CHAPTER 13 IIR FILTER DESIGN

13.2 Analog Elliptic Filter Design

This document carries out design of an elliptic IR lowpass analog filter. You define the following parameters:

* fp, the passband edge
* fs, the stopband edge frequency
* 9, the maximum ripple

Mathcad then calculates the filter order and finds the zeros, poles, and coefficients for the filter transfer
function.

Background

Elliptic filters, so called because they employ elliptic functions to generate the filter function, are useful
because they have equiripple characteristics in the pass and stopband regions. This ensures that the lowest
order filter can be used to meet design constraints.

For information on how to transform a continuous-time IR filter to a discrete-time IR filter, see Section
13.1: Analog/Digital Lowpass Butterworth Filter.

For information on the lowest order polynomial (as opposed to elliptic) filters, see Section 14: Chebyshev
Polynomials.



Mathcad Implementation

This document implements an analog elliptic lowpass filter design. The definitions below of elliptic functions
are used throughout the document to calculate filter characteristics.

Elliptic Function Definitions
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Design Specifications

First, the passband edge is normalized to 1 and the maximum passband response is set at one. Set the
stopband edge and the maximum ripple in the passband and stopband. The filter order will be calculated from

these constraints.

Pass band edge: wp,:=1
Stop band edge: ws,:=1.2
Pass band ripple: 5,:=.05

Stop band ripple: 5,:=.05



Calculation of Filter Order

Definitions of moduli:
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For correct calculations, check to see that k and k' are not too close to 1. For accuracy, they should be less
than 1 - 10-9.
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The minimum filter order is:
N=5

Finding the Zeros and Poles of the Transfer Function

Zeros and poles of the transfer function are calculated using the elliptic functions. If the filter order is odd,
there will be one real pole of order 1, in addition to several complex conjugate poles.
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Fig. 13.2.1 Poles and zeros in the complex s-plane
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Use the poles and zeros of the system to construct the transfer function. It will be written as a factored
expression of each pole and zero in the form (s - p1)(s - p2)(...), etc..
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Define dB magnitude:
dbm (w):=20-log (|H(1j-w)]|)

Frequency range to plot:
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Fig. 13.2.2 Magnitude frequency response of filter
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Fig. 13.2.3 Magnitude frequency response of filter in dB



Polynomial Expansion

Next expand the transfer function into Nth order polynomials in the numerator and denominator. The arrays
num and den hold the coefficients of the numerator and denominator polynomials. The integral used to
calculate these coefficients by Cauchy's formula will return accurate results when the order N is modest (say,
less than 15), but the calculation is time-consuming.

Numerator calculation:
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Denominator calculation:
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In some cases, it may be desirable to specify a filter order, and calculate other terms in the design
parameters. For example, if the filter order above is not meeting constraints closely enough, try

ﬂw“":'-_
\.—-’ an elliptic filter of a larger order. To calculate the magnitude of the ripple given the other
constraints, follow the procedure below to calculate the k's. First, specify the filter order, N:
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Now if, for example, the stopband ripple is given, we can calculate the minimal passband ripple as follows:
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The minimal passband ripple is:
0,=0.0005



