
CHAPTER 5 FEEDBACK CIRCUITS AND STABILITY CRITERIA

5.3 Polar Plots and Nyquist Plots

This document constructs polar plots and Nyquist stability plots for system functions, and examines how the 
plots can be used to design stable systems.  The polar plot example includes the method for drawing a contour 
of constant closed-loop magnitude.  The Nyquist plot example shows a transfer function with one pole on the 
imaginary axis.   You provide:




G(s), the transfer function which describes your system,
f, the frequency range to plot. 

Background

Nyquist plots show the path of the open-loop transfer function in the complex plane as  varies.  The Nyquist 
stability criterion states the following: two conditions of the Nyquist path must be met for a system to be 
stable.  First, there must be no clockwise encirclement of the point (-1, 0) in the complex plane for a system to 
have closed-loop stability.  Second, the number of negative, or counterclockwise encirclements, of the point 
(-1, 0) is equal to or greater than the number of open-loop poles in the right-half complex plane.  This test is 
useful in the case where the transfer function is not known explicitly.

This technique can also be used to determine the maximum value of gain for a system based on the location of 
the real axis crossings;  physically, the principles are similar to those discussed in Section 5.2 Root-Locus 
Technique.

Mathcad Implementation

Polar Stability Plot

This example makes a polar plot of a transfer function and draws one contour of constant closed-loop 
magnitude. To draw the plot, enter a definition for the transfer function G(s):

≔G((s)) ――――――
45000

⋅⋅s (( +s 2)) (( +s 30))

The frequency range defined by the next two equations provides a logarithmic frequency scale running from 1 
to 100. You can change this range by editing the definitions for m and m:

≔m ‥0 100 ≔ω
m

10
⋅.02 m

Now enter a value for M to define the closed-loop magnitude contour that will be plotted. 

≔M 1.3

Calculate the points on the M-circle:
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The first plot shows G, the contour of constant closed-loop magnitude, M, and an x at the point (1, 0) on the 
real axis.
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Fig. 5.3.1 Polar plot with contour of constant closed-loop magnitude

This plot indicates closed-loop instability. The next plot shows a compensated system which is stabilized with 
additional elements (described as a multiplicative transfer function).  This additional function causes the open-
loop system function to be tangential to the contour of constant closed-loop magnitude.

≔F ((s)) ⋅⋅.03
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Fig. 5.3.2 Polar plot for compensated system



The plot indicates that the compensated system is stable. Notice that reducing the gain of the original 
function G(s) would have a similar effect.

Since the system plot is approximately tangent to the M-circle for M = 1.3, the magnitude of the 
resonance peak will be about 1.3. To find the location of the resonance peak, plot the closed loop gain, 
using a log scale on the frequency axis:

≔FC((s)) ―――
F ((s))
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Fig. 5.3.3 Magnitude vs. frequency plot

Make a guess for the peak location based on the graph, then solve:

≔x 10 ≔ωππ root
⎛
⎜
⎝

,――
d

dx
||FC (( ⋅1j x))|| x

⎞
⎟
⎠

The peak is at 

=ωππ 9.844

The peak height is

=||FC⎛⎝ ⋅1j ωππ⎞⎠|| 1.302



Nyquist Stability Plot

This example draws a Nyquist plot for a transfer function with a single simple pole on the imaginary axis and 
all other poles in the left half-plane.  Define the transfer function G(s) and enter the imaginary part of the 
imaginary pole as the value for c.

≔G ((s)) ――――――
45000

⋅⋅s (( +s 30)) (( +s 2))

The pole on the j-axis is at cj.  The Nyquist path must go around this point.  Enter c for the transfer function
above:

≔c 0

Mathcad will assemble the Nyquist path from segments and semicircular arcs. (The values given for the radius 
R of the large arc and the radius r of the small arc will work well for most functions G(s), but you may need 
to adjust one or both of these values to obtain a good plot.) Each segment is plotted with 50 points (given by 
the range variable n), and these pieces of the path are assembled into a single path which is stored in the 
vector P.

First parametrize the Nyquist path for a transfer function with a single pole on the j-axis at cj and the 
remaining poles in the left half plane:

≔n ‥0 100 ≔t
n

⋅.01 n ≔m ‥0 400

Segment on j-axis:

≔L (( ,,,t a b c)) ++⋅c 1j ⋅a 1j ⋅⋅t (( −b a)) 1j

Semicircular arc with center at cj and radius r; clockwise if d = 1, counterclockwise if d = -1:

≔A (( ,,,t c r d)) +⋅c 1j ⋅r exp (( ⋅⋅⋅1j (( −.5 t)) d π))

radius of outer arc: ≔R 100 radius of inner arc: ≔r 1

The four pieces of the Nyquist path are stored in the array P:
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Fig. 5.3.4 Nyquist path in the complex plane 

For the Nyquist plot to give accurate information, the original Nyquist path in the s-plane must be large 
enough to include the poles we're interested in.  Let's find and plot the two poles of the closed-loop transfer 
function corresponding to the open-loop function G defined above (we'll let the symbolic processor do the 
solving):

+⋅⋅s (( +s 30)) (( +s 2)) 45000.0

−49.298694746178114858
+8.649347373089057428 ⋅28.948089087516422929 1j
−8.649347373089057428 ⋅28.948089087516422929 1j

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

The complex poles of the closed-loop transfer function are

≔rt +8.649347373089057428 ⋅28.948089087516422929 1j

and its conjugate.
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Fig. 5.3.5 Nyquist path and complex 
poles of closed-loop transfer function 

So with R = 100 these poles are well inside the s-plane contour.  Now plot the Nyquist plot, which is the 
contour of the Nyquist path, Pm, in the G(s) plane.
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Fig. 5.3.6 Nyquist stability plot 



We'll magnify the region around the origin from Fig. 5.3.6.  The diamond and box markers indicate the 
direction of the path: it moves from the diamond toward the box.  The upper piece of this loop is the path we 
plotted in Fig. 5.3.1.  The x shows the point (-1, 0).
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Note that this contour circles the (-1, 0) point twice, corresponding to the two poles in the right half-plane.  If 
you change R to 10, the poles now lie outside the Nyquist path, and you'll see that the image path makes no 
counter- clockwise circuits of the (-1, 0) point.  Instead it makes a backwards loop to avoid the (-1, 0) point 
entirely.  (The direction markers are out of sight, but the direction is in from the lower right, counterclockwise 
around -1, and back out to the left.)   

Another interesting experiment is to change G to the compensated function F in the axis arguments for Fig. 
5.3.4 (go back to R = 100).  Again the Nyquist plot avoids the (-1, 0) point, because the poles have moved into 
the left half-plane.  Using the symbolic processor, find the roots of:

+⋅1350 (( +1 ⋅.25 s)) ⋅⋅⋅(( +1 ⋅.025 s)) s (( +s 30)) (( +s 2))

The four roots are

+−7.7184214651757497 ⋅12.321085839499558445 1j
−−7.7184214651757497 ⋅12.321085839499558445 1j

−4.949466715942553026
−51.613690353705947574

⎡
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥⎦

To draw a Nyquist plot for a transfer function with two or more poles on the j axis, add the 
necessary pieces to the Nyquist path: the path should make a semicircular arc in the right half-
plane around each j-axis pole. You will need to define additional coefficients c', c'', and so on,
giving the imaginary parts of the imaginary poles. For each additional root, add one more segment 
and one more arc to P and add 100 to the upper limit of the range variable m.


