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Chapter 3 Frequency Domain Analysis - Laplace Transforms.

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
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Tables from Linear Systems and Signals 2nd ed by B.P. Lathi.
TABLE 4.1 A Short Table of (Unilateral) Laplace Transforms
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TABLE4.2 The Laplace Transform Properties

F}peratinn x(1) X(s)
Addition X)) + x2(1) X1 (5) + Xais) oy
Scalar multiplication kxit) kX (s)
{ ) i dx
Time differentiation T sX(5)—x(07)
d*x
T 52X (5) — sx(07) — x(07)
dix .
— s*X(8) — 5%x(07) — sx(0) — ¥(07)
dflx i ] i j:
o 5" X (5) —Es"‘ x¥=gy
Time integration / x(t)dr 1 Xix)
Jo- o
s 1 1 1o
f x(t)dr -X(s5) + —f x(t)dt
- ¥ F =
Time shifting 2t — tg)u(t — ty) Xis)e s =0
Frequency shifting x(p)en Xz —s)
Frequency —tx(t) B
differentiation a3
& ] ; x(r) i
‘requency integration —— f X(z7)dz
!
o 1 5
Scaling xlat),a =0 X (—)
a a

Time convolution

x1() * xa2(1)

X (s)Xa(5)
1

Frequency convolution X () TX[{” * X1(5)
T
Initial value x(0T) lim sX (5} (n = m)
Final value xloo) lina sX(5) [poles of s X (s) in LHP]
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Notes from textbook:

®aan 'I'hI'E;_.!Em- '|'._‘;_1_.1@.}j('

We have seen carlier that the output of a Linear Time Invariant (ETH system can he

expressed as the convolution of the input with the impulse response as show o the block
diagram of Figure 3.29.  This assumption is made provided that the convolution 15
expressed always in the time domain. The Laplace transform, on the other hand, converts

the impulse response of the system [rom the time domain to the frequeney domain.

§ x(2)—» b » (1)

Figure 3.29: A typical LTI system

The Laplace Transform of a system can be calculated using the following formula; if
A1) s the impulse response of a system, the Laplace Transform of h(t) can be

expressed from this formula.
o) 4
H(s)=[ h(f)e™ dt (Equ3.9)
0

For a given fi(s), the Inverse Laplace Transform can be evaluated also by partial fraction

expansion.

Example 3.9

j::\/—_l Ww:=27 i:=j
S:i=jew
a:=2 'a' is a constant

it is the a=1 in the solution's denominator (s+a) or (s+2)
u(t):=if(]t|>0,1,0) unit step function
h(t):=e " u(t) d(t) delta function is a Prime function

H(s):= f h(t)-e” "dt — 1 Laplace solution
; S+2

sl 1 . . 1.
fh(t) et dt - — = s here is substituted by 2 i pi, in the integral solution
0

24+2i-7

H (s) =0.046 —0.144513j When s = j 2 pi
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Example 3.10 - Inverse Laplace Transform

2
H(s)i=——
(s) i

Now to go back to the time domain solution for the inverse

The Lapalce transofrm looks like the solution in example 3.9, by
inspection it looks like the H(s) is equal to

H(s) = 2 (1/s+2) => 2 (1/s + a)

So the time domain inverse Laplace is

2 en-2t u(t)
o invlaplace a1
H()=—— ———— 2. Correct Answer.
s+2 Use the Evaluation Operator and

fill in the label invlaplace

Example 3.11 - Poles and Zeros
clear(j) clear(i)
Poles and zeros for system stability see textbook on systems

A system's transfer function is given below H(s) plot the poles and zeros

H(s)=—*2)
S.(s+1)-(s—1)

Define the poles and zeros as a vector:

number of poles is 3, since there are three 's' in the function

p: .2
Z: .0 0 to 0 since there is only one ‘0’

0.
0.

From the function H(s) the poles and zeros are:
Poles: s(s + 1) (s- 1)

s=0
s+1=0
s-1=0

s0=0, s1=-1, and s2= 1 by setting each term = 0 in the denominator

Zeros: (s+2)
s0 = -2 by setting the numerator term(s) equal zero
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The pole and zero vectors are populated:

ORIGIN:=0

j=V-1
[0+)-0] [ O]

pole:=| —1+j.0| pole=|-1] pole =—1
[ 1+j-0 ] [ 1]

zero:=[—2+j-0] zero=[-2] zero =—2

Now plot taking real and imaginary parts into consideration
Since s = j w, we have real and imaginary parts, so the poles and
zeros are set similarly

Remember Prime/Mathcad has partial fractions function

The y axis is the imaginary axis in the plot, x axis the real part.

0.8+
0.6+
0.4+
0.2

o

|

.
o
[N

Re (pole)

Re (zero)

Example 3.12 - Poles and Zeros
24 (1)

H(s):= \2

Its a tedious task to get the roots of the equations above for the numerator
and denominator.

So we use the 'polyroot’ function in Prime/Mathcad
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For polyroot a vector has to be created filling in the values for each power of and constant.

The top most element is the constant then starting with the variable, then variable
squared,.....etc.

[11] element 0 = 1/2 - constant
| 2| 1=0 -s
2:2!0! 2=1 -s"™2
[1]
Zeros:=polyroots (Z) Zeros= [_0'71j ]
| 0.71j |
[1]
| 2 | element 0 = 1/2 - constant
P=|1| 1=1 -s
| 1 | 2=1 -s"2
11] 3=1 -s"3
[-0.65 ]
Poles := polyroots (P) Poles=| —0.18-0.86;j |
| —0.18+0.86j |
0.91‘ x
0.75+ °
0.6+
0.45+
0.37
0.15+
[oF: x
e G R
-0.451
o6l > Im (Ze[os) ‘
-0.751 °
-0.9 *

Re (Poles)

Re (Zeros)
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Frequency Response in The Lapalce Transforms.

Example 3.13

H(s):= L System's transfer function

33 +2-s2 +2.5+1

Plot the frequency response of the system and show the 3-dB:
j=V-1

S:i=jew

w:=0.01,0.02..20 this line has to be placed after s = jw

Next setup the transfer function H(s) to H(jw):

1

H(w):= S >
(j.w) +2.(j.w) +2.(j.w)+1

To plot the transfer function use the formula 20 log | H(s) | - note it is magnitude of |H(S)]:
Set plot in Logrithmic scale on x-axis w.

1
Hmag (w) :=20-log ”

\l(j.w)3+2.(j.w)2 +2.(j.w)+1

1\
||
|/

-274
— 364
_a51 Hmag (w)

—544
—63+
—724

-814

v

1. 120 ~ 1. 110~ 1 1-10 1.10°7

Plot above the horizontal marker is set at 3dB.
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Next break the plot into the real part plot, and the phase in degrees plot.
Do NOT take the magnitude for the real, imaginary, and phase part.

0.8+
0.6+
0.4+
0.2+

02 Re (H (w))

-0.4
=0.61
-0.81

1. 120~ 1. 110 ~ 1 110 1.10°7

0.8+
0.6+
0.4+
0.2+

Im (H ()
-0.41
-0.61
-0.81

—14

v

1120~ 1110~ 1 1+10 1107

210+
1754
140+
105+
70+
35+

~351 B TR arg(H(w)).(@\,
\ 7 )

—704

-1051
~1404

-175+
—-2101

Phase in degrees - multiply by 180/pi
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Examples from Linear Systems and Signals 2nd Edition. Oxford. By B.P. Lathi.

Example 4.1
For a signal x(t) = e™-at u(t), find the Laplace transform X(s) and its region of convergence.

clear(s) clear(X)

J=V-1 Wi=2T i:=]
S:i=jew
a:==1 'a' is a constant

it is the a=1 in the solution's denominator (s+a) or (s+2)
u(t):=if(]t|>0,1,0) unit step function

x(t):=e " eu(t) d(t) delta function is a Prime function

0.9
0.8

0.7

0.6

0.5

0.4 X (t)

0.3 — !
0.2

0.1

Fal

v

t

X(s) ::fx(t) e tdt - Laplace solution
; s+1

There is a pole at s = -1, no zeros.
So the region of convergence is defined on the x-axis from -1 to infinty

Next a negative sign in x(t) and u(-t)
x2(t):=—e " "eu(=t) d(t) delta function is a Prime function

o} >
~0.1
~0.2
~03
~0.4
~05
-0.6 X2 (t)
~0.7 S S L S
~0.8
~0.9

Laplace solution

x2(s):= [ xe()-e ™ tdt — -2
. s+1
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There is a pole at s = 1, no zeros.

-(s+1)=-s-1;s=1

So the region of convergence is defined on the x-axis from 1 to -infinty
The valus of 'a' is a +ve of -ve integer value

Note: Page 385 - The Laplace transforms for the signal e”™(-at) u(t) and -e”™(at) u(t)
are identical except for their region of convergence. Therefore for a given X(s) there
may be more than one inverse transform, depending on the ROC region of occurence.
In other words, unless the region of convergence is specified there is no one to one
correspondence between X(s) and x(t). This fact increases complexity in using Laplace
transform.

Example 4.2

Determine the Laplace transform of the following:
a). d(t) delta function

b). u(t) unit step function

c). cos wO t u(t)

a)

j::\/—l w::2-7'r i::j S::jow nN:=w m:=n
clear (x) clear (X)

x(t):=6(m,n) return 1 when m=n

X (s):= [ x(®)-e "t
0
The transform tables show the Laplace transform of delta (t) = 1 for all s.

b).
clear (x) clear (X)
u(t):=if(]t|>0,1,0) unit step function

—(s-t)

x(O:=u(®) lim e
1 tooo

X ()= [ x(®)-e ™ tat - Lo
0 S S

From tables the transform is 1/s forRe s > 0

c).
clear (x) clear (X) clear (x2)
j:: —1 w0222-7T i::j S::j.wo

u(t):=if(jt|>0,1,0)

< Jerwg-et

e_cos (t) ::%. e —j-wo-t>

+e cosine term in exponential form

x1(t) ::%- () u(t) x2 (t) ::%- (e ) .u()
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From the tables no 8a:

x1(t) = 1/2 ( s/ (s™2 w0™2)
x2(t) = 1/2 ( s/ (s™2 + w0™2)

X (1) :=x1(t) +x2(t)
X (s):= [ x(®)-e "t

X(s) =s/ (s™2 +w0”™2) Answer - when real part of s >0. See tables.

Exercise 4.2
x(f)
i
;
0 2 t>
a)
j::\/—l Wi=27 i::j S::j-w
clear (x) clear (X)
tt:=0,1..20

u(t):=if(0<t<2,1,0) return 1 whentis between 0 and 2

x(t):=p(t)

X (s):= f x(t).e"'dt  cannot intergrate a conditional variable
0

Use the unit step function from 0 to 2

Start at 0 and subtract the rest starting at 2
t=0to 2 =1, elsewhere O

At t=0:
x1(t):=u(0)=1

7 —(s-t
lim e ©°

X1(s) ::fxl(t)-e_s'tdt L Altee | ||
0 S S

X1(s) = 1/s
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At t=2:
x2(t):=u(2)=1

X2(s)= f x2(t)-e " ?dt—e > *.0co  substitue t with 2 --> e”-s2
0

X2(s) is shifted to 2, its = 1/s at 0 not at 2 with the value of at 2 to infinity of e”™-2s

X2(s) = 1/s (e™-2s)

0 2| i
1P ) ——
P e—

x(t-->0-2) =x0 - x2
X(s) = X(0) - X(2)

X(s) = 1/s - 1/s(e™-2s)

X(s) = 1/s( 1 - en-2s) Answer - check with your results.
for all s
b).

This signal is shiftet by t=2
Apply shift property from tables.

¥

0 2 4

Shiftt =2 --> e-2s
X(s) = 1/s( 1 - e™-2s) x Shift

X(s) = 1/s( 1 - en-2s)en-2s Answer - check with your results.
for all s
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Exercise 4.3

Find the inverse Laplace transforms of the following:

j::\/—_l i:=] w:i=27T Si=jew
a).
7.s_@ inviaplace % I( (5.t) Sinh{%)\l
Hi(s)=—— — — s 7.e -|cosh; | — |
s°—s—6 \ \2) 7 )

Prime/Mathcad solution above - not pleasant!
Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts

clear(s)  Make sure s had been cleared cannot have s = jw for the parfrac evaluation

7.s_p bParfrac 4 3
- R L, S

32_3_6 S+2 3—3

Now apply Laplace transform to each term
SS:=j.w
4 invlaplace 4. A(t)
—_— 7

Hila(s):=—— H1la(s)
s+2 s+2

From Laplace transform table - no 5
4[1/(s+2)] = 4en-2t
invlaplace o,
H1b(s):=—>_ H1b (s) ———, 3- A1
s+2 s+2
From Laplace transform table - no 5
3[1/(s+2)] = 3en-2t

H1(s):=H1la(s)+H1b(s)

H1(s) ::i+i

s+2 s+2
With a unit step function u(t) as part of the input signal the transfer function H1(s) in
exponential form now:

x(t) = (4en-2t + 3e™3t)u(t) Answer - Inverse Laplace
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b).

.o2 invlaplace _ -
H2(s)::223—+5——>2-A(t)+7-e ‘_13.e
S +3.s+2

2.t . .
- Prime solution

Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts
clear (s) Make sure s had been cleared it cannot be s

= jw for the parfrac evaluation

=2 arfrac
2.s"+5 barirac 7 13 _,

s°+3.5+2 s+l s+2

Apply Laplace transform table no 5

7/(s+1) =7 x (en-at) a=1s0 7 x (en-t)
13/(s+2) = 13 x (e™-at) a = 2 s0 13 x (e™-2t)
Apply Laplace transform table no 1

1 = d(t)
2 = 2d(t)

x(t) = [ 2d(t) + 7 (e™-at) - 13 (e™-2t) ] u(t) with u(t) Answer Inverse Laplace

c).
6-(s+34)

H3(s):=
s+(s® +10.5+34)

Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts

clear (s) Make sure s had been cleared it cannot be s
= jw for the parfrac evaluation

6-(s+34) parfrac 6 6.s+54

s+(s® +10-s+34) S s*+10-5+34

We proceed fresh using quadratic factors method:
Multiply both sides of equation by the denominator term
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6(s + 34) = k1l + As+B
s(s™2 + 10s + 34) S (s™2 + 10s + 34)

k1 = 6 from the partial fraction prior by Prime
6(s + 34) = 6(s™2 +10s + 34) + s(As + B)

Equating coefficients of s™2 and s on both sides

652 + AsN2

-6s™N2 = AsN2

A=-6

6s = 60s + Bs

Bs = s(-60+6) = -54s
B =-54

Now in the simpler form:

( 6.5—54)
S s’ +10-5+34

H3(s):=

Using transform table no 2 and 10c:
1
2 u(r) =

As+ B

10¢ re=" cos (br + ) u(t) FTI
For 10c the parameters are:
A=-6,B=-54 .
a: 10 = 2a r_¢32c+3 ~2ABa
a=5 —_ c—al
b = sqgrt(c - a™2) = sqrt(34-25) = sqrt(9) S ey
b=3 f=tan! [ ———
Ae—a’
a:=5 b:=3 c:=34
b=+c—a?
/ A% .c+B? —2 A-B-a)
| =10
)
r—10 |

A.a—B=24 A.Vc—a°=-18

24/-18=4/-3  9,—atan|-%) 0,=-53.130102 deg
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Or plugging straight into the formula:
( A-a—B \_
\A-Ve—a? )

f:=atan —53.1 deg

Where is the angle -53.81 located?
Right now at the lower right quadrant at 3 - 4j but the angle is pointing to the other
direction so we rotate it anticlockwise 180 degrees to the vector -3 + j4 its conjugate.

By Bpos =180 deg+6=126.9 deg

Now forming the laplace inverse equation:
x(t) = [6 + 10e™-5t cos(3t +126.9 deg)] u(t) Answer - Inverse Laplace

The solution Prime provided Not the exact same.

) invlaplace 5. 5.
H3(s):= f (s+34) — 1, 6-8.sin(3-t).e > '—6.cos(3-t).e "
s+(s® +10.5+34)
—B.o_ invlaplace 1 =
H3(s)::£+ 5 6-5—54) — 1, 6-8-sin(3-t).e > '—6.cos(3-t).e """
S s"+10.s+34
d).
Ha(s)=— 0510
(s+1):(s+2)

Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts
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g.s+10  Pparfrac 2 2 6
— — +

s+1 s+2

H4 (s):=

(s+1)-(s+2) _(s+2)2 (s+2)

Clean results above ready to use

5 eMult)
5= A
ALt 1
6 teMult) m
n!
7 t"eMut)

Use nos 5, 6, and 7 above to finish the solution, check to the
correct answer generated by Prime/Mathcad.

H4(s)::2—2— 22+ 63

s+1 s+2 (s+2) (s+2)

invlaplace ~ 1 1P =

H4(s) ———— 2.¢e ‘2.0t tee 3.t e Answer Inverse Laplace
Exercise E4.2
)
j::\/—l Wi=27 i::j S::j-w
x(t):=10.e " ".cos (4 t+53.13 deg) Find the Laplace Transform
10a re cos (bt 4 0) ult)

Use transform no 10a from the table:

r:=10 a:=3 b:=4 0:=53.13 deg
r.cos(f)-s+a-r-cos(@)—b-r-sin(6
X () = 005 0)- (9)=b-r-sin(0)
S +2-a-s+<a +b )
X (w) i= 10-cos(9)-sz30-cos(9)—40-sm(9)
S +6.5+25
10-cos(#)=6  30-cos(9)=18 40.sin () =32
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6.5+18—-32
X(w)::z—
S +6.5+25
X (w) ::26'5—_14 Answer
S +6.5+25
i)

Find the inverse Laplace transform of the following:

a). (s+17) / (s™2 + 4s -5)

clear (s)
X(W):: 28+17
S +4.s-5
s+17 parfrac 3 2
—_— | — p—
s +4.5-5 s—1 s+5

Apply no 5 in the list:

5 e*ulr)
x(t): 3en™(st) - 2e(-5st)
x(1): [3e™(st) - 2e(-5st)] u(t) Answer - Inverse Laplace
Using Prime/Mathcad:

3 o invlaplace ¢ 154

_ — 3. —2-.e Verifies Answer
s—1 s+5

b).

j::\/—_l w:i=27 i::j S::j-w
clear (s)
3.5-5

X(w):= -
(s+1)-<s +2-s+5)

3.5-5 parfrac  5.545 2
_)

(s+1)-(s* +2.5+5) s°+2.s+5 S+l
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Apply Laplace transform number 10c to first term, and number 5 to second term.

2.s+5
s°+2.545
10c =51 cos (bt + 0 Ak
re~™ cos (bt Yult) PR P
a:=1 c:=5
A:=2 B:=5
( - \
\/A .c+B’ 2A B. a|_25
)
b:=V <c—a2> =2
f:=atan (u\ =-36.9 deg next verify correct direction
\A-\/c—a2 ) of the angle
A.-a-B=-3 A.Vc-a’=4
0:= atan.( \.:—36.9 deg
\ 4]
Correct.
-36.9 deg
i3
4 4-j3
x(t) = [ 2.5e™(-t) cos(2t-36.9deg) -2e™(-t) ] u(t) Answer - Inverse Laplace

Verify quadratice term with Prime/Mathcad:

. invlaplace . Qi .
22 s+5 © ot (COS(Z-t)+3 sin(2 t)\I
s +2.5+5 \ 4 /

This instance for me the table solution is more suitable!
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c). —
j::\/—l wi=2eT i:=] Si=jew
clear (s)
X (w) i= 16.5+43

(s—2)-(s+3)2

Expecting some combinations of from the table.

16.5s+43  parfrac 3 3 1
_)

— + >
s—2 s+3 (s+3)

(s—2)-(s+3)

Prime partial fraction resulted with clear fractions, the time domain
inverse transform expection is encouraging.

3
— 3 en(2t
15 (21)
_B 3en(-2t)
s+2
! te”(-3t) from no 6 in table
(s+3)

x(t): [3 en(2t) + 3e™(-2t) + te™(-3t)] u(t) Answer - Inverse Laplace Transform

Next notes on properties of Laplace transforms
from Signals and Systems 2nd ed by B.P. Lathi.

There are specific topics such as Bode Plots, Filters, Solutions of Differential and Integro-
Differential Equations in the textbook in detail. These are specific to a course's content like
Circuit Networks, Filters, Differential Equations, Controls,....., which you can continue on your
own in context to those course's content.

The main objective:

1. to get started with Laplace for engineering problem solving
2. to get over the main hurdle in Laplace Transforms mathematics and using Prime/Mathcad.
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Properties of the Laplace transform are useful not only i the deflvation of the Laplace |
of functions but also in the solutions of linear integro-differentiul equations. A glance ot
and (4.1) shows that there is a certain measure of symmetry in going from (r) 1o X (s
versa, This symmetry or duality is also carried over to the properties of the Laplaca i
This fact will be evident in the following development.

We are already familiar with two properties; linearity [Exq. (4.4)] and the unigue
of the Laplace transform discussed earlier.

4_.2-1 Time Shifting
The time-shifting property states that if
Cx() = X(s)
then for 1 = 00
(=t = X(5)e "

besﬂl'\’ﬂ that x(r) starts at ¢ = 0, and, therefore, x (1 — f;) starts at t = ,. This fact is imp
is not explicitly indicated in Eq. (4.19a). This often leads to inadvertent errors. To avoll
pitfall, we should restate the property as follows. If :

X(Hulr) <= X(s)
then
X = tpdulr — ) = X(s)e™ ™ =0
hwfl
£ [x{.f — fgdue(t — tp)] =.£ x{t —tdult — e " di

Setting 1 — #y = , we obtain

& -tz T LIxtE — todut —t0)] = f HOu()e 9 dr

L=t xh s

=== " Because u(r) = 0fort < Dand u(r) = 1 for t = 0, the limits of integration can be taken |
0 to 20, Thus

Ll — tyduit — )] = j‘c‘x{!jf—‘&'*wdr
L}

= e_““'f x{tde™ dr
o
= X (5™

Note that x(r — s)ulr — 1) is the signal x(r)ju(r) delayed by #y seconds. The time-shi
property states that delaying a signal by 1y seconds amounts to multiplving its tramsform ¢!

et-stl
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thee sig n Fig 4 Eh is x{r - Z}M’r =2). "IheLaplace transform for the pu]se inFig. 4.2ai 1s
|/ |‘:l ~¢ "), Therefore, the Laplace transform for the pulse inFig. 4.2bis (1/5)(1 —e ¥ )e™ .
“*The time-shifting property proves very convenient in finding the Laplace transform of fune-
uns with different descriptions over different intervals, as the following example demonsirates.

Find the Laplace transform of x(t) ﬂe:picted in Fig. 4.44.

Figure 4.4 Finding a mathematical description of a function x(r),

- Describing mathematically a function such as the one in Fig. 4.4a is discussed in Section 1.4,
- The function x (t) in Fig. 4.4a can be described as a sum of two componenis shown in Fig, 4.4b,
- The equation for the first component is + — 1 over 1 = ¢ = 2, so that this component can
- be described by {r — 1}t — 1) — wie — 2)]. The second component can be described by
- w(t —2) — uit — 4). Therefore

x() = (¢t — Dluelr — 1) — ulr — 20] + [l — 2) — uit — 43] o
= (t — Dult — 1 — (¢ — Dyult —2) +ualt —2) —ult — 4) (4.20a)

—

The first term on the right-hand side is the signal ru(r) delayed by 1 second. Also, the third
and M are the wdelayed by 2 and 4 seconds, rtspccn-ml}r The second
term, however, cannot be interpreted as a delayed version of any entry in Table 4.1. For this
Teason, We rcarrange it a5

=Dl =2 = =2+ Dnlr — 2y = (t — 2t — 22+ ulr —2) /
W hav&ﬂuwm in the desired form as ruir) delayed by 2 seconds
plus u(r) delayed by 2 seconds, With this result, Eq. (4.20a) can be expressed as

X)) = =Dult =1) = —Dult =2y —ult — 4) ./ {4.20b)
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A1 WA R0 LA]
B el

(=Dt -1) = e~ ond %
5 i N

B Loy
A
Therefore

1
Xinn= —1e_’ -
£

Find the inverse Laplace wansform of

'3

34 52
X(s5) = Hondlanad
(s + L)z +2)
Observe the exponential term e~ in the numerator of X (s), indicating time delay,
a case we should separate X (5) into terms with and‘wilhuut delay factor, as

—2:
G — §+3 i Se
e+ Ds+2)  (s+1(s+2)
xl"i’.‘] ."l.'zl:’J;-:I-e‘zs
where o B i
yhip At i L1 £
G+DE+2) s+1 s+2
. 5 5 5
Sl SR TR T A g
Therefore
xi(1) = (2e7" — e Yulr)
_ xa(t) = Se™ — e *u(r)
Also, becanse -
. X(s) = Xi(s) + Xals)e™
We can write

x{r) = xy (g} + xz(t — 2)
=(2e” —e i)+ 5 [e'“_z] - e'z':"'i:'] it =2)
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422 Frequency Shifting
The frequency-shifting property states that if

x(1) = X(5)

X(t)e™ = X(s —sp) (4.23)
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Derive pair 9a in Table 4,
Pair 8a is '
cos bru{{} e g
From the frequency-shifting property [Eq. (4.23)] with sy = —a we obtain
?}, e cos bru(t) &= G:_ﬁ "

We are now ready to consider the[two of the most important properties jof the
transform: time differentiation and time integration.

-
4.2-3 The Time-Differentiation Property!
The time-differentiation property states that if

x(0) = X(6)
then_
= T : i
dr = 5X(5) = x(07)
Repeated apgflication of this property yields
iy bl 3 od
e — .I'ZX![.T:I —sx{q ) — #(07)
dx : s /2 T i S
el A S S (e Lt e [

= XY= ¥t

- Tk=1
where x{’}'{ﬂ"] isd'xfdeatr =0,

"The dual of the fime-differentiation property is4he frequency-differentiation property, which states th
d
J (1) &= ——X{5)
ds
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Proof.
dx ™ dx
£ — | = iy =R,
[a‘r] jl; dt A
Integrating by parts, we obtain

L [ﬂ] = x{r]e‘“lm -+ sfmx{rj iy
dt T - 5

For the Laplace integral to converge [i.e., for X () to exist], it is necessary that x(fe™ — 0 as
1 —+ oo for the values of 5 in the ROC for X (s). Thus, - e

d
| c [ﬁ] = (07} o X}

n
i
Repeated application of this procedure yields Eq, (4.24c). q"‘ XC &) __Z Qﬁ k:é ( {;}

; Med

Find the Laplace transform of the signal x(r) in Fig. 4.6a by using Table 4.1 and the time-
differentiation and time-shifiing properties of the Laplace transform.

F‘igu}"es 4.1:;’!h and 4.6c show the first two derivatives of x(¢), Recall that the derivative at
a point of jump discontinuity is an impulse of strength equal to the amount of jump [see
Eq. (1.27)]. Therefore

b

X
i air) — 381 = 2) + 2801 — 3)

The Laplace transform of this equation yields

d*x |
L(dz) L8 — 38(r — 2) 4+ 250 — 3]

Using the time-differentiation property Eq. (4.24b), the time-shifting property (4.19a), and
the facts that x(07) = x{0~) =0, and §(t) == 1, we obtain

CXE) —0—0=1—3e% 4 2e~%

- 3-‘—21 + 2&"-3’}
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' «fn. . ;
0 2 ] ;o= i s
&)
;!.' e
1 ot
[} z X T =
' L]
i
det |
0 2 3 1=
Figure 4.6 Finding the
iransform of a plecewise-1i
(ch property.

4.2-4 The Time-Integration Property

The time-integration property states that if
x() = X(5)

then'

and

zir)dr & -

o

'[' X(5) +f:°x{r}dr
2 $

tThe dual of the fime-integration propesty is the frequency-integration property, which states that
L e f X(z)dz
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Proof, 'We define :
3{1J=f ar)dr
i

¥
40 that 3
fngqéj —xt) ad  g07)=0 v’
i d" # \I
MNow, if ( c .I
glt) = Gs) v~
then S
x& =t Egm] _ 5G(s) — g(00) = 5G(s)
Therefore e
5
Gis) = e v’
of

K
f x(r)dr & _':3‘:[ v
- i)
To prove Eq. (4.26), observe that A A R 0

l:t'f'f_ i _‘_‘ﬁ.e.:ni“}'m
f x{f}dr——-f x(r}dr-i-f x{r}ya Vi
— - I:l- e —

Note that the first term on the right-hand side is a constant fort = 0. Taking the Laplace transform
of the foregoing equation and using Eq. (4.25), we oblain

[lxmdr | X

| f xl:f}ﬂr'!-'¢=>’—'3—'—+ e ik
' [ScaLiNG

The scaling property states that if .

Xty = Xis)

then fora = 0 ;
| =pfiE (4.27)
I x(at) &= —F (d)

The proof is given in Chapter 7. Note that @ is restricted to positive val}:es h-c:ca_usa if x(t} ii
causal, then x{at) is anticausal (is zerdo f-::r_: = () for negative a, and anticausal signals are no

ermitted in the (unilateral) Laplace transform. ‘ g
'r! ccallithat xiat) is the signal x(r) time-compressed by the factor a, @n X(%)is X(s)

FKEE‘ITIdL‘- along the s-seale by the same factor a (see Section 1.2-2). The scaling propetty :fta:;z
hat time compression of a atgrial by a factor a causes expansion of its Lap!a:?le .tmnian;: f” i
sescale by the same factor. Similarly, time expansion x(1) causes compression of X(s) in
aeacale by the same facion

. syl P
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Another pair of properties states that ' ;
x (1) &= Xi(s) and xal1)

then (fime-convolution property)

21(0) # x3(8) = X1(s)Xals) ¥

and ( frequency-convolution property) s
xi(E)xa(r) = hijm () % Xals)]

Observe the symmetry {or duality) between the two propertics. Proofs of these properdl

postponed (o Chapter 7. ; : .
Equation (2.48) indicates that H (s), the transfer function of an LTIC system, is the
transform of the system’s imnulse response h(r); that is, Linear Fime

Tngarhan
hit) < Hs) Coriiinpts Hime
If the system is causal, k (f) is causal, and, according to Eq. (2.48), H (5) is the unilateral
ransform of k(7). Similarly, if the system is noncausal, hir) is noncausal, and £ (&)
hilateral transform of h{t). ; : !
“We can apply the time-convolution property to the LTIC inpui—output relationship
x(t) + f(t) 1o obtain
Yis) = X{s)H(s)

The response (1) is the zero-state response of the LTIC system to the input x (7). From Eq, {
it follows that e :

Y(s) _ L[zero-state response]

X(s) L[input]

~—% This may be considered to be an alternate definition of the LTIC system r._-:anst‘er function
" Ttis the ratio of the transform of zero-state response to the transform of the input.

His) =

Using the time-convelution property of the Laplace transform (o determine ()
e (1) e ui).

From Eq. (4.28), it follows that

- /i 1 B 1 [1 i 1]
C{ﬂ“[sﬂa}(s—b}_a—b s—a §—08

The inverse transform of this equation yields

() = ——(e" ~ Eu(t)
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Tlm.l Ihe Laplace Transform Properties

Operation x(#) Xis)
Mdiu‘uﬁ- By x )+ xaie) Hi(e) + Xals)
Scalar multiplication kxii) kX (%)
d .
Time differentiation d—f sX(s) — x(07)
ex 2 {s) — 5x{07) — £(07)
di?
el SE ) — six(07) — ax(07) — %(07)
dr
d'x X () — 3t r)
dr® k=1
4 1
Tirne integration L_ x(z1dz ;X(:;}
I dr 1i'r.'(.:j+lft'- xi{f)dt
o x(T) ; Sl
Time shifting xit — tylult — fod X (e ™ =0
Frequency shifting (e Xis — )
dXis)
" Freguency —ixit) ds
differantiation 0 2
x
Frequency integration i f X(zhdz
1 K
Scaling xiat),a =0 ER =
Time convelution X (0 % 8] X (s)Ka(sh
1
Frequency convolution ay{rxait) Err_jx]m ® Hals)
Initial value x0T ‘]._l.rgl.g.:.i’{s} {n = nrl
Final value o) !'—]E s X (5} [poles of 5.X (s) in LHP]

INITIAL AND FINAL VALUES L
In certain applications, it is desirable to know the values of x(r) as f — 0 and r 7 o0 gn&E:l
and final values of x(r)] from the knowledge of its Laplace transform X (s}, Initial an
value theorems provide such information. . it _
The initial valwe theorem states that if x(r) and its derivative dx/dt are both Laplace
abile, then
u.-mu_l.‘ann LhBI _

w lim s X () {4.33]

Page 30 of 32



Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.

Chapter 3 Frequency Domain Analysis - Laplace Transforms.

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

lim ¥ (1
[+ e
provided sX (s) has no poles in the RHP or on the imaging
me Ea, (4.248)
e B ( ) o fm i oy
SX{S}_._X.(-E_' LT S
e
i “’dr+f e
[ i
= dx
" £
:x{l]|n_+L+ Ef di
. o, = dx L V/
= x(0%) =x(0 )+ | ——edt
Saen e dt
Therciore ! SR i
sX(5) =0 ]|+fIJ+ Ee t
and

! S
r1_ipn‘;1n.zz.‘1((.r,:;'n:xl{l:]'*}lJl—J‘Ing ];+ :i_rf "t
X

o f : i
=.r{ﬂ""}+/ il ]Ln;tﬂe ’)d:

+
I:l - =

= x(0F) Lo

Comment. The initial value theorem applies anly if X (s) is strictly proper M < N I Ibecause
for M = N, lim,_, o s X (s} does not exist, and the theorem does not appl}r.—[l‘n s!u:“h a csum.we. can
<till find the answer by using long division to express X (s) as :f;?u}ynomlai in & plus i strictly
proper fraction, where M < N. For example, by using long division, We can express

P+ +54+1 25
L il Bvangh it i
P 4+2s+1 il

The inverse transform of the polynomial in s is in terms of 81}, and_its_ derivar:i\r{:ﬁ, wi
zero at ¢ = 0, In the foregoing case, the inverse transform of & i lis 3(rj_+ a(1). .
desired x(0) is the value of the remainder (strietly praper) fragtion, for which the iniil
theorem applies. In the present case

—25t
= i —_—_—=
A=l e

To prove the final value theorem, we let 5 — 0 in Eq. (4.24a) to obtain

ks : > dx Lith b xd—xdr
!ﬂ[sf{.e]—x(ﬂ }JZEI_]:[E’ j; Ee F= iy

= x(n| = lim x(r) = ¥(07)

a deduction that leads to the desired result, Eq. (434,
vidwd
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Jue theorem applies only i the poles of X (x) are in the LHE (ineluding
_ pulu in the RELE, + (1) contains an exponentially growing term and x{2c)
11 there is a pole on the 1mugmar}- axis, then .x{f} contains an mullﬂt;ng Lerm

Determine the initial and final values of y(t) if its Laplace transform ¥ {s) is given by

¥(s) = s(if—i{—j%
Equations (4.33) and (4.34) yield
¥(0") = lim sY(s) = lim ;Lj;{% o
y(o0) = lims¥(s) = liry é%% b

End of File.
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