Chapter 4 Introduction To Sampling

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

This worksheet is intended to demonstrate sampling of signals using Prime (Mathcad).

This topic like the other worksheet on Fourier can have difficult solutions, here the objective is to use a software for application in signal processing, come to appreciate software for signal processing.

The use of software here is for learning the subject matter and software. A learning experience, gaining software skills, and solving some basic to intermediate examples/problems. End result should be where we are able to take on difficult or complex problems.

Introduction to Sampling

The process of sampling involves the recording of the amplitude of a signal over a specific amount of time. The time interval at which the information is recorded is called the **sampling interval**. As stated by the **sampling theorem**, due to Nyquist, an accurate reconstruction of a signal requires that the sampling frequency be at least twice the frequency of the signal we wish to sample. To sample an analog signal, theoretically, we must multiply it by a sampler. What is a sampler? Ideally, a sampler can be a set of delta functions. For example, to sample an analog signal, we can multiply it by a shifted set of delta functions. Figure 4.1 shows the process of sampling using an ideal sampler.

Figure 4.1: Shows a typical sampler

As shown in Figure 4.1, we wish to sample an input signal x(t), so we multiply the signal by a shifted set of a delta function, $x_s(t)$, and the resultant signal is $x_d(t) = x(t)x_s(t)$. Since we sample a signal at specific interval, it can be shown that $x_s(t) = \sum_{k=-\infty}^{\infty} (t-k \cdot T_s)$, where T_s is the sampling time. Using the equation, we can rearrange Figure 4-1 as shown in Figure 4.2.

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

	The shifting property: in this example the period is 2, then shifting it by multiples of 2 would place the unit impulse function back to its position of t=0, resulting in a 1. If the shift is not in multiples of the sampling period Ts (2) then the result is 0.	
$X_{s2}(t) = \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$	n=3, t= 3 and n =4, t=4 d(t - nTs) = d(3 - 3x2) = d(3 - 6) = d(-3) = 0 d(t - nTs) = d(4 - 4x2) = d(4 - 8) = d(-4) = 1	
0 1 0 1	If the function of d(t) resulted in =ve 6 it is the same for -ve 6, here the result would be 1	
0 1 0	The individual results of Xs2 shown to the left	
processing in the Signal to be sam	sampled signal in discrete form is used for further e electronic circuit for whatvever application it is used for. npled x_sig(t) below:	
$\omega_{0} := \frac{\pi}{8}$ t := 0,0.0130 x (t) := sin (c)		
0	• t)	
$t := 0, 0.0130$ $x_{sig}(t) := sin(\omega_0)$ $x_{sig}(t) := sin(\omega_0)$	•t)	

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

ndersampl	ing (Aliasing): Lets use the previous example to demonstrate this
1	e sampling interval T better the reconstruction which requires a higher frequency
$T := \frac{1}{f_s} = 8$	8.035 from example 4.2
T:=8	then we set it to an integer in ex 4.2
Now set	T to less than 2 times
T := 4	Set T = 1, 2, 4, and 6. Only 4 shows the peak values in step plot. The delta function has to work as defined.
Where w	0 = pi/8. ws = T x (pi/8) = pi
	red above how we arrived to 8 from the inverse of T
$\omega_0 \coloneqq \frac{\pi}{8}$	$\omega_{\rm s} := T \boldsymbol{\cdot} \omega_0 = 1.5708$
Now we :	set the sampling period Ts_under
Demo	
	or function is a sine wave its period is from 0 to 2pi in radian (angular frequency)
	er function is a sine wave its period is from 0 to 2pi in radian (angular frequency) i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws
ws = 2 p	i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws
ws = 2 p	i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws
ws = 2 p	
$ws = 2 p$ $T_{s_under} :=$ $X_{s2_under} ($	i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws
$ws = 2 p$ $T_{s_under} :=$ $X_{s2_under} ($ $X_{d_sig_und}$	i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_s} = 4$ (t) := $\sum_{n=0}^{N-1} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under $= t_{sig}(t) \cdot X_{s2_under}(t)$ The stem plot does not show the sampled wave
$WS = 2 p$ $T_{s_under} :=$ $X_{s2_under} ($ $X_{d_sig_und}$	i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_s} = 4$ (t) := $\sum_{n=0}^{N-1} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under $= t_{sig}(t) \cdot X_{s2_under}(t)$ The stem plot does not show the sampled wave
$ws = 2 p$ $T_{s_under} =$ $X_{s2_under} ($ $X_{d_sig_und}$	i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_s} = 4$ (t) := $\sum_{n=0}^{N-1} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under $= t_{sig}(t) \cdot X_{s2_under}(t)$ The stem plot does not show the sampled wave
$WS = 2 p$ $T_{s_under} =$ $X_{s2_under} ($ $X_{d_sig_und}$ 1_{a_a} 0.8_{a_a}	if, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_s} = 4$ (t) := $\sum_{n=0}^{\infty} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under er (t) := $x_{sig}(t) \cdot x_{s2_under}(t)$ The stem plot does not show the sampled wave accurately compared to T=8
WS = 2 p $T_{s_under} =$ X_{s2_under} $X_{d_sig_und}$ $A_{d_{sig_und}}$ $A_{d_{$	i f, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_s} = 4$ (t) := $\sum_{n=0}^{N-1} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under $= t_{sig}(t) \cdot X_{s2_under}(t)$ The stem plot does not show the sampled wave
$WS = 2 p$ $T_{s_under} =$ $X_{s2_under} =$ $X_{d_sig_und}$ $T_{s_under} =$ $X_{d_sig_und} =$ $T_{s_under} =$	if, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_s} = 4$ (t) := $\sum_{n=0}^{\infty} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under er (t) := $x_{sig}(t) \cdot x_{s2_under}(t)$ The stem plot does not show the sampled wave accurately compared to T=8
WS = 2 p $T_{s_under} =$ X_{s2_under} $X_{d_sig_und}$ $X_{d_sig_und}$ 0.6- 0.4- 0.2- 0.2- -0.2- -0.4-	if, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_{s}} = 4$ (t) := $\sum_{n=0}^{\infty} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under er (t) := $x_{sig}(t) \cdot X_{s2_under}(t)$ The stem plot does not show the sampled wave accurately compared to T=8
$WS = 2 p$ $T_{s_under} = $ $X_{s2_under} = $ $X_{d_sig_und}$ $I_{d_sig_und}$	if, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_{s}} = 4$ $(t) := \sum_{n=0}^{\infty} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under $er(t) := x_{sig}(t) \cdot X_{s2_under}(t)$ The stem plot does not show the sampled wave accurately compared to T=8
$WS = 2 p$ $T_{s_under} = $ $X_{s2_under} = $ $X_{d_sig_und}$ $I_{d_sig_und}$	if, f = 1/Ts, ws = 2 pi /Ts, so Ts = 2 pi/ws $= \frac{2 \cdot \pi}{\omega_{s}} = 4$ (t) := $\sum_{n=0}^{\infty} \delta(t - n \cdot T_{s_under})$ the sampler for this example Xs2_under er (t) := $x_{sig}(t) \cdot X_{s2_under}(t)$ The stem plot does not show the sampled wave accurately compared to T=8

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA. BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

Sampling in the Frequency Domain

4.4 Illustration of Sampling in the Frequency Domain

In the previous section, we illustrate the process of sampling in the time domain. To better understand the process of sampling, it is worthwhile to illustrate the process of sampling and aliasing in the frequency domain as well. Just to refresh our memory, in the time domain, we sample a signal x(t) with the impulse train $x_s(t)$ and get $x_d(t)$ as shown in Figure 4.22.

Figure 4.22: Shows an ideal sampler

the frequency domain representation of Figure 4.22 is shown in Figure 4.23. We take the Fourier transform of each signal and replace the multiplication sign by the convolution sign, since multiplication in time domain corresponds to convolution in frequency domain.

$$X(\omega)$$
 $X(\omega)$ $X_d(\omega)$

Figure 4.23: Shows the frequency domain representation

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

Chapter 4 Introduction To Sampling

