiltonian?

Let me consider, therefore, the Interaction Hamiltonian: Hint = —|.L-ET(q, t) , valid for a single dipole .

For a multitude of dipoles present in the lattice of a crystal, I must address the problem statistically. To do that, I ne¢
the matrix elements built with the eigenfunctions of the unperturbed symmetrical Hamiltonian and forming a finite

disparity:

Hlinti T (_< ¥ | u-ET(q,t) | Pj >) ~ (_< Vi | L | VPj >-ET(q,t)) = —Mi,j'ET(q,t) 69)

b

where the matrix element is:

i = < |l g >=<¢i|2(—qe'qk)|¢j >:—qe'z<“~|)i|Qk| Pj > 70)
X X

( qy 1s the Lagrangian coordinate while g is the electron charge)

explicitly: p; j = —qe-z (< P | dk | VPj >) = —qe'ZJ’ 1~|)i"Jr’j'qk da
k k

namely: |pj j = —qe'ZJ’ bi-bj-qy dqyg 1)
K

13



I distinguish two cases:
a) If the eigenkets of the unperturbed Hamiltonian, Hy, are all even (or all odd), it follows that both | 1p; >and | 1

are all even, (or all odd), then the product E-mpj is odd and the integral is null, it follows that also p; j = 0.

b) If an eigenket is even and the other is odd, then the integrals of the product Elbj , are different from zero, and

therefore also the corresponding dipolar moment pj j # 0. It follows that the elements p; jof the main diagonal
the matrix, are all zero if the unperturbed Hamiltonian H,_is invariant by inversion or symmetrical. It follows tha
using the statistical operator p , the statistical average of the component a of the dipole moment operator is:

= Tr = Ho'P1,2 + B P21

P1.1 pl,zj 0 bq Mo P12 Ho P11 o
Ho 0 Mo P22 Mo P2.1

o =X,y,z
<Py > = Pl 2t P2, 1
<Hy=>= By P12+ by P2, 1
<K, > = P12+ Ky P2,

And will be null also the elements of the main diagonal of the interaction Hamiltonian operator H1.

int. . in
matrix form, whose generic element is given by:
Hljne = -wijEg. 72)
0
so I can write _ Ep 0 _ Hou _ 73)
H, = IJ'OL = a=X,y,Z
0 Ep Mo O
0 py 0 Hy 0 p,
IJ'X | — Ry =| — IJ‘Z = —
By O y Hy 0 p, 0
. o\ . 74
Furthermore it results that IJ'OL = |J‘01, Hermitian matrix o =X,y,Z )
— T —\T
. + —\T 0 My 0 Bg 0 My
in fact: 11 = (p, ) = — =| __ =| __ =
(e} (o} — (o}
Ho O Ho O Ho O
the interaction Hamiltonian operator in matrix form is:
HI; = -Emp(q.0) = B = P et 75)
int = "WET(@.0 =3 (haFa) =30 —
.. —Ho Eq 0
explicitly: o o
0 —p By 0 —py-Ey 0 —p, E,
Hlint = _ +| +|
—py By 0 —uy-Ey 0 —p,-E, 0

Now I look for the time evolution of the expectation value of the discrete operator dipole moment's o
component.

The differential equation that let me study the time evolution of the expectation value of an operator, is the one knor
from

14



QM (eq. (18.1)), that for the vectorial operator dipole moment's o component is:

d d =
<o > <G > = (<[p,a,H] >)

76)

Assuming that the dipole moment decrease exponentially with_ transversal time constant (or damping constant) T,

[¥]Check the accuracy

< >
the differential equation becomedd < Lo >+ i - L (< [ b - H > 7
: o T, 5 o

dt J

The Hamiltonian appearing in the commutator of eq 77), is formed by the sum of the unperturbed Hamiltonian and tl
interaction one:

Ei 0 0 Mo Eq El Mo 'Eq
H = HO + Hlint = + - = -
0 Ep —Ho Eq 0 Mo Eq B2
E —~E
1 Mo Foy
namely: H=| __ 78)
Mo Eq B2

Now I can calculate the commutator between the dipole moment's oo component operator, and the Hamiltonian preser
the right side of 77):

H HoH 0 My Ej My Eq El  —boEe ) [ 0 My
e et | (e I (e SR | el
Ha = Mo E|:=E Ey = Ey Eq = Eq
0 My Ej My Eq El  —boEe) [ 0 My 0 Eybo — Ep by
o 0 ke B ) ke B Jlie 0 ) \Eig-Erie 0
0 Mo (E2 —Ep)

thatis: [ W, H ] = u_(E E) .
“Pa{F2 71

I know that (E2 — El) = wq-fi substituting in the previous result, I obtain that the commutator is:

(b H1=| ™ St
L, = _ (Ey—E{)=| — ‘wy-h
N N
0 Wy
so that, finally, the commutator results to be | IJ'OL’H 1= — ‘woh = Py wof
thatis |[ Lo H | = g, woh )
furthermore it is anti-Hermitian, in fact:
T O Mo 80
[ o H 1=~ Ho HI) Mo = | — )
Ho O

Now I substitute 79) in the differential equation of the motion of the average value of the dipole moment's oo compor
operator 77):

15



d < IJ‘OL wO

. 81)
obtaining: |— < >, - <
dt Ho T, J Mo
It is a simple first order differential equation and, collecting < p’OL >, it simplify to:
D]
d 1 Yo
< > = — <
dt Ho [Tz j j Mo, 7
D]
1 ) —t
SR _(T_erojj.t Ty —j-wpt
whose solutionis: IJ‘OL >=Cye 2 = Cy-e 2.0 0
as was expected.
But, deriving once both sides of 81), with respect to the time, I get
2 w
d 1 d 0d 82)
_< >4 —-< >=—-<
dt2 Ho Ty dt Ho jodt Mo, =
Let me consider again the equation 76)
d 1 76")
ey >- < >= (< H >)
the left side is composed by two terms:
1) the average of the time derivative of the operator:
<
d Mo, ~
a) < I_j,a >= —
dt Ty
2) the time derivative of the average of the operator:
1
dcA>=—(<[AH]>)+<%A>
dt jh dt
b d<p >_L(<[u H>)- : (< Ho, )
dt (e} j-h o T, (o}
Substituting those results at the right side of eq. 82) I get:
2 w
d 1 d 0] 1 1 83)
L <Py TSy > = — __.(<[ ,H]>)__.(< >)
2 Mo Tt s Pa T T L.h Koy 17, " Ha

the average: < IJ‘OL > on the right side of 83) can be obtained from eq. 81):

. < IJ, >
] |d (63
< >= 21 1< >4
Mo wp |t Mo T,

substituting into eq. 83), [ have:
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a2 14 wo

1
g < >, —2< >= ,—.(< JH >)
2 Mot S ke T | T (S T e H
-1 |d “Ha”
+ —.—. < p, > + —
T2 wo dt a T2
Calculation of the expectation value of the commutator: < | IJ’OL’ H]> a=X,y,Z
Bl My Eq
knowing that the Hamiltonian isH = | __
HoEq  Ep
substituting into the commutator I get:
[ H-| 0 By Ey Mo Eqy
uaa = —_— ’ e
“Ho O Mo Bq  E2
calculating the commutator results:
[ 0 By S W R | 0 Ky Bl My Eq
“Ho O “HoEq B2 Ho 0 ) BaEa Ep
Bl By Eq 0 By
+(-1)-] — o —
“HoEq  Ep “Ho O

But if I calculate the expectation value of this commutator , I obtain a result different from eq 79) wo-h-<< IJ'OL :

fact I have to consider the difference between averages which is the average of the diftference:

El = El EOL = EOL E2 = E2 IJ‘OL = MOL
0 By S R Bl By Eq 0
<[ua,H]>=< _ Jo >_<| o
“Ho O Mo Bq  E2 Mo Eq  Ep “Ho O
After a simplification 0 gy Eq Mo Eq, “Eq Bote  Erbg
— S —> _ —
“Ho, 0 _MOL'EOL EZ _El "My EQL' Moy Moy
E;  —pyEq 0 Hg EOL'MOL'“_OL E| g
_ S — - . .
—HoEqy Ey Mo O ~Er by —Eq Mo Mo
results:
EgbaMe  Exig EaBo Mo Epbg
<[py.H]>=< >_<
a R R R R
“Ei'bg  Eq'MaMo Ey b ~Eq Mo Mo
<A>_-<B>=<(A-B)>
Eabata  E2Hg Ea Mo Mo B by o —2-Eq By Moy _MOL'(EI _E2)
. |- . __ | simplify —»| ___ .
“Ei'bg  Eq'MaHo —Ep g _(Ea'“a'“a) _“a'(El _E2) 2-Eq Moy Py

the expectation value of the commutator is:

17
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<[py.-H]>=< okt Ho(F1 ) >
T mm) 2k

knowing that By — E{ = w-h

85)

Furthermore I can write the expectation value in a simplified form, as follows:

2B By Moy _“cx'(El_E2) — 10 0 My
o == _2'EOL'MOL'MOL' < > +w0.h. <|__ >

o (B1 —E2) 2 Eqibocba 0 -1 o O

1 0
First [ calculate the expectation value of the Pauli matrix o3 = (0 . )

. <(1 0j> T{ (1 oﬂ THpu pl,zj(l oﬂ T((pl,l —m,zD
03~ = = 1 p- = r : =1Ir = P1,1—P2,2
0 -1 0 -1 P2,1 P2,2)\0 -1 P2,1 —P2,2

0 py
<|__ >=< V! >
o O o
finally resulting: < | H]>=-2E ey fi| < > 86)
y resuling: I-Laa - < a'ua'ua'(pl,l_p2,2)+w0' : IJ'a
substituting in eq.:84) I get:
2 w 7]
?< IJ'OL>+T_2 dt< l'LOI,> J 7'[—2'%5%#&'(91,1—92,2)+wo'ﬁ'(< IJ'OL >):|
. < >
Ldjdey s “Ha”
. N I_La +
Ty wo (dt Ty |
and after a simplification of the right side, I get:
_ d o > < S
d? < >, L 1 d. > - 2-Eq b Mo wo (P1,1-p2,2) < dt a Hoy
_ —_— —w —_
dt Ha T dt Ha h 0 ( Ha ) T, 2

Ty

collecting the derivatives at the left side and leaving the constant term at the right side, I find:

2
d_< IJ'OL>+ 2 d
dt? T, dt

1 2.EOL.MOL.E)L.wO'(p1>1 ~p2,2) 87
2

This equation, formally, is like to the equation of a classical harmonic oscillator forced by the electric field E, .

[¥] Solving the equation

This equation can be rewritten as a function of the density operator p, placing:
1 0 88
91,1—92,2=<(0 _1j>=<D> )

Let me consider again the equation of the motion of an operator average A:



rewritten for the new operator D: %< D>_<9D>= Lﬁ -(< [ D.H ] >) 89)
t ot )

€
<D>-(<D>
place the average derivative < QD >=— T( ) 20)
ot 1

substituting 88) and 90) into 87), results:

t<p>, <0250 b pppys) o
dt T, A

E; ~Ho Eqy
~Ho Eqy Ey

it let me calculate the commutator on the right side of 91):

The Hamiltonian be: |H = 78")

[DH]-(

0 j Ej My Eq Ej My Eq (1 0 j 0 —2Eq Mg

0 1)\ -boBa B2 b Eq B 0 - 2-Eq Moy
0 py
resulting: [ D H | = -2-E,| — = 2By Hey

T o\ .
remember that IJ'OL = |J‘01, Hermitian matrix 74")

0 Py
finally the averageis <[D,H]>= _2'E0L'<< Koy >) been < >=< g >

< > .
Previously I found that eq 81): |d n. >+ Hoy _ wo-fa <. >
at T, j-h o

81")

< >
. | 1|4 o
fromwhichThave — <y == —— | < MU > +———

(JJO—

After a substitution in eq. 89), I find that:

e < >
<D>-(<D> -2-E -2-E K
deps>, =D (<D>) = 0‘.(<p, >): 2 l4<p >, X

<D>_(<D>)e_—2E d <MPg =~

92
—=< |~1'0L>Jr T, :

that is: d_< D>+ -
dt Ty wo- | dt

€
Equilibrium density operator:(< D >) =(p1,1- pz,z)e <D>=p11-p222

substituting in eq. 90), it assumes the form:
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d

o< P'0L>+TL2(< B, )} 93)

i(01,1—92,2) +

p1,1-p2,2-(P1,1-P2,2), -2:E,
: ok

Tl - ﬁwo

Now, I will describe the time evolution of the polarization per unit of crystal volume (M, states for arithmetic

average) where are present N, dipoles.

N

p P
< > <
The polarization is: Z ( Ho ) Z ( Hoy )
=1 Np =1 _
Po = v -V Ny - NV'Mar(< Hoy >)
_ < > -3 _C
P, - NV-Mar< oy ) m Cm= — 94)
m
Np
Spatial dipolar moment average value _i=1
p p g Mar<< oy >) =
N
NP
Active centers (or polarized molecules) density: Ny, = ETR 96)
Now I will try to modify eq. 87) at the light of the previous definition (94), 95), 96)). I rewrite eq. 87):
2 ~2-wg Eq PP (P1,1-02,2)
d 2 d 1 0 "o Mo Mo\ PT, ,
& <pg T r=—L<p >+(<|J, ) wo? + = 87"
Multiply both sides of eq. 87) by Ny, :
2 ~2-Nywg Eq Mo Mo (P1,1- 02 2)
P g I L A g R
N[ < = < = 98)

+NV‘<< Lo >).[w02 s é]

then I calculate a spatial average of both sides:

20



Np Np
Z (< Moy >). Z [Ma'ua'(pl,l - 92,2)].
2 . i ~2-Ny-wy By i
0 i=1 V*0ta i=1
i 6t V | V
Np
)
2 =
_,__.i NV'I 1
Ty at v
Np
> (<Ha)
i= ! 2 1
+NV v '(wo +Fj
2
Np
> (<Ha>)
as previously defined =1 S = Mar<< I_La >) which substituted into the equation gives
5 2 Nv-wnE.-M L - _
5 2 5 _ —2:Nywp B My Bl (p1,1-02,) |
(<o) & (k) - :
2 1
AN ]
2

Py = NV-Mar<< “‘01. >) So the equation assumes the simple form:

The a component of the polarization is;

— P, +— P +P.- =
(8] (87 (87
ot Ty at h

2 2 Nxrwn-E.-M T _
0 2 9 (w 2, lzj_ V%0 Ea arLMOL Mo (P11 pz,z)J 99)
Ty

To a random distribution of the molecules corresponds a random distribution of the components p,, and u_a, resultin
that ua-u_a and py 1 — p2 2 are uncorrelated, so that I can write:

spatial average value: Mar[“a'“—a'(pl - p2,2)] = Mar(“a'“—a)'Mar(pl 1-p2,2) 100)

If, instead, the molecules have all the same orientation, then “cx'“—a is statistically independent from py 1 —p3 2,

finally resulting:

Mar[ua-ua-(pl 1 02,2)] = Mo Mo Mar(P1,1-p2,2) 101)
Now I consider the case of a low correlation between “cx'“—a and pp 1 — p2,2 namely:
spatial average value: Mar[“a'“tx'(pl 1 pz,z)] = Mar(“a'”cx)'Mar(pl 1 pz,z). 100")

Than I can write:
Mar[NV'(pl 17 92,2)] = Mar(NV'pl ,1) - Mar(NV'pZ,Z) = NV'(Mar(pl 1) - Mar(p2,2))

. Z(Pl,l)j . Z:(pz,z)j

N N _ i Pl

__Db _ p
Ny =5 Ma[Ny(p1,1-02.2)| = 57 (Mar(P1.1) ~Mar(p2.2)) = < o e R
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Z (91,1)j Z (92,2)j

Mg, Ny-(p1,1-p2,2)] = j v j

v
The spatial average value is Mar[NV'(pl - p2’2)] =N;-N,

=N -Np

and the o component of the polarization is: 102)

Po = NV'Mar<< Mo >) =N -Nj

Z (pl,l)j

J

Molecular density at energetic level 1: N =

Molecular density at energetic level 2: Ny = v

Going back to equation 99) for the polarization operator, below rewritten:

3

and substituting 102), I obtain the macroscopic equations:
~2-Ey Ny

& 1

ot

0
Py + =Py + Py

Ty 5t

] —Z'NV'WO'EQ'MarLuCX'EX'(pl 1~ pZ,Z)J

B h
9
ot

[ define the average value of the transversal field acting on each molecule Ej,. = Ny -E,

99')

T,?

1
+ T_'Mar

NV'%(Mar(pl,l —pggg)) X

Ny-M(p1,1-p2,2) - NV-Mar[(pl - pz,z)eJ
T

Mar(< o, >) (< Ho >)j

h'h)o

+

the density difference of dipoles is Ny — Ny = NV'Mar(pl 11— P2 ’2), while
the thermal equilibrium density is (Nl - N2)e = NV'Mar[(pl 1- p2,2)e}

9p,
ot

] —Z'NV'WO'EQ'MarLuCX'EX'(pl 1~ pZ,Z)J
= h

The differential equation 99) simplify to:

NE=Np=(N1=N2) 9B 0

1
d(Nl—N2)+ +T—2-P

4 103)
dt

a

Polarization ch = NV'Mar<< K o >)

3

The effect of the time harmonic electromagnetic field on the dielectric material is finally described by the two equatic

2 1
2 by
ot

0
+ ——Pqy + Py

Ty 5t

T,?

o 0 2 1 _Z'wO'Ealoc'Mar(“cx'“cx)'(Nl _N2)
_ZP(X+T__P(X+P(X u)o + > = P 104)
ot 2 ot T,
Ni—-Ny—(N;-N
d I 2 ( 1 2)e —2-Eqloc 0 1
—(Np—Np) + = | =Pq + =Py, 105)
dt T hwy oo~ T
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1 1
If results that (TZ'WO) > l and (Tl 'WO) > 1 then wy > (T—j and wq > (T—j equation 104) simplify to:
1

2
o2 2 9 2 _2'“)0'E0L100'Mar(“a'MOL)'(NI _NZ) 104°)
—2Pa + — =Py + Powp P
ot T2 at
A : j-wo't 0 jrwo't,
Furthermore, considering a time dependence of P, of the type Pa(t) = P € and — P, = wyp-e J
ot
0 _ j"-"()'t . 1 j'UJo-t
gtPa(t) = (wo-pa-e -J) > (T—z-pa-e j
i
(woP) > T, Pa
N{—-Ny—-(N; =N
. d I 2 ( I 2)e —2-Eqloc 0 '
Equation 105) become: (Nl N2) + ~ =Py 105"
| dt T h-w
1 ] 0 ot
Finally the system of equations is:
o2 2 9 2 _2'w0'E(xloc'Mar(Ma'MOL)'(NI _N2)
2Pa+_—P + Py rwo P 106)
ot T2 at
N1 —N5) - (N7 —-N
d ( I 2> ( I 2>e ~2-Eqloc 0
—(Ny=Np) + g | ——— 107)
dt Ty | hrwg ot

Assume isotropic materials only, then in equation 106), the average Mar( ua-u_a) = Mar[( | MOL| )2:|'5(0L , Q)

(Kronecker 9), moreover, as a further effect of the isotropy, there is the independence of the effects from the directic

that is:

Marl (o] )2] = Mar (|1x])*] = Mar|(|1y])2] = Mad (1))

Considering the transition from state 1 to state 2,

Mo (11.20)7] = Mol (1)) + Mar ([12] )]+ Mar(133])°] = 3Mar] (|1 )?]

Mol (1 2])?] 1
Mar (o] = =5 "
substituting in eq. 106), I get:
2
o2 29 2 _2'w0'Ealoc'MarL(|“1,2|) J'(Nl _NZ)
ot e Faro S s 109

The stored energy in a unitary volume is{\W{5 = N{-E{ + Ny-E,

Ej Ep
Adding and subtracting N»- B3 and Ny o in the last equation, I find an expression for the stored energy more use

El +E El —E2
W12 = Nl'El +N2'E2 = > (Nl +N2) + > (Nl —N2)

[»] Calculations

keeping in mind thaNy; = N; + Ny w(-fi= Ey —E; theenergy Wy; = Ni-Eq + Ny-Ey can be rewritten as:
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E
Nl'El +N2'E2 = (

namely

1+Ep

j-(N1+N2)+£

E| -

Ey E;

Jow) =

+E2
2

j.N

W12 = Nl'El +N2'E2 = (

E2+E1
2

j (JJOfL
N
2

(N1 -o)

(JJOfL

_ T '(Nl _ N2)

J

— 110
3 )

m

o wofe 5

—W =——2Z2(N;y =N
a2 2 at(l 2)

I can substitute those results in eq. 107) to obtain a differential equation for the energy.

(N1 =Np) = (N =Np) | 2Egiec 5
s 2

hrwy ot

107")

Consider equation 107) ol

d
a(Nl - N2) +

woh

2

multiply both sides by

{_

wyt (N17N2) = (N =Ny

2 T,

(JJOfL

2

d

dt

€

_ 0
~ Faloc—

ot
( j.NV
( j.NV
E2 + El
(S

T)

p 107")

Q

(Np - Nz)} -

(JJOfL
the terms —T(Nl —N2) = W12 —

E2+E1
2

u)oh

E2 +E1
and —(Nl —N2) = —W12 +
2 e e

2

substituting in eq 107") I get:

EEOI R

and after a simplification result:

E2+E1
2

e

)
OLOCat

E2+E1
2

d

dt

P

o 107!”)

c By,
OLOCat

. 4 vV C
Energy balance equation — P —— =1
3 m _2

m

dt &

W
3
m”-s m

o P, is the work per time unite and volume, made by the field on the medium (acting on the polarization),
ot

equating the average power density delivered to the medium. (one part of it is dissipated and the other is stored) .

Eodoc ’

Extract, now, from eq. 110) the difference N,-N, that appears also in eq 109):

Er+E wn-h
: . 2T 0 110"
Lrewrite eq. 110): (W5 = ( > j-NV— T-(Nl —N2)
2 Ey +E; 112)

resulting: N;-N, = :

Gl v

2 _ _2'“)0'E0L100'Mar[(|“1 ,2|)2]-(N1 —N2)
3-h

rewrite eq 109):

2
—5Pq + =Py + Py
o2 ¢ Tyg & ¢

substituting 112) T get the system of differential equations for P, and Wy, :

0
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2 -
& 2 0 2 _4'E0Lloc'MarL(|“152|)J E) +Ey 113)
' Ny - Wpo

— P +— P, +P,-wn" =
Q Q o 0
a2 - T2 oot 3.52 2
Wi, - W
d w +—12 Pe _ B .Op 114)
Et 12 Tl odocgt o
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