
Page 1 of 10

FEET, INCHES, & FRACTIONS (FIF)
Fun with architectural & structural engineering dimensions

FRED LUSK, P.E.

INTRODUCTION {1}

The purpose of this worksheet is to demonstrate various Mathcad techniques for dealing with length
dimensions in feet-inches-fractions (FIF) format. Because the USA's ponderous conversion to the SI
system is limited mostly to the federal government, most architectural, structural engineering, and
plant piping dimensions in the United States are still provided in the "quaint" US Customary Units
(USCU) system, with the added burden of using FIF values instead of decimal feet like we do for
surveying and most non-structural/non-piping civil engineering.

Because of Mathcad's brilliant handling of units, it deals with FIF values as well or better than any other
tool I know of, including FIF-capable calculators (which, sadly, are not RPN). Unfortunately, Mathcad
does not have an elegant way to display results in FIF format. However, this can be done after a
fashion, as this worksheet shows. Mathcad also cannot display numbers in degrees-minutes-seconds
(DMS) and hours-minutes-seconds (HMS) formats, but that is a topic for another day.

Four data input methods are shown: (a) using Mathcad's FIF function on dimensions provided as
strings or sets of three scalar values, (b) using the simple addition of feet, inches, and fractions, (c)
using a four-element vector, and (d) using a table with multiple FIF dimensions. Two versions of a
program are included to break down decimal lengths into feet, inches, and reduced fractions and then
display the FIF components. Various examples are provided.

This worksheet is based ultimately on an FIF program I wrote in 1984 for the HP-41CX calculator (see
http://www.hpmuseum.org/software/41/41feet.htm). The HP-41CX program performs FIF artithmetic
using a two-register RPN stack, can use ANY counting number as the basis for fractions of an inch, and
can even use trig functions, which is useful for FIF triangle solutions. I later upgraded this program by
simplifying the algorithm, but there is one minor bug I should be chasing so I haven't published it yet.
There is also an HP-42S version of the upgraded program that is also unpublished due to the same
bug. Fixing these programs is on my never-ending to-do list.

In 2004, I created an Excel spreadsheet for adding and subtracting multiple FIF values and for
calculating areas and volumes. I have included a copy of this spreadsheet (in template form) for your
use. An architect friend, whom I supplied this to years ago, told me recently that he still uses it.

The calculator programs are the most clever (the fraction reduction subroutine is based on the FR
program in the famous PPC ROM) and produce the best formatted output, but they are very slow
compared to the virtually instantaneous results provided by the Excel spreadsheet and this Mathcad
worksheet. Because Mathcad natively handles units (unlike Excel) , this worksheet contains the
simplest algorithms of the three. However, Mathcad has the weakest formatting tools for FIF, so this is
one of the few occasions where I think the Excel spreadsheet is more usable than I will ever be able to
make this Mathcad worksheet. On the other hand, if you need FIF capabilities in a Mathcad worksheet,
then there is no substitute for having it, which this worksheet provides.

DATA {2}

Fraction of an inch to round off to:
(Any counting number will do.)

≔FR 16 ≔ ――
1

FR

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 2 of 10

GENERAL PROGRAMS & FUNCTIONS

Greatest Common Divisor:
(Used for fraction reduction in the and function programs.)FT2FIF FT2FIFA

[1,2]
{3}

Function program: ≔GCD ⎛⎝ ,n1 n2
⎞⎠

‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|

while |
|
|
|
|
|

≠n2 0
‖
‖
‖
‖
‖

←t n2

←n2 mod ⎛⎝ ,n1 n2
⎞⎠

←n1 t

n1

Examples: =GCD ((,6 16)) 2 =GCD ((,81 1107)) 27 =GCD ((,17 73)) 1

Convert decimal feet to FIF vector:
(Results are presented in a unitless 4-element vector: feet, inches,
and rounded & reduced numerator, & denomenator.)

{4}

Function program: ≔FT2FIF ((x))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←Feet Trunc ((,x 1))

←FT ――
Feet

←Inches Trunc ((,−x Feet 1))

←IN ―――
Inches

←Numerator Round ((,⋅FR ((−−x Feet Inches)) 1))

←NUM round
⎛
⎜
⎝

,――――
Numerator

0
⎞
⎟
⎠

←n NUM

←f FR

←d GCD ((,n f))

←FIF

FT

IN

―――
NUM

d

――
FR

d

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Examples: =FT2FIF ((2.75))

2
9
0
1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIF ((2.068))

2
0

13
16

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIF ((63.25))

5
3
1
4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIF ((3.750))

12
3
5
8

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIF ((6.333))

0
6
5

16

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIF ((0.167))

0
0
3

16

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 3 of 10

Convert decimal feet to annotated FIF matrix:
(This is similar to the previous program function, but with "units"
included in the results matrix.)

{4}

Function program: ≔FT2FIFA ((x))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←Feet Trunc ((,x 1))

←FT ――
Feet

←Inches Trunc ((,−x Feet 1))

←IN ―――
Inches

←Numerator Round ((,⋅FR ((−−x Feet Inches)) 1))

←NUM round
⎛
⎜
⎝

,――――
Numerator

0
⎞
⎟
⎠

←n NUM

←f FR

←d GCD ((,n f))

←FIF

FT “ft”
IN “in”

―――
NUM

d
“num”

――
FR

d
“den”

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Examples: =FT2FIFA ((2.75))

2 “ft”
9 “in”
0 “num”
1 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ((2.068))

2 “ft”
0 “in”

13 “num”
16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ((63.25))

5 “ft”
3 “in”
1 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ((3.750))

12 “ft”
3 “in”
5 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ((6.3333))

0 “ft”
6 “in”
5 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ((0.167))

0 “ft”
0 “in”
3 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Convert unitless FIF vector to decimal feet:
(The subscripts assume . Mathcad isn't fazed ＝a ORIGIN

by the oddball dimensions in the second example.)

{5}

Function: ≔FIF2FT ((v))

⎛
⎜
⎜
⎜
⎜
⎝

+v
a

――――

+v
+a 1

――

v
+a 2

v
+a 3

12

⎞
⎟
⎟
⎟
⎟
⎠

Examples: =FIF2FT

⎛
⎜
⎜
⎜
⎝

1
2
3
4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

1.2292 =FIF2FT

⎛
⎜
⎜
⎜
⎝

10
15
30
20

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

11.3750

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 4 of 10

Convert FIF vector with units to decimal feet:
(The subscripts assume . The and units are ＝a ORIGIN

defined in the section on Global Definitions.)

{5}

Function: ≔FIFU2FT ((v))

⎛
⎜
⎜
⎜⎝

++v
a

v
+a 1

―――

v
+a 2

v
+a 3

⎞
⎟
⎟
⎟⎠

=FIFU2FT

⎛
⎜
⎜
⎜
⎝

1
3

0
1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

1.25

Examples: =FIFU2FT

⎛
⎜
⎜
⎜
⎝

1
2

3
4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

1.2292 =FIFU2FT

⎛
⎜
⎜
⎜
⎝

10
15

30
20

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

11.3750

Convert annotated FIF matrix to decimal feet:
(The subscripts assume .)＝a ORIGIN

{5}

Function: ≔FIFA2FT ((v))

⎛
⎜
⎜
⎜
⎜
⎝

+v
,a a

――――――

+v
,+a 1 a

―――

v
,+a 2 a

v
,+a 3 a

12

⎞
⎟
⎟
⎟
⎟
⎠

Examples: =FIFA2FT

⎛
⎜
⎜
⎜
⎝

1 “ft”
2 “in”
3 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

1.2292 =FIFA2FT

⎛
⎜
⎜
⎜
⎝

10 “ft”
15 “in”
30 “num”
20 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

11.3750

Convert length in US Customary Units to SI units:
(Rounded to the nearest millimeter. The input can actually be in any
length unit, not just feet.)

{6}

Function: ≔FT2M ⎛⎝Lft
⎞⎠ Round ⎛⎝ ,Lft 1 ⎞⎠

Examples: =FT2M ((1234.56)) 376.294

=FT2M ((6.5)) 165

=FT2M ((1)) 1609.344

=FT2M ((12.3456789)) 12.346

=FT2M ((33.8)) 0.034

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 5 of 10

EXAMPLE CALCULATIONS

(a) Data Entered as Text Strings or Set of Three Scalar Values (FIF function) {7}

Mathcad's FIF function converts a string with FIF formatted text or a set of three scalar values
into a dimensioned value, which can then be used in subsequent calculations. This is an easy
way to convert raw FIF data into numbers. Unfortunately, with the text string, it's a bit
confusing to have the inches symbol followed immediately by the double quote. As in the
preceding section, Mathcad isn't fazed by oddball dimensions.

≔LFIFstr_1 “10'7-9/25"” ≔La_1 =⎛⎝LFIFstr_1
⎞⎠ 10.613333

≔La_1s =((,,10 7 0.36)) 127.360 =La_1 127.360 =FT2M ⎛⎝La_1
⎞⎠ 3.235

=FT2FIF ⎛⎝La_1
⎞⎠

10
7
3
8

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔LFIFstr_2 “3'17-41/16"” ≔La_2 =⎛⎝LFIFstr_2
⎞⎠ 4.630208

≔La_2s =((,,3 17 2.5625)) 55.5625 =La_2 55.5625 =FT2M ⎛⎝La_2
⎞⎠ 1.411

=FT2FIFA ⎛⎝La_2
⎞⎠

4 “ft”
7 “in”
9 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

(b) Data Entered as a Simple Equation {7}

Another easy way to enter FIF data is to create a simple equation like the one below. Again,
oddball dimensions are not a problem

≔Lb_1 +2
⎛
⎜
⎝

+9 ―
5

8

⎞
⎟
⎠

=Lb_1 2.8021

=Lb_1 33.6250 =FT2M ⎛⎝Lb_1
⎞⎠ 854

=FT2FIF ⎛⎝Lb_1
⎞⎠

2
9
5
8

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

“ft”
“in”

“num”
“den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔Lb_2 +3
⎛
⎜
⎝

+17 ―
41

16

⎞
⎟
⎠

=Lb_2 4.6302

=Lb_2 55.5625 =FT2M ⎛⎝Lb_2
⎞⎠ 1411

=FT2FIFA ⎛⎝Lb_2
⎞⎠

4 “ft”
7 “in”
9 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 6 of 10

(c) Data entered in FIF vectors and matrixes {8}

≔x1

0
0
6

16

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔x2

0
5
3

10

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔x3

1
0
7
4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔x4

0
21
3
8

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔x5

0
15.25

0
1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔x6

2
4
6
8

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔Lc_x1 =FIF2FT ((x1)) 0.031 ≔Lc_x2 =FIF2FT ((x2)) 0.442 ≔Lc_x3 =FIF2FT ((x3)) 1.146

=FT2FIFA ⎛⎝Lc_x1
⎞⎠

0 “ft”
0 “in”
3 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_x2
⎞⎠

0 “ft”
5 “in”
5 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_x3
⎞⎠

1 “ft”
1 “in”
3 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔Lc_x4 =FIF2FT ((x4)) 1.781 ≔Lc_x5 =FIF2FT ((x5)) 1.271 ≔Lc_x6 =FIF2FT ((x6)) 2.396

=FT2FIFA ⎛⎝Lc_x4
⎞⎠

1 “ft”
9 “in”
3 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_x5
⎞⎠

1 “ft”
3 “in”
1 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_x6
⎞⎠

2 “ft”
4 “in”
3 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔y1

0
0

6
16

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔y2

0
5

3
10

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔y3

1
0

7
4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔y4

0
21

3
8

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔y5

0
15.25
0
1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔y6

2
4

6
8

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔Lc_y1 =FIFU2FT ((y1)) 0.031 ≔Lc_y2 =FIFU2FT ((y2)) 0.442 ≔Lc_y3 =FIFU2FT ((y3)) 1.146

=FT2FIFA ⎛⎝Lc_y1
⎞⎠

0 “ft”
0 “in”
3 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_y2
⎞⎠

0 “ft”
5 “in”
5 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_y3
⎞⎠

1 “ft”
1 “in”
3 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔Lc_y4 =FIFU2FT ((y4)) 1.781 ≔Lc_y5 =FIFU2FT ((y5)) 1.271 ≔Lc_y6 =FIFU2FT ((y6)) 2.396

=FT2FIFA ⎛⎝Lc_y4
⎞⎠

1 “ft”
9 “in”
3 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_y5
⎞⎠

1 “ft”
3 “in”
1 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_y6
⎞⎠

2 “ft”
4 “in”
3 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔z1

0 “ft”
0 “in”
6 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔z2

0 “ft”
5 “in”
3 “num”

10 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔z3

1 “ft”
0 “in”
7 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔z4

0 “ft”
21 “in”
3 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔z5

0 “ft”
15.25 “in”

0 “num”
1 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔z6

2 “ft”
4 “in”
6 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔Lc_z1 =FIFA2FT ((z1)) 0.031 ≔Lc_z2 =FIFA2FT ((z2)) 0.442 ≔Lc_z3 =FIFA2FT ((z3)) 1.146

=FT2FIFA ⎛⎝Lc_z1
⎞⎠

0 “ft”
0 “in”
3 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_z2
⎞⎠

0 “ft”
5 “in”
5 “num”

16 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_z3
⎞⎠

1 “ft”
1 “in”
3 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔Lc_z4 =FIFA2FT ((z4)) 1.781 ≔Lc_z5 =FIFA2FT ((z5)) 1.271 ≔Lc_z6 =FIFA2FT ((z6)) 2.396

=FT2FIFA ⎛⎝Lc_z4
⎞⎠

1 “ft”
9 “in”
3 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_z5
⎞⎠

1 “ft”
3 “in”
1 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=FT2FIFA ⎛⎝Lc_z6
⎞⎠

2 “ft”
4 “in”
3 “num”
4 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 7 of 10

(d) Data Entered in a Table {9}

The following example mimics my Excel spreadsheet, the purpose of which is to add and
subtract length dimensions and multiples of dimensions to produce a total distance. The data
table can be lengthened or shortened as needed. The table includes the following columns:
COLUMN 1: provides a place to name each dimension for documentary Dim_Name

purposes. This is optional and the cells can be left blank. In this example, the names
represent the spacings between column grid lines on a building structural plan.
COLUMN 2: is the number of times each dimension should be added (positive) or Qty

subtracted (negative) to produce the total length. In this example, certain spacings between
column grid lines are repeated, which is common. The result of this calculation is the distance
between Grid Line A and intermediate Grid Line J1, which we have to come back to from Grid
Line K (Grid Lines J1 & J2 are between Grid Lines J & K). need not be an integer. For Qty

example, the constant can be used to determine the circumference of a circle from a π

dimension representing the diameter. Or, a trig function can be used (e.g.) for sin ((°30))
triangle solutions.
COLUMNS 3–6: , , , and , contains the feet, inch, numerator, and FT IN NUM DEN

denominator values for each dimension. For dimensions that do not have a or an or FT IN

a fraction (i.e. no), enter zero in the appropriate column. For dimensions that do not NUM

have a fraction, can be any value except , but I normally use . It not very common DEN 0 1
for grid line spacings to include fractions of an inch, and especially non-power-of-two
fractions, but I included them here for demonstration purposes. Just like the preceding
examples, the table method can deal with oddball dimensions just fine.

Dimensions to add/subtract
to produce a total length:

Dim_Name

“A-B”

“B-C-D-E”

“E-F-G”

“G-H-I-J-K”

“H-J2-J1”

Qty

1

3

2

4

−2

FT

(())

10

12

15

8

2

IN

(())

0

5

6

9

6

NUM

(())

0

3

0

3

5

DEN

1

4

1

10

32

Index values for data columns: ≔z =length ((Qty)) 5

≔i ‥a ((−+z a 1))

Function to convert a row of table data to a dimension (multiply, then round):

≔Ltable
((,,,,Q ft in num den)) Round

⎛
⎜
⎝

,⋅Q
⎛
⎜
⎝

++ft in ――
num

den

⎞
⎟
⎠

⎞
⎟
⎠

{10}

Function to convert a row of table data to a dimension (round, then multiply):

≔Ltable_alt
((,,,,Q ft in num den)) ⋅Q Round

⎛
⎜
⎝

,++ft in ――
num

den

⎞
⎟
⎠

{10}

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 8 of 10

Convert data in Columns 3–6 to complete, factored length dimensions.
(I prefer to round off AFTER multiplying by the quantity to preserve overall accuracy, so my follow-up
calculations are based on the function. If you prefer to round off before, use the function.)Ltable Ltable_alt

{10}

≔Ld
i

Ltable
⎛
⎝

,,,,Qty
i

FT
i

IN
i

NUM
i

DEN
i
⎞
⎠

=Ld

120
449.25
372
421.1875
−60.3125

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

My upgraded HP-41CX program calculates using the
"number of fractions" in each dimension, which is
why I also show this result.

=Ld

1920
7188
5952
6739
−965

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

≔Ld_alt
i

Ltable_alt
⎛
⎝

,,,,Qty
i

FT
i

IN
i

NUM
i

DEN
i
⎞
⎠

=Ld_alt

120
449.25
372
421.25
−60.375

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

Note how the rounding order produces slight
differences in dimensions that do not have
fractions that are divisors of .FR

=Ld_alt

1920
7188
5952
6740
−966

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

Total length using the rounding after method: {11}

≔Ld_tot =∑
i

Ld
i

1302.1250

=Ld_tot 108.51 =FT2M ⎛⎝Ld_tot
⎞⎠ 33.074

=FT2FIFA ⎛⎝Ld_tot
⎞⎠

108 “ft”
6 “in”
1 “num”
8 “den”

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

GLOBAL DEFINITIONS

≡ 1 ≡ 1

≡a = 1 ≡ 1

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 9 of 10

NOTES
{1a} I graduated from college in 1980, before SI became "really popular" :-) in the United States.

Even so, I received sufficient grounding in the SI system in high school (Chemistry and Physics) and
college (various engineering and science courses) to feel comfortable using it alongside the USCU
system. In addition, I helped my dad design and build a house when I was 14 and got quite a workout
with FIF dimensions and doing hand calcs with them. We had just moved in a few months before
when my dad purchased the newly introduced HP-35 calculator. Even though the HP-35 (which I still
have and which still works) isn't programmable (that would come later with the HP-65), it's too bad it
wasn't available during design and construction.

{1b} I wrote my HP-41CX program so a drafter and I could work out various FIF calculations for
about a dozen reinforced concrete structures I was designing and he was drafting (pre-Autocad) for a
wastewater treatment plant in central California. In fact, he bought his own HP-41CX specifically to use
my FIF program. Most of the calculations we had to do were simple additions and subtractions plus
conversions back and forth with decimal feet. Our one triangle solution was for the Archimedes screw
pumps that lifted the incoming sewage into the headworks. From the slope length between supports
and the angle of inclination (provided by the manufacturer), we calculated the horizontal and vertical
distances between supports.

{1c} I have been project manager and/or lead civil engineer for three federal prisons (and the QC
reviewer for a major improvement project at a 4th), water projects at two military bases, and two
buildings at another military base. Each project was fully SI* except for the building project. The
building project was design-build and the Request for Proposals required the use of SI, as you would
expect for a federal project. In addition, the supplied survey and geotechnical report used SI.
Consequently, my project engineer and I developed our 30% designs using SI. Imagine our architect's
surprise when we delivered our draft 30% designs to him. He and the contractor were unable to scale
our drawings, so the architect called my project engineer and chewed him out. When my project
engineer told him that our drawings used SI because that's what the RFP required, the architect had a
fit about using SI, though he did apologize to my project engineer. Neither the contractor nor the
architect had read the RFP in its entirety like we had and like they should have. The architect had
never used SI, so he continued to work in USCU in spite of the RFP. This required my project engineer
and me to make the conversions back to SI so we could fit his buildings onto the site. Somehow, with
a proposal that used both SI (civil) and USCU (architectural), we were awarded the project. At the
kickoff meeting, the architect asked the Navy's project manager if it would be OK to continue using
USCU, rather than switch everything to SI. The Navy's project manager agreed to this request,
remarking that neither he nor his staff liked SI anyway. At this point I raised my hand and requested
that the Navy provide us with a survey in USCU, either a new survey or pay the surveyor-of-record to
convert the original survey. He asked why I couldn't make the conversion and I told him that my boss
would not accept the risk of converting someone else's survey. So, in the best tradition of Solomon,
the Navy's project manager decreed that the site civil work would be done in SI and the building
designs would be done in USCU. It was only because my project engineer and I knew what we were
doing with both SI and USCU that these buildings even got built in the correct spots and to the correct
overall dimensions.

*On all three prison projects, construction was a mish-mash of SI and back converted USCU, mainly
due to individual construction and FBOP construction management personal being uncomfortable with
SI. On one project, the underground subcontractor got on my case because he thought all of the
larger storm drainage pipes we had designed would stick out of the ground. He had correctly figured
out that a 1200-mm RCP soft converted back to a 48-inch RCP, but he hadn't figured out—in spite of
numerous indications—that the survey and pipe inverts were in meters, not feet.)

{2} In addition to the common powers-of-two fractions (2, 4, 8, 16,…), other useful ＝FR

numbers include 10 and 100. However, if you want to work in 25ths of an inch or 42nds of an inch or
whatever, this worksheet will handle it.

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

Page 10 of 10

{3} The program code could just as easily have been included in the and GCD FT2FIF
program codes that follows. However, I made it separate in case anyone wants an easy-to-FT2FIFA

grab program for calculations.GCD
{4} Two versions of this function program are provided. converts decimal feet into a 4-FT2FIF

element unitless FIF vector, while converts decimal feet into a 4x2 FIF matrix with units FT2FIFA

embedded as text in the second column. The inverse of is and the inverse of FT2FIF FIF2FT

is {5}. Unfortunately, Mathcad does not have a way to use different actual FT2FIFA FIFA2FT

units inside a results vector or matrix, so there is no function program. However, the FT2FIFU

inverse of this non-existent function is provided () because it provides yet another style for FIFU2FT

entering data. In these two function programs, , , and calculate the three Feet Inches Numerator

components of the FIF dimension, preserving the units for the subsequent steps. , , and FT IN

, strip off the units from these results for display purposes. required an additional NUM NUM

rounding because without it, some (but not all) results were wonky. Change the rounding GCD
parameter to 15 and you will see what I mean. Dividing and by the result of the NUM FR GCD
function produces the reduced fraction.

{5} These three functions convert FIF in vector/matric form into decimal feet. See {4} for
additional details.

{6} Civil, structural, and architectural dimensions are typically specified to the nearest millimeter,
although some structural elements my require greater precision.

{7} The simplest way to enter an FIF dimenion is with a properly formatted text string or a simple
equation, both of which look a lot like the way we would write it. There is little to choose between the
two and both methods seem to have their place. Although not shown, the equation method in (b) can
also handle internal subtractions.
 {8} These examples use the three functions described in {5} and one of the functions in {4}.

{9} For large calculations, I prefer the table approach to the three preceding methods. Even when
I have the Autocad drawings, there are times when I want to permanently document an FIF calculation
and this is how I would do it (or using the Excel spreadsheet).

{10} In these functions, could be used instead of . FIF
⎛
⎜
⎝

,,――
FT

――
IN

――――
NUM

⋅ DEN

⎞
⎟
⎠

⎛
⎜
⎝

++ft in ――
num

den

⎞
⎟
⎠

Sometimes (though rarely for me) structural elements are dimensioned in 10ths or 100ths of an inch.
When such data is provided, but final results are required in, say, sixteenths of an inch, it is best to
multiply first, then round to preserve overall accuracy. In reality, most dimensions are provided using
standard fractions that are no smaller than the chosen fraction, which makes all this a moot point for
just about every situation.

{11} This step calculates subtotal dimensions by table row using the values in the five numerical
data columns in the table. For Mathcad purposes, I prefer to display these intermediate results in
inches. The second version of these intermediate results shows how many "fractions" each row
amounts to, which is how my upgraded HP-41CX program handles each dimension internally. For
example, ROW1 totals 10 ft or 120 inches or 1920 fractions (i.e. sixteenths of an inch). If the is FR

changed to 4, then ROW1 becomes 480 fractions.
{12} The final step sums the subtotals and displays the result in decimal feet, in meters (rounded

to the nearest millimeter by the FT2M function), and in FIF vector format (including a rounded and
reduced fraction).

REFERENCES
[1] Euclidean algorithm for the Greatest Common Divisor: http://en.wikipedia.org/wiki/
Euclidean_algorithm.
[2] Nelson, Richard J., et al, , pp. 170–173, PPC Inc., Santa Ana, CA
(1981).

Mathcad Prime 3.0 File: Lusk_Feet Inches & Fractions.mcdx Saved: 03/25/2014

