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Chapter 3 Frequency Domain Analysis - Laplace Transforms.
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Tables from Linear Systems and Signals 2nd ed by B.P. Lathi.
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TABLE4.2 The Laplace Transform Properties

F}peratinn x(1) X(s)
Addition X)) + x2(1) X1 (5) + Xais) oy
Scalar multiplication kxit) kX (s)
{ ) i dx
Time differentiation T sX(5)—x(07)
d*x
T 52X (5) — sx(07) — x(07)
dix .
— s*X(8) — 5%x(07) — sx(0) — ¥(07)
dflx i ] i j:
o 5" X (5) —Es"‘ x¥=gy
Time integration / x(t)dr 1 Xix)
Jo- o
s 1 1 1o
f x(t)dr -X(s5) + —f x(t)dt
- ¥ F =
Time shifting 2t — tg)u(t — ty) Xis)e s =0
Frequency shifting x(p)en Xz —s)
Frequency —tx(t) B
differentiation a3
& ] ; x(r) i
‘requency integration —— f X(z7)dz
!
o 1 5
Scaling xlat),a =0 X (—)
a a

Time convolution

x1() * xa2(1)

X (s)Xa(5)
1

Frequency convolution X () TX[{” * X1(5)
T
Initial value x(0T) lim sX (5} (n = m)
Final value xloo) lina sX(5) [poles of s X (s) in LHP]
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Notes from textbook:

* 3.11 'I'I“E‘_'IE‘L“_‘;_“'S“”'"fj(

We have seen earlier that the output of a Linear Time Inviriant (LT} system can be

expressed as the convolution of the input with the impulse response as show o the block
diagram of Figure 3.29.  This assumption is made provided that the convolution 15
expressed always in the time domain. The Laplace transform, on the other hand, converts

the impulse response of the system [rom the time domain to the frequeney domain.

§ x(2)—» b » (1)

Figure 3.29: A typical LTI system

The Laplace Transform of a system can be calculated using the following formula; if
A1) s the impulse response of a system, the Laplace Transform of h(t) can be

expressed from this formula.
o) 4
H(s)=[ h(f)e™ dt (Equ3.9)
0

For a given fi(s), the Inverse Laplace Transform can be evaluated also by partial fraction

expansion.

Example 3.9

j::\/—_l Ww:=27 i:=j
S:i=jew
a:=2 'a' is a constant

it is the a=2 in the solution's denominator (s+a) or (s+2)
@ (1) unit step Prime built-in function
h(t):=e " & (t)

H(s):= f h(t).e” "dt — % Laplace Transform - Answer
0 S+

H (s) =0.046 —0.144513j

o (1)

-10-8-6-4-2 0 2 21 éi él'OV

t
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Example 3.10 - Inverse Laplace Transform

2
H(s)i=——
(s) "

Now to go back to the time domain solution for the inverse

The Lapalce transofrm looks like the solution in example 3.9, by
inspection it looks like the H(s) is equal to

H(s) = 2 (1/s+2) => 2 (1/s + a)

So the time domain inverse Laplace is

2 en-2t u(t)
o invlaplace "
H()=—— ———— 2. Correct Answer.
s+2 Use the Evaluation Operator and

fill in the label invlaplace

Example 3.11 - Poles and Zeros
clear(j) clear(i)
Poles and zeros for system stability see textbook on systems

A system's transfer function is given below H(s) plot the poles and zeros

H(s)=—5+2)
S.(s+1)-(s—1)

Define the poles and zeros as a vector:

.2 number of poles is 3, since there are three 's' in the function
.0 0 to 0 since there is only one '0’

p:=0.
z:=0.

From the function H(s) the poles and zeros are:
Poles: s(s + 1) (s- 1)

s=0
s+1=0
s-1=0

s0=0, s1=-1, and s2= 1 by setting each term = 0 in the denominator

Zeros: (s+2)
s0 = -2 by setting the numerator term(s) equal zero
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The pole and zero vectors are populated:

ORIGIN:=0

j=V-1
[0+)-0] [ O]

pole:=| —1+j.0| pole=|-1] pole =—1
[ 1+j-0 ] [ 1]

zero:=[—2+j-0] zero=[-2] zero =—2

Now plot taking real and imaginary parts into consideration
Since s = j w, we have real and imaginary parts, so the poles and
zeros are set similarly

Remember Prime/Mathcad has partial fractions function

The y axis is the imaginary axis in the plot, x axis the real part.

0.8+
0.6+
0.4+
0.2+

o

|

.
o
[N

Re (pole)

Re (zero)

Example 3.12 - Poles and Zeros
24 (1)

H(S):: \2}

Its a tedious task to get the roots of the equations above for the numerator
and denominator.

So we use the 'polyroot’ function in Prime/Mathcad
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For polyroot a vector has to be created filling in the values for each power of and constant.

The top most element is the constant then starting with the variable, then variable
squared,.....etc.

[1] element 0 = 1/2 - constant
| 2 | 1=0 -s
2:2!0! 2=1 -s"2
[1]
Zeros:=polyroots (Z) Zeros= [_0'71j ]
| 0.71j |
(1]
| 2 | element 0 = 1/2 - constant
P=|1| 1=1 -s
| 1 | 2=1 -s"2
11] 3=1 -s"3
[-0.65 1
Poles:=polyroots (P) Poles=| —0.18-0.86j |
| —0.18+0.86j |
0.91‘ x
0.75+ °
0.6+
0.45+
0.37
0.15+
0+ x
N s e LR
-0.451
o6l > Im (Ze[os) ‘
-0.751 °
-0.91 *

Re (Poles)

Re (Zeros)
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Frequency Response in The Lapalce Transforms.

Example 3.13

H(s):= L System's transfer function

33 +2-s2 +2.5+1

Plot the frequency response of the system and show the 3-dB:
j=V-1

Si=jew

w:=0.01,0.02..20 this line has to be placed after s = jw

Next setup the transfer function H(s) to H(jw):

1

H(w):= = -
(j.w) +2.(j.w) +2.(j.w)+1

To plot the transfer function use the formula 20 log | H(s) | - note it is magnitude of |H(s)]:
Set plot in Logrithmic scale on x-axis w.

1
Himag_db (w):=20-log |(I

\l(j.(,‘))3 +2.(j.w)2 +2.(j.w)+1

A
||
1)

—184
-274
— 364

45 Hmag_db (w)

—54+

—634

—724

-814

v

1. 120 ~ 1. 110~ 1 1-10 1.10°7

Plot above the horizontal marker is set at 3dB.
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Next break the plot into the real part plot, and the phase in degrees plot.
Do NOT take the magnitude for the real, imaginary, and phase part.

0.8+
0.6+
0.4+
0.2+

02 Re (H (w))

-0.4
=0.61
-0.81

1. 120~ 1. 110 ~ 1 110 1.10°7

0.8+
0.6+
0.4+
0.2+

Im (H ()
-0.41
-0.61
-0.81

—14

v

1120~ 1110~ 1 1+10 1107

210+
1754
140+
105+
70+
35+

~351 B TR arg(H(w)).(@\,
\ 7 )

—704

-1051
~1404

-175+
—-2101

Phase in degrees - multiply by 180/pi
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Examples from Linear Systems and Signals 2nd Edition. Oxford. By B.P. Lathi.

Example 4.1
For a signal x(t) = e™-at u(t), find the Laplace transform X(s) and its region of convergence.

clear(s) clear(X)

J=V-1 Wi=2T i:=]
Si=jew
a:==1 'a' is a constant

it is the a=1 in the solution's denominator (s+a) or (s+2)
u(t):=if(]t|>0,1,0) unit step function

x(t):=e " eu(t) d(t) delta function is a Prime function

0.9
0.8

0.7

0.6

0.5

0.4 X (t)

0.3 — 1
0.2

0.1

Fal

q
e
w
o
©
=
N
=
wl
=
@
N
(=Y
IN]
I
N
~
w
=]
v

t

X (s) ::fx(t) e tdt - Laplace solution
; s+1

There is a pole at s = -1, no zeros.
So the region of convergence is defined on the x-axis from -1 to infinty

Next a negative sign in x(t) and u(-t)
x2(t):=—e " "eu(=t) d(t) delta function is a Prime function

of ,
o

~0.1
~0.2
~03
~0.4
~05
~0.6 X2 (t)
~0.7 S S L S
~0.8
~0.9

-1
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Laplace solution

X2(s)::fx2(t)-e_s'tdt—> e
] s+1

There is a pole at s = 1, no zeros.

-(s+1)=-s-1;s=1

So the region of convergence is defined on the x-axis from 1 to -infinty
The valus of 'a' is a +ve of -ve integer value

Note: Page 385 - The Laplace transforms for the signal e”™(-at) u(t) and -e”™(at) u(t)
are identical except for their region of convergence. Therefore for a given X(s) there
may be more than one inverse transform, depending on the ROC region of occurence.
In other words, unless the region of convergence is specified there is no one to one
correspondence between X(s) and x(t). This fact increases complexity in using Laplace
transform.

Example 4.2

Determine the Laplace transform of the following:
a). d(t) delta function

b). u(t) unit step function

c). cos wO t u(t)

a)

j::\/—l w::2-7'r i::j S::jow nN:=w m:=n
clear (x) clear (X)

x(t):=6(m,n) return 1 when m=n

X (s) ::fx(t)-e_s'tdt
0
The transform tables show the Laplace transform of delta (t) = 1 for all s.

b).
clear (x) clear (X)
u(t):=if(]t|>0,1,0) unit step function

—(s-t)

x (1) :=u(t) il
1 tooo

X(s)::fx(t)-e_s'tdt — ——
i s s

From tables the transform is 1/s forRe s > 0

c).
clear (x) clear (X) clear (x2)
j:: —1 w0222-7T i::j S::j.wo

u(t):=if(]t|>0,1,0)
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e_cos(t) 1. (&' "+ ") cosine term in exponential form
2

Xl (t) ::%. <ej -wo-t> . u (t) X2 (t) ::%. <e—j -WO-t> . u (t)

From the tables no 8a:

x1(t) = 1/2 ( s/ (s™2 w0™2)
x2(t) = 1/2 ( s/ (s™2 + w0™2)

X (1) :=x1(t) +x2(t)
X (s):= [ x(®)-e "t

X(s) =s/ (s™2 +w0”™2) Answer - when real part of s >0. See tables.

Exercise 4.2
x(f)
¥
;
0 2 t>
a)
j::\/—l w::207T i::j S::j.w
clear (x) clear (X)
tt:=0,1..20
u(t):=if(0<t<2,1,0) return 1 when tis between 0 and 2
x(t):=p(t)

X(s):= J x(t)-e"dt  cannot intergrate a conditional variable
0

Use the unit step function from 0 to 2

Start at 0 and subtract the rest starting at 2
t=0to 2 =1, elsewhere O

At t=0:

x1(t):=u(0)=1
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lim e €
X1(s) ::fxl(t) et dt — 1 _t—oox
; s s
X1(s) = 1/s
At t=2:

x2(t):=u(2)=1

X2(s):= J x2(t)-e " ?dt—e > *.0co  substitue t with 2 --> e”-s2
0

X2(s) is shifted to 2, its = 1/s at 0 not at 2 with the value of at 2 to infinity of e™-2s

X2(s) = 1/s (en-2s)

0 2| i
1P ) ——
P e—

x(t-->0-2) =x0 - x2
X(s) = X(0) - X(2)

X(s) = 1/s - 1/s(e™-2s)

X(s) = 1/s( 1 - en-2s) Answer - check with your results.
for all s
b).

This signal is shiftet by t=2
1 Apply shift property from tables.

¥
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Shiftt =2 --> e-2s
X(s) = 1/s( 1 - e™-2s) x Shift

X(s) = 1/s( 1 - en-2s)en-2s Answer - check with your results.
for all s

Exercise 4.3

Find the inverse Laplace transforms of the following:

j::\/—_l i:=j wi=2e7 Si=jew

i . | sinh{2°1))

Hl(S)::ﬂMﬁ7.e?.lcosh(5.t\l_ \ 2 }I
s°—s—6 \ (2) 7 )

Prime/Mathcad solution above - not pleasant!
Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts

clear(s)  Make sure s had been cleared cannot have s = jw for the parfrac evaluation

7.s_p bparfrac 4 3
A —

32_3_6 S+2 3—3

Now apply Laplace transform to each term
SS:=j.w
4 invlaplace 4. A(t)
—_— 7

Hila(s):=—— H1la(s)
s+2 s+2

From Laplace transform table - no 5
4[1/(s+2)] = 4en-2t
invlaplace o,
H1b(s)i=—>_ H1b (s) ———— 3- 40
s+2 s+2
From Laplace transform table - no 5
3[1/(s+2)] = 3en-2t

H1(s):=H1la(s)+H1b(s)

HL(S) =2+
s+2 s+2
With a unit step function u(t) as part of the input signal the transfer function H1(s) in
exponential form now:
x(t) = (4en-2t + 3e™3t)u(t) Answer - Inverse Laplace
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b).

.o2 invlaplace _ -
H2(s)::223—+5——>2-A(t)+7-e ‘_13.e
S +3.s+2

2.t . .
- Prime solution

Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts
clear (s) Make sure s had been cleared it cannot be

s = jw for the parfrac evaluation

=2 arfrac
2.s"+5 barirac 7 13 _,

s°+3.5+2 s+l s+2

Apply Laplace transform table no 5

7/(s+1) =7 x (en-at) a=1s0 7 x (en-t)
13/(s+2) = 13 x (e™-at) a = 2 s0 13 x (e™-2t)
Apply Laplace transform table no 1

1= d(t)
2 = 2d(t)

x(t) = [ 2d(t) + 7 (e™-at) - 13 (e™-2t) ] u(t) with u(t) Answer Inverse Laplace

c).
6-(s+34)

H3(s):=
s+(s® +10.5+34)

Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts

clear (s) Make sure s had been cleared it cannot be s
= jw for the parfrac evaluation

6-(s+34) parfrac 6 6.s+54

s-(s* +10-5+34) S s*+10.s+34

We proceed fresh using quadratic factors method:
Multiply both sides of equation by the denominator term
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6(s + 34) = kil + As+B
s(s™2 + 10s + 34) S (s™2 + 10s + 34)

k1 = 6 from the partial fraction prior by Prime
6(s + 34) = 6(s™2 +10s + 34) + s(As + B)

Equating coefficients of s™2 and s on both sides

6sN2 + AsN2

-6s™N2 = AsN2

A=-6

6s = 60s + Bs

Bs = s(-60+6) = -54s
B =-54

Now in the simpler form:

PRNLINIC IS
S s"+10.5+34

Using transform table no 2 and 10c:

For 10c the parameters are:

A=-6,B=-54 : -
a: 10 = 2a r_x/ﬁvﬂ‘""ﬁ — 2ABa
a=5 —_ c—al
b = sgrt(c - a™2) = sqrt(34-25) = sqrt(9) Ag — B
b=3 f=tan! [ ———
Ave — a?
A:=—6 B:=-54 a:=5 b:=3 c:=34
- - b=+c—a?

(A .c+B _2.A.B.a\_
r:= | > |—10

\ c—a )
r=10 |
A.a—B=24 A.Vc-—a’=-18

il (4) , _
24/-18= 4/-3 0,:=atan .\_3/. 0,=-53.130102 deg
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Or plugging straight into the formula:
( A-a—B \_
\A-Ve—a? )

f:=atan —53.1 deg

Where is the angle -53.81 located?
Right now at the lower right quadrant at 3 - 4j but the angle is pointing to the other
direction so we rotate it anticlockwise 180 degrees to the vector -3 + j4 its conjugate.

By Bpos =180 deg+6=126.9 deg

Now forming the laplace inverse equation:
x(t) = [6 + 10e™-5t cos(3t +126.9 deg)] u(t) Answer - Inverse Laplace

The solution Prime provided Not the exact same.

) invlaplace 5. 5.
H3(s):= f (s+34) — 1, 6-8.sin(3-t).e > '—6.cos(3-t).e "
s+(s® +10.5+34)
—B.o_ invlaplace 1 =
H3(s)::£+ 5 6-5—54) — 1, 6-8-sin(3-t).e > '—6.cos(3-t).e """
S s"+10.s+34
d).
Ha(s)=— 0510
(s+1):(s+2)

Apply PARTIAL FRACTIONS in Prime/Mathcad using function 'parfrac'.
To break the function into simpler parts
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g.s+10  Pparfrac 2 2 6
— — +

s+1 s+2

H4 (s):=

(s+1)-(s+2) _(s+2)2 (s+2)

Clean results above ready to use

5 eMult)
5= A
ALt 1
6 teMult) m
n!
7 t"eMut)

Use nos 5, 6, and 7 above to finish the solution, check to the
correct answer generated by Prime/Mathcad.

H4(s)::2—2— 22+ 63

s+1 s+2 (s+2) (s+2)

invlaplace ~ 1 1P =

H4(s) ———— 2.¢e ‘2.0t tee 3.t e Answer Inverse Laplace
Exercise E4.2
)
j::\/—l Wi=27 i::j S::j-w
x(t):=10.e " ".cos (4 t+53.13 deg) Find the Laplace Transform
10a re cos (bt 4 0) ult)

Use transform no 10a from the table:

r:=10 a:=3 b:=4 0:=53.13 deg
r.cos(f)-s+a-r-cos(@)—b-r-sin(6
X () = 005 0)- (9)=b-r-sin(0)
S +2-a-s+<a +b )
X (w) i= 10-cos(9)-sz30-cos(9)—40-sm(9)
S +6.5+25
10-cos(#)=6  30-cos(9)=18 40.sin () =32

Page 17 of 28



Signals and Systems Using Mathcad (Tutorial) by Derose and Veronis.

Chapter 3 Frequency Domain Analysis - Laplace Transforms.

Entered by: Karl S Bogha Dhaliwal - Grad Cert Power Systems Protection and Relaying Uni of Idaho. USA.
BSE - Arkansas State U 1990. BSc - USAO Oklahoma 1986.

6.5+18—-32
X(w)::z—
S +6.5+25
X (w) ::26'5—_14 Answer
S +6.5+25
i)

Find the inverse Laplace transform of the following:

a). (s+17) / (s™2 + 4s -5)

clear (s)
X(W):: 28+17
S +4.s-5
s+17 parfrac 3 2
—_— | — p—
s +4.5-5 s—1 s+5

Apply no 5 in the list:

5 e*ulr)
x(t): 3en™(st) - 2e(-5st)
x(1): [3e™(st) - 2e(-5st)] u(t) Answer - Inverse Laplace
Using Prime/Mathcad:

3 o invlaplace ¢ 154

_ — 3. —2-.e Verifies Answer
s—1 s+5

b).

j::\/—_l w:i=27 i::j S::j-w
clear (s)
3.5-5

X(w):= -
(s+1)-<s +2-s+5)

3.5-5 parfrac  5.545 2
_)

(s+1)-(s* +2.5+5) s°+2.s+5 S+l
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Apply Laplace transform number 10c to first term, and number 5 to second term.

2.s+5
s°+2.545
10c =51 cos (bt + 0 Ak
re~™ cos (bt Yult) PR P
a:=1 c:=5
A:=2 B:=5
( - \
\/A .c+B’ 2A B. a|_25
)
b:=V <c—a2> =2
f:=atan (u\ =-36.9 deg next verify correct direction
\A-\/c—a2 ) of the angle
A.-a-B=-3 A.Vc-a’=4
0:= atan.( \.:—36.9 deg
\ 4]
Correct.
-36.9 deg
i3
4 4-j3
x(t) = [ 2.5e™(-t) cos(2t-36.9deg) -2e™(-t) ] u(t) Answer - Inverse Laplace

Verify quadratice term with Prime/Mathcad:

. invlaplace . Qi .
22 s+5 © ot (COS(Z-t)+3 sin(2 t)\I
s +2.5+5 \ 4 /

This instance for me the table solution is more suitable!
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c). —
j::\/—l wi=2eT i:=] Si=jew
clear (s)
X (w) i= 16.5+43

(s—2)-(s+3)2

Expecting some combinations of from the table.

16.5s+43  parfrac 3 3 1
_)

— + >
s—2 s+3 (s+3)

(s—2)-(s+3)

Prime partial fraction resulted with clear fractions, the time domain
inverse transform expection is encouraging.

3
— 3 en(2t
15 (21)
_B 3en(-2t)
s+2
! te”(-3t) from no 6 in table
(s+3)

x(t): [3 en(2t) + 3e™(-2t) + te™(-3t)] u(t) Answer - Inverse Laplace Transform

Next notes on properties of Laplace transforms
from Signals and Systems 2nd ed by B.P. Lathi.

There are specific topics such as Bode Plots, Filters, Solutions of Differential and Integro-
Differential Equations in the textbook in detail. These are specific to a course's content like
Circuit Networks, Filters, Differential Equations, Controls,....., which you can continue on your
own in context to those course.

The main objective:

1. to get started with Laplace for engineering problem solving
2. to get over the main hurdle in Laplace Transforms mathematics and using Prime/Mathcad.
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4.2-4 The Time-Integration Property
The time-integration property states that if
x(1) = X(5)

then! i
X
fx(‘r)dr — _is—)
0= £
and jﬂ
] x(rydr
f z(r)dr &= ) e co sor R intal
i —ma 5 5

tThe dual of the ime-integration propesty is the frequency-integration property, which states thai
1os}
:E—” s f X(z)dz

Proof, We defing ‘
2ty = f x(r)dr
i D *
go that .
Ed-ig(f) —x(r) and g0)=0 v’
Pric : ( : .'
glf) = Gls) v~
then /
X(St'l =L [%g{f}] = 5G(s) — gl07) = sGis)
Therefore b
Gls)= == v
ar

X
f x(r)dr &= ﬁ v
- 5
To prove Eq. (4.26), observe that A A

D‘r’___z —_‘ﬁ_ey?ei%
f x(r}dr——-[ x(‘r}dr+f rdr e
-00 - 1] e st e

Note that the first term on the right-hand side is aconstantforf = 0. Taking the Laplace transform
of the foregoing equation and using Eq. (4.25), we oblain :

i O x(ndr | X(s)
| f I{T)GTI%:}—“S—'“-F‘—S i

SCALING

The scaling property states that if :

xit) = X(s)
then fora = 0 : :
~F(= 4.27)
x(at) <= A r(a)

The proof is given in Chapter 7. Note that a is restricted to positive valjues because if x(r) is
causal. then x{at) is anticausal (is zero forr = 0y for negative a, and anticansal signals are not
ermitted in the {unilateral) Laplace transform. g

it ccailithat x(at) is the signal x(r) time-compressed by the factor ﬂ,@i(_ﬂl_l%%
Fxgunde along the s-seale by the same factor & (see Section 1.2—2).(’[‘hc scaling firoperty s o

i hait time compression of a signal by a factor a causes expansion of its Lapfacle transform in 2

' seacale by the same factor Similardy, time expansion x(f) causes compression of X(s) in

i asscale by the same facton
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Another pair of properties states that ' ;
() = Xi(s) and  x:(8)

then (fime-convolution property)
21(0) # x3(8) = X1(s)Xals) ¥

and ( frequency-convolution property) s
xi(E)xa(r) = hijm () % Xals)]

Observe the symmetry {or duality) between the two propertics. Proofs of these properdl

postponed (o Chapter 7. ; : .
Equation (2.48) indicates that H (s), the transfer function of an LTIC system, is the
transform of the system’s imnulse response h(r); that is, Lingar Fime
LRgarhan
hit) < Hs) Coriiinpts Hime

If the system is causal, k (f) is causal, and, according to Eq. (2.48), H (5) is the unilateral
ransform of k(7). Similarly, if the system is noncausal, hir) is noncausal, and £ (&)
hilateral transform of h(1). : : .
“We can apply the time-convolution property to the LTIC inpui—output relationship
x (1) + k) 1o obtain
Yis) = X{s)H(s)

The response (1) is the zero-state response of the LTIC system to the input x (7). From Eq, {
it follows that e :

Y(s) _ L[zero-state response]

X(s) L[input]

~—% This may be considered to be an alternate definition of the LTIC system r._-:anst‘er function
" Ttis the ratio of the transform of zero-state response to the transform of the input.

His) =

Using the time-convelution property of the Laplace transform (o determine ()
e (1) e ui).

From Eq. (4.28), it follows that

- /i 1 B 1 [1 i 1]
C{ﬂ“[sﬂa}(s—b}_a—b s—a §—08

The inverse transform of this equation yields

() = ——(e" ~ Eu(t)
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Tlm.l The Laplace Transform Properties

Operation x(#) Xis)
Mdiu‘uﬁ- By x )+ xaie) Hi(e) + Xals)
Scalar multiplication kxii) kX (%)
d .
Time differentiation d—f sX(s) — x(07)
ex 2 {s) — 5x{07) — £(07)
di?
el SE ) — six(07) — ax(07) — %(07)
dr
d'x X () — 3t r)
dr® k=1
4 1
Tirne integration L_ x(z1dz ;X(:;}
I dr 1i'r.'(.:j+lft'- xi{f)dt
o x(T) ; Sl
Time shifting xit — tylult — fod X (e ™ =0
Frequency shifting (e Xis — )
dXis)
" Freguency —ixit) ds
differantiation 0 2
x
Frequency integration i f X(zhdz
1 K
Scaling xiat),a =0 ER =
Time convelution X (0 % 8] X (s)Ka(sh
1
Frequency convolution ay{rxait) Err_jx]m ® Hals)
Initial value x0T ‘]._l.rgl.g.:.i’{s} {n = nrl
Final value o) !'—]E s X (5} [poles of 5.X (s) in LHP]

INITIAL AND FINAL VALUES o
In certain applications, it is desirable to know the values of x{f) ast — Oand ¢ i gn&E:l
and final values of x(r)] from the knowledge of its Laplace transform X (s}, Initial an
value theorems provide such information. . it _

The initial valwe theorem states that if x(r) and its derivative dx/dt are both Laplace

lrmlfannnhla.lﬂiﬂlll_ {

w lim s X () {4.33]
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...L TIGCR TR | i then

lim ¥ (1
r_."q | 1 g
provided sX (s) has no poles in the RHP or on the imaging
me Ea, (4.248)
e Ee. ( ) o fm i oy
sXix) —__.r-(_z_- T 1
- |
d—xe“’dr+f 2L e dt
= dt o At
= dx
o o
:x{l]|n_+L+ Ef di
. N ™= dx L V/
= x{(0%) = x{07) + g it
i [
Therciore 5 f"c o i
sX(5)=207)+ [T
and

F—+00

. e 1
1im.sX(s}=xl{¢]+)+jIHg ];+ e " dl
X

= : it
=x{ﬂ"‘}+/ < (Jim e “)d:

+
I:l - =

= x(0F) Lo

Comment. The initial value theorem applies anly if X (s) is strictly proper M < N I Ibecause
for M = N, lim,_, o s X (s} does not exist, and the theorem does not appl}r.—[l‘n s!u:“h a csum.we. can
<till find the answer by using long division to express X (s) as :f;?u}ynomlai in & plus i strictly
proper fraction, where M < N. For example, by using long division, We can express

P+ +54+1 25
Ll il T = e
P 4+2s+1 il

The inverse transform of the polynomial in s is in terms of 81}, and_its_ derivar:i\r{:ﬁ, wi
zero at ¢ = 0, In the foregoing case, the inverse transform of & i lis 3(rj_+ a(1). .
desired x(0) is the value of the remainder (strietly praper) fragtion, for which the iniil
theorem applies. In the present case

—25t
= i —_—_—=
A=l e

To prove the final value theorem, we let 5 — 0 in Eq. (4.24a) to obtain

= dx st g * dx L

i = =1 — g o = e

!ﬂ[sf{s] 2071 51-]}[': j;_ dré iy
= x(n| = lim x(r) = ¥(07)

a deduction that leads to the desired result, Eq. (434,
vidwd
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e theorem applies only i the poles of X (x) are in the LHE (including
" pulu in the RELE, + (1) contains an exponentially growing term and x{2c)
ere is a pole on the imaginary axis, then x(¢) contains an oscillating term

However, il there is a pole at the origin, then x (1) containg a constant

Determine the initial and final values of y(t) if its Laplace transform ¥ {s) is given by
10(2s + 3)

ey = e L ar

Equations (4.33) and (4.34) yield

10(2s + 3)
Vgl e ) L
0t Illrl s¥{z) = ] o (52 4 25 +5)
10(2s + 3) 0
E,:G} = llmSY{-ﬂ o ]1 i} m

Next a short introduction to Laplace and Heaviside.
Laplace met Napolean (French Military Leader)
Heaviside was ignored for several of his discoveries.
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- A HISTORICAL NOTE:
- MARQUIS PIERRE-SIMON DE LAPLACE (1749—1827)
The Laplace transform is named after the great French mathematician and astronomer Laplace,

who lirst presented the transform and its applications (o differential equations in a paper published
in 1779,

tried to explain the universe as a pura muchanium. In hiy
mechanics), which completed the work of Newton, Laplace uned ma
subject the solar system and all heavenly bodies to the laws of motion and the p .
gravitation. Newton had been unable to explain the irregularities of some heavenly
in desperation, he concluded that God himself must intervene now and then to pre
catastrophes as Jupiter eventually falling into the sun (and the moon into the earth) as i
by Newton’s calculations. Laplace proposed to show that these irregularities would
themselves periodically and that a little patience—in Jupiter's case, 929 years— wi
everything returning automatically to order; thus there was no reason why the solar and (h
systems could not continue to operate by the laws of Newton and Laplace to the end of

Laplace presented a copy of Mécanique céleste to Napoleon, who, after reading ()
took Laplace to task for not including God in his scheme: “You have written this huge
the system of the world without once mentioning the author of the universe.” “Sire,”
retorted, “T had no need of that hypothesis.” Napoleon was not amused, and when he
this reply to another great mathematician-astronomer, Louis de Lagrange, the latter rey
“Ah, but that is a fine hypothesis. It explains so many things.”>

Napoleon, following his policy of honoring and promoting scientists, made Laplace
ister of the interior. To Napoleon’s dismay, however, the new appointee attehlpted to bri
spirit of infinitesimals” into administration, and so Laplace was transferred hastily to the
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OLIVER HEAVISIDE (1850—1925)

Although Laplace published his transform method to solve differential equations in 17
method did not catch on until a century later. It was rediscovered independently in &
awkward form by an eccentric British engineer, Oliver Heaviside (1850-1925), one of th:
figures in the history of science and engineering. Despite his prolific contributions to ¢l
engineering, he was severely criticized during his lifetime and was neglected later to the pu
hardly a textbook today mentions his name or credits him with contributions. Neverthel
studies had a major impact on many aspects of modern electrical engineering. It was He
who made transatlantic communication possible by inventing cable loading, but no on
mentions him as a pioneer or an innovator in telephony. It was Heaviside who suggested
of inductive cable loading, but the credit is given to M. Pupin, who was not even responsi
building the first loading coil.” In addition, Heaviside was®

* The first to find a solution to the distortionless transmission line.

* The innovator of lowpass filters.

¢ The first to write Maxwell’s equations in modern form.

* The codiscoverer of rate energy transfer by an electromagnetic field.

THeaviside developed the theory for cable loading, George Campbell built the first loading coil, &
telephone circuits using Campbell’s coils were in operation before Pupin published his paper. In the
fight over the patent, however, Pupin won the battle because of his shrewd self-promotion and the pou
support for Camphbell.,
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* An early champion of the now-common phasor analysis.

* An important contributor to the develupment of vector analysis. Iu fact, he essentially
created the subject independently of Gibbs.”

* Anoriginator of the use of operational mathematics used to solve linear integro-differential
equations, which eventually led to rediscovery of the ignored Laplace transform.

* The first to theorize (along with Kennelly of Harvard) that a conducting layer (the
Kennelly—Heaviside layer) of atmosphere exists, which allows radio waves to follow
earth’s curvature instead of traveling off into space in a straight line.

+ The first to posit that an electrical charge would increase in mass as its velocily increases,
an anticipation of an aspect of Einstein's special theory of relativity.* He also forecast the
possibility of superconductivity.

Heaviside was a self-made, self-educated man. Although his formal education ended with
elementary school, he eventually became a pragmatically successful mathematical physicist.
He began his career as a telegrapher, but increasing deafness forced him to retire at the age
of 24, He then devoted himself to the study of electricity. His creative work was disdained by
many professional mathematicians becanse of his lack of formal education and his unorthodox
methods.

Heaviside had the misfortune to be criticized both by mathematicians, who fauliﬁd him for
lack of rigor, and by men of practice, who faulted him for using too much mathematics and
thereby confusing students. Many mathematicians, trying to find solutions to the distortion-
less transmission line, failed because no rigorous tools were available at the time. Heaviside
succeeded because he used mathematics not with rigor, but with insight and intuition. Using
his much maligned operational method, Heaviside successfully attacked problems that the rigid
mathematicians could not solve, problems such as the flow of heat in a body of spatially varying
conductivity. Heaviside brilliantly used this method in 1893 to demonstrate a fatal flaw in Lord
Kelvin's determination of the geological age of the earth by secular cooling; he used the same flow
ol heat theory as for his cable analysis. Yet the mathematicians of the Royal Society remained
unmoved and were not the leastimpressed by the fact that Heaviside had found the answer to prob-
lems no one else could solve. Many mathematicians who examined his work dismissed it with
contempt, asserting that his methods were either complete nonsense or a rehash of known ideas.®

Sir William Preece, the chief engineer of the British Post Office, a savage critic of Heavi-
side, ridiculed Heaviside's work as too theoretical and, therefore, leading to faulty conclusions.
Heaviside's work on transmission lines and loading was dismissed by the British Post Office and
ilght have remained hidden, had not Lord Kelvin himself publicly expressed admiration for it.®

Heaviside's operational calculus may be formally inaccurate, but in fact it anticipated the
uperational methods developed in more recent years.” Although his method was not fully un-
darstood, it provided correct results. When Heaviside was attacked for the vague meaning of his
perutional caleulus, his pragmatic reply was, “Shall I refuse my dinner because I do not fully
rimd:ntmd the process of digestion

Hlﬂ'illd-ll lived ax o blﬂhﬂln:r hnrmil. ollen in near-squalid conditions, and died largely

1 winstrates the persisios anee and snobbishness of the
s, which does o tospec creaivly unlew I provented in the iric

i e
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