Karl Bogha 13 May 2016

Rev 1 10 Dec 2016.

M.V. Deshpand Chapter 8	
Example Proble	m 8.6 Page 227.
	dro-electric power project, a flow of 90m^3/s is available at a head of t storage is available. A hydro-electric power plant is to be chosen for
Cost of the hyd Fixed cost 9%	power system supplied by the station 80% ro development \$1500 per kW installed maintenance cost \$7 per kW per yr
Load centre is { Transmission lin Transmission lin	30km from power station ne voltage to load centre 110kV ability \$20 per kW per yr generating stations for auxiliaries 2%
Efficiency of tur Efficiency of ge	bines 89.5%
Q:=90	m^3/s discharge rate
w:=1000	kg/m^3 density of water
	officional of turbing (c)
n _t :=0.895	efficiency of turbine(s)

a) Find the power that could be developed, the number of units required, and the capacities of the turbines and generators. Efficiency of turbines 89.5% and generators 95%

Power that could be developed:

$P_{t} \coloneqq \frac{(Q \cdot w \cdot h \cdot n_{t})}{75}$	$P_{t} = 107.4 \cdot 10^{3}$ metric hp
Load_Factor := 80%	Load Factor = Average load / Maximum load
	ot show much variation of load. Josen for the power station each carrying Pt/2.
Turbine_load := $\frac{P_t}{2}$	Turbine_load = $53.7 \cdot 10^3$ metric hp
Generator capacity base	ed on each turbine load:

Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016

n _q ≔0.95 genera	ator efficiency
0	
Generator_capac	ity:=Turbine_load•n _g •One_hp
Generator_capac	ity = 37547.04 kW> 37.547 MW
$P_{tot_delivered} \coloneqq 2 \cdot G$	enerator_capacity
$P_{tot_delivered} = 7509$	04.08 kW - 75.09 MW
b). Specifications f	for the turbines and generators
Head at 100m	ut is 53,700 metric hp fixed blade Francis turbine.
	ific speed of the turbine(s): ncis Turbine page 208
$n_s := \frac{6850}{(h+9.8)} + 84$	4 n _s = 146.386 rpm
The corresponding Use equation 8.2 p	
P _{turb} ≔Turbine	e_load
$P_{turb} \coloneqq \Gamma urbine$ $n \coloneqq \frac{n_s \cdot h}{\frac{\left(\frac{5}{4}\right)}{P_{turb}}}$	n = 199.762 rpm
	speed of a generator is n=120f/p rev per min p is the number of poles. Use a 30 pole machine.
f≔50 Hz	p _{pole} := 30
$n_g := 120 \cdot \frac{f}{p_{pole}}$	n _g = 200 rpm

Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016

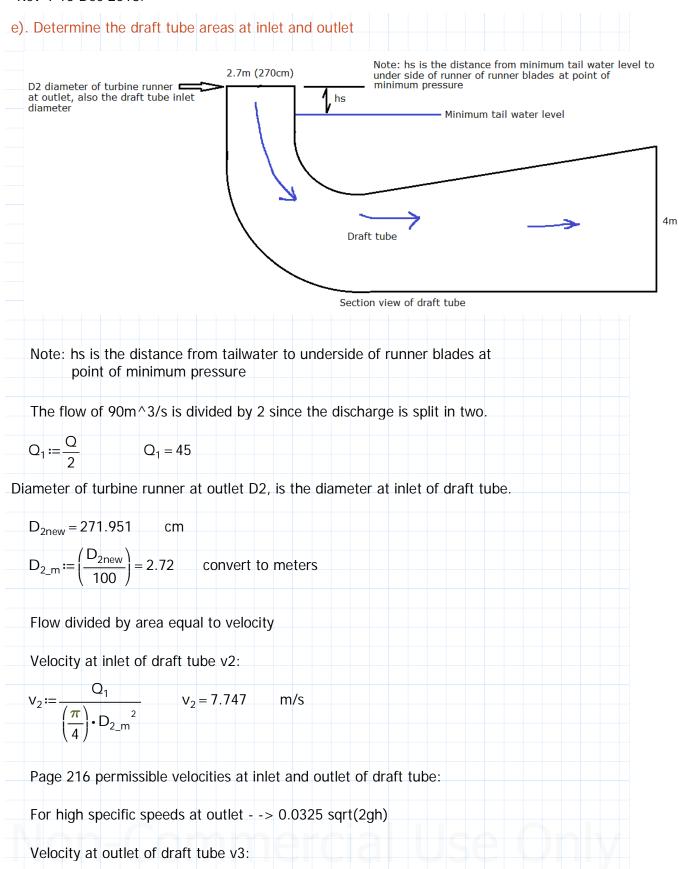
_	$n_{s_{new}} \coloneqq \frac{n_g \cdot \left(P_{turb}^{\frac{1}{2}}\right)}{\frac{5}{4}}$	
	<u>5</u> 4	
	n	
		Ily entered to simplify calculation below with s to units
	n_s_new is not very much diffe	erent from n_s calculated earlier
(difference_ns_nsnew := $\left \frac{n_s - n_s}{n_s} \right $	$\frac{n_{s_new}}{n_s} = 0.0012$
	See page 223 paragraph 3 on	vertical and horizontal shaft suggestions.
	A suitable generator specificati	ion:
	 vertical axis 36,500 kW minimum 	
	3. 0.9 power factor	
	4. 41.67 kVA (36500/0.9=40,	,560VA)
	5. 200 rpm	
	 6. star connected stator 7. 11kV 	
	8. 3 phase	
	9. 50Hz	
	10. 60 degree temperature rise	
	11. air cooling for small genera	ection 8.8.1 Exciters for hydro-generators; page 220
c).	. Calculate the main dimensions	s of the turbine units
	ing Table 8.1 'Dimensions of 1 action turbines only'.	hp (metric) wheel operating under 1 meter of head for
For	r specific speed ns of 146.6, int	terpolating for the correct dimensions
D ₁ :	$:= 102 - \left(\frac{(102 - 78.5)}{180 - 135} \cdot (146.6 + 100)\right)$	- 135)) = 95.942
D	$= 94 - \frac{(94 - 83.5)}{180 - 135} \cdot (146.6 - 13)$	35) - 91 293
ν_2	100 125	(55) = 71.275

Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016 Rev 1 10 Dec 2016

Calculate width of distribution WD:			
$WD := 17.8 + \frac{(19.5 - 17.8)}{180 - 135} \cdot (146.6 - 135) = 18.238$			
Calculate model ratio m:			
$\frac{1}{2}$			
$m_{ratio} \coloneqq \frac{P_{turb}}{2.46 \cdot h} \qquad m_{ratio} = 2.979$			
The final dimensions after calculating m:			
$D_{1new} := D_1 \cdot m_{ratio} = 286$ cm			
$D_{2new} \coloneqq D_2 \cdot m_{ratio} = 272$ cm			
WD _{new} :=WD•m_ratio=54 cm			
d). Calculate main dimensions of generator unit(s):			
The general expression for the output of a generator as developed i equation 3.23, holds for hydro-generators.	n chapter (3,	
$B \coloneqq 6.5 \cdot 10^{-5}$ weber/cm^2 $a_c \coloneqq 400$ ampere conductors per centimeter of periphery			
$n_{g_seconds} := \frac{n_g}{60}$ rps (rev per second)			
Rearranging eq. 3.23 to solve for (D^2)L			
$S := \frac{36500}{0.9} = 40.56 \cdot 10^3$ kVA			
$D_{sqrd}L := \frac{S}{(10.4 \cdot 10^{-3}) \cdot B \cdot a_c \cdot n_{g_seconds}}$ $D_{sqrd}L = 44.995 \cdot 10^{6}$	cm^3		
Let $D^2(L) = x$			
Choose a core length L equal to pole pitch			
$D^2 = x/L$			

Formerly Prof. & HOD EE College of Engr Ahmedabad.


Karl Bogha 13 May 2016

Rev 1 10 Dec 2016.

		x = D	2(L) = (pi)D/p	
Rearrangin	g	xp/(pi)	$D = D^2(L)$	
		D^3 =	xp/(pi)	
So x:	= D _{sqrd} L	= 44.995	• 10 ⁶	
$D_{cube} \coloneqq \underbrace{X}_{r}$	p _{pole} π	D,	$cube = 429.671 \cdot 10^6$ cm^3	
$D \coloneqq \sqrt[3]{D_{cub}}$	_{pe} D	= 754.6	cm	
Solving for	L:			
x/L = x(p)/	/(pi)D			
L = (pi) D	/ p <	This i	s the pole pitch	
$L \coloneqq \pi \cdot \frac{D}{p_{pol}}$	L	= 79.021	cm approximately	
Calculate t	he periph	neral spee	d:	
S _{peripheral} :=	(π •D•1	0 ⁻²) n _g	D converted from cm to m, times 10^-2	
s _{peripheral} =	4741.24	m/m	n	
-			peripheral speed limit 00 and 5000 m/min.	
Peripheral	speed at	4741.24	is between 3500 and 5000, so it is permissible.	
D = 755	ст	L = 79	cm	

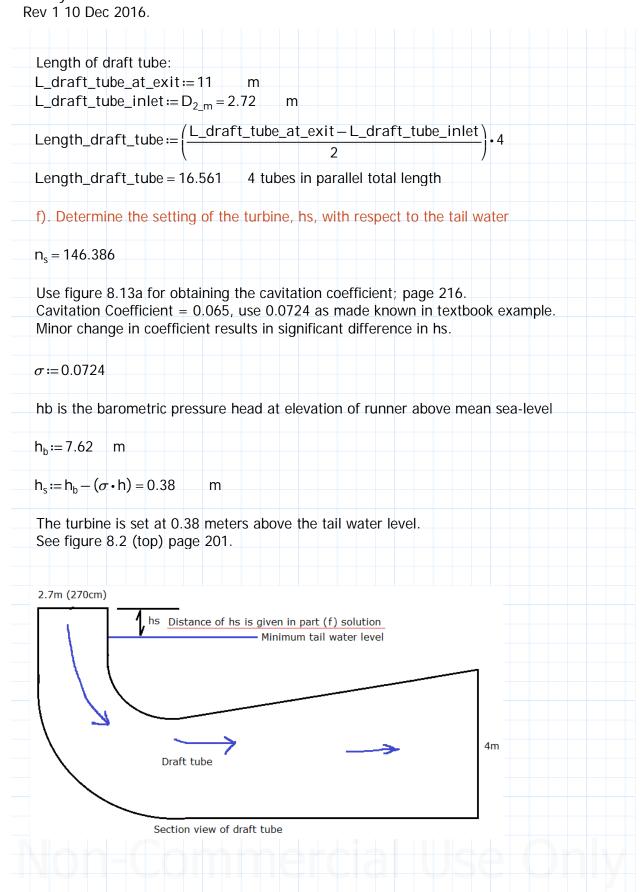
Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016

Karl Bogha 13 May 2016

~ 4 /

gravity:=9.81	m/s^2		
h = 100			
$v_3 := 0.0325 \cdot (\sqrt{2})$	$\cdot \text{gravity} \cdot \text{h} = 1.44$		
For safety factor v	we will use>0.003 so	rt(2gh)	
$v_3 := 0.03 \cdot (\sqrt{2 \cdot g})$	ravity•h) = 1.329 m/	S	
Let v3 = 1.25m/s Area at exit = Q1	this will create a larger /v3	water exit cross se	ection area
v₃≔1.25 m/	S		
Area_exit := $\frac{Q_1}{v_3}$	Area_exit=36 m ⁷		per and easily made into ea with distances
	s section area of 4 x 6 r	neters	
	2. r of 2m wide. Pier is sol d section dimension will		
		11m	


4m

End view (water discharged from draft tube)

4m

Using a quarter turn draft tube. We have 2 sets of turbines and each has two flares. The discharge from the runner is flared into two. So for this power station with 2 sets of turbines there are a total of 4 flares.

Karl Bogha 13 May 2016

Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016

Rev 1 10 Dec 2016.

g). Find the approx. The scroll case is ge						onvort t	bo prossur	o boad
gradually into higher related to a certain e the turbine runner.	velocities,	before	water er	iters the	e turbine	runner.	Its dimens	sion are
See the figure be	low for the	scroll ca	ase dime	nsion si	zing.			
	Water enteri the scroll cas from Penstoo	se						
	1.43D							
1.3D	<u>}</u>		Water exiting turbine into th	the				
2.0D	1 ,		draft tube					
1.7D Plan view of s	2.2D							
Diameter D in fig		is the dr	aft tube	inlet dia	meter D2	2 in met	ers.	
D _{2_m} = 2.72								
$1.47 \cdot D_{2_m} = 3.998$	8							
$1.30 \cdot D_{2_m} = 3.533$	5							
$2.00 \cdot D_{2_m} = 5.43^{\circ}$	9							
$1.7 \cdot D_{2_m} = 4.623$								
$2.2 \cdot D_{2_m} = 5.983$								

Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016

So for this problem		allowed is betwe			
		C 1			
There are 2 pensto Area of penstock f		2	uran tubes.		
		velocity.			
v _{pen} ≔4 m/s		Q ₁ = 45			
Area_penstock := -	Q ₁ V _{pen}	Area_penstock	= 11.25 m^2		
Diameter of pensto	ock = Sqrt(Are	ea x 4)/pi			
D 1 (Area_pe	enstock • 4)				
$D_{pen} \coloneqq \sqrt{\frac{(Area_pen}{pen})}$	π				
D = 2.795 m		- D 100 - 270	0.47 cm		
D _{pen} = 3.785 m	D _{pen_cm} •	= D _{pen} • 100 = 378	3.47 cm		
Thickness of penst	cock t = (0.1 x	(h x d)/((2 x f x	nj)		
t = thickness of pe					
h = head in meter d = diameter of pe nj = joint efficienc f = permissible str	enstock in cm y	^2			
d = diameter of pe nj = joint efficience	enstock in cm y ess in kg/cm^ f 950kg/cm^2 s included f is	2 with static head 1125kg/cm^2			
 d = diameter of period nj = joint efficiency f = permissible stress Permissible stress If water hammer is 	enstock in cm y ess in kg/cm^ f 950kg/cm^2 s included f is iveted 80%, if	2 with static head 1125kg/cm^2		= 1 • 10 ⁴	cm
 d = diameter of period nj = joint efficiency f = permissible stress Permissible stress If water hammer is Joint efficiency if restriction 	enstock in cm y ess in kg/cm^ f 950kg/cm^2 s included f is iveted 80%, if kg/cm^2	2 with static head 1125kg/cm^2 f welded up to 90)%	= 1 • 10 ⁴	cm
d = diameter of per nj = joint efficiency f = permissible stress If water hammer is Joint efficiency if r $f_{stress_cm} \coloneqq 1000$ k All the units are in	enstock in cm y ess in kg/cm^ f 950kg/cm^2 s included f is iveted 80%, if kg/cm^2 cm	2 with static head 1125kg/cm^2 f welded up to 90 n _j := 90%)% h _{cm} ≔h•100	= 1 • 10 ⁴	cm
d = diameter of per nj = joint efficiency f = permissible stress If water hammer is Joint efficiency if r $f_{stress_cm} := 1000$ k All the units are in	enstock in cm y ess in kg/cm^ f 950kg/cm^2 s included f is iveted 80%, if kg/cm^2 cm	2 with static head 1125kg/cm^2 f welded up to 90)%	= 1 · 10 ⁴	cm
d = diameter of per nj = joint efficiency f = permissible stress If water hammer is Joint efficiency if r $f_{stress_cm} \approx 1000$ k	enstock in cm y ess in kg/cm^2 f 950kg/cm^2 s included f is iveted 80%, if kg/cm^2 cm <u>n)</u>	2 with static head 1125kg/cm^2 f welded up to 90 n _j := 90%)% h _{cm} ≔h•100	= 1.10 ⁴	CM

Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016

Rev 1 10 Dec 2016.

the distance, manual entry below Foll case major dimensions, and allowing at	
roll case major dimensions, and allowing at	
roll case major dimensions, and allowing at	
roll case major dimensions, and allowing at	
2.606	
3m.	
ction bay 1.5 times the operations bay, the final room	۱
Switchgear and Control room	
Governor Controls Turbine Turbine	
	e scroll case, generator spacings, space to work ection bay 1.5 times the operations bay, the final room below at 50m x 30m. Its an approximation intended

Karl Bogha 13 May 2016

j). Find the cost of energy per kilowatt-hour at the load centre from the data given below.
 Load factor of power system supplied by the station 80% Cost of the hydro development \$1500 per kW installed Fixed cost 9% Operation and maintenance cost \$7 per kW per yr Load centre is 80km from power station Transmission line voltage to load centre 110kV Transmission liability \$20 per kW per yr Energy used in generating stations for auxiliaries 2%
Efficiency of turbines 89.5% Efficiency of generators 95
Set the variables below:
$\label{eq:linear} \begin{array}{llllllllllllllllllllllllllllllllllll$
$P_{tot_{delivered}} = 75.094 \cdot 10^3$ kW 75.095 MW
From calculations earlier the total capacity of the power station is 75000 kW (75 MW)
PwrSt_capacity = 75000 kw Here we want to keep the numeral at kW because the costs are rated at per kW (75,000 <kw)< td=""></kw)<>
The fixed cost is the 9% of the capital cost per kw of the total power capacity
FixedCost\$:= Fixed _{costperkw} • Cost _{dev_perkw} • PwrSt_capacity
FixedCost\$ = 10.13 • 10 ⁶ Fixed cost is 9% of capital cost
OperMaintenanceCost\$:= OperMant_Cost _{perkwperyr} • PwrSt_capacity
OperMaintenanceCost $= 525 \cdot 10^3$ Cost to operate and maintian yearly
TransmissionLiabilityCost\$:= TransLineLiability _{perkwperyr} • PwrSt_capacity
TransmissionLiabilityCost\$ = 1.5 • 10 ⁶ \$

Formerly Prof. & HOD EE College of Engr Ahmedabad.

Karl Bogha 13 May 2016 Rev 1 10 Dec 2016.

1	Total annual costs of power station:
	FotalAnnualCost\$ ≔ FixedCost\$ + OperMaintenanceCost\$ + TransmissionLiabilityC
	$FotalAnnualCost\$ = 12.15 \cdot 10^6 $
E	Electrical Energy Generated Per year:
ł	Hours per year: HoursPerYear := 24 • 365 = 8760 Hours
E	ElectricalEnergyPerYear := PwrSt_capacity • HoursPerYear • LF
E	ElectricalEnergyPerYear = 525.6 • 10 ⁶ kWh
E	Energy used in station for auxiliaries per year (2%)
E	EnergyUsedForAux := ElectricalEnergyPerYear • Aux_Energy
E	EnergyUsedForAux = 10.512 • 10 ⁶ kWh
E	Energy available at load centre per year:
E	EnergyAvailableLoadCntr = ElectricalEnergyPerYear – EnergyUsedForAux
E	EnergyAvailableLoadCntr = 515.088 • 10 ⁶ kWh
(Cost of energy at load center:
	This is equal to total annual cost divided by energy available at load center and the answer is given in cents per kWh instead of dollars per kWh.
C	ConvertToCents = 100
C	$CostAtLoadCenter \coloneqq \left(\frac{TotalAnnualCost\$}{EnergyAvailableLoadCntr}\right) \cdot ConvertToCents$
C	CostAtLoadCenter = 2.359 cents per kWh
e	In this problem transmission line loss was not given, when given then the net energy available for sale can be determined and the cost worked out. Sometimes for estimate of transmission line cost; percentage of capital cost at 12% is used. Refer to page 225.