

ELECTRICAL POWER SYSTEMS ENGINEERING

Table 1.6.1 Characteristics of Aluminum Cable, Steel Reinforced

Reprinted with permission from Electrical Transmission and Distribution Reference Book, ABB Power T&D Co., Raleigh, NC.

- * Circular Mils or A.W.G. Aluminium
- ** Cooper Equiv. Circular Mils or A.W.G: Based on Copper 97%, Aluminum 61% conductivity.

		Alumi	num		Steel				
Circular Mils*	Strands	Layers	Strand D. (in)	Strands	Strand D. (in)	Outside D. (in)	Cooper Equiv.**	Ult. Strength (lbf)	Weight (
1590000	54	3	0.1716	19	0.103	1.545	1000000	56000	10
1510500	54	3	0.1673	19	0.1004	1.506	950000	53200	102
1431000	54	3	0.1628	19	0.0977	1.465	900000	50400	96
1351000	54	3	0.1582	19	0.0949	1.424	850000	47600	91
1272000	54	3	0.1535	19	0.0921	1.382	800000	44800	86
1192500	54	3	0.1486	19	0.0892	1.338	750000	43100	80
1113000	54	3	0.1436	19	0.0862	1.293	700000	40200	75
1033500	54	3	0.1384	7	0.1384	1.246	650000	37100	70
954000	54	3	0.1329	7	0.1329	1.196	600000	34200	64
900000	54	3	0.1291	7	0.1291	1.162	566000	32300	61
874500	54	3	0.1273	7	0.1273	1.146	550000	31400	59
795000	54	3	0.1214	7	0.1214	1.093	500000	28500	53
795000	26	2	0.1749	7	0.136	1.108	500000	31200	57
795000	30	2	0.1628	19	0.0977	1.14	500000	38400	65
715500	54	3	0.1151	7	0.1151	1.036	450000	26300	48
715500	26	2	0.1659	7	0.129	1.051	450000	28100	51
715500	30	2	0.1544	19	0.0926	1.081	450000	34600	58
666600	54	3	0.1111	7	0.1111	1	419000	24500	45
636000	54	3	0.1085	7	0.1085	0.977	400000	23600	43

		Alumir	num		Steel				
Circular Mils*	Strands	Layers	Strand D. (in)	Strands	Strand D. (in)	Outside D. (in)	Cooper Equiv.**	Ult. Strength (lbf)	Weight (
636000	26	2	0.1564	7	0.1216	0.99	400000	25000	46
636000	30	2	0.1456	19	0.0874	1.019	400000	31500	52
605000	54	3	0.1059	7	0.1059	0.953	380500	22500	41
605000	26	2	0.1525	7	0.1186	0.966	380500	24100	43
556500	26	2	0.1463	7	0.1138	0.927	350000	22400	40
556500	30	2	0.1362	7	0.1362	0.953	350000	27200	45
500000	30	2	0.1291	7	0.1291	0.904	314500	24400	41
477000	26	2	0.1355	7	0.1054	0.858	300000	19430	34
477000	30	2	0.1261	7	0.1261	0.883	300000	23300	39
397500	26	2	0.1236	7	0.0961	0.783	250000	16190	28
397500	30	2	0.1151	7	0.1151	0.806	250000	19980	32
336400	26	2	0.1138	7	0.0885	0.721	4/0	14050	24
336400	30	2	0.1059	7	0.1059	0.741	4/0	17040	27
300000	26	2	0.1074	7	0.0835	0.68	188700	12650	21
300000	30	2	0.1	7	0.1	0.7	188700	15430	24
266800	26	2	0.1013	7	0.0788	0.642	3/0	11250	19

- +Geom. Mean Radius at 60 Cycles (ft)
 ++Approx. Current Carrying Capac. (amp): For conductor at 75°C, air at 25°C, wind 1.4 mph (2ft/sec), freq=60 cycles.
 ++ Current approx. 75% capacity is 75% of the approx. current carrying capacity in amps, and is approximately the current which will produce rise) with 25C air temperature, wind 1.4 mph.

			ra Resistance per Conductor (ohm/mile)									
Mean Rad.+	Capac++		25°C Sma	II Current	S	50°C Cur	rent Appro	x. 75% Ca _l	Inductive Reactance			
		d-c	25 cycles	50 cycles	60 cycles	d-c	25 cycles	50 cycles	60 cycles	25 cycles	50 cycles	60 cycles
0.052	1380	0.0587	0.0588	0.059	0.0591	0.0646	0.0656	0.0675	0.0684	0.1495	0.299	0.359
0.0507	1340	0.0618	0.0619	0.0621	0.0622	0.068	0.069	0.071	0.072	0.1508	0.302	0.362
0.0493	1300	0.0652	0.0653	0.0655	0.0656	0.0718	0.0729	0.0749	0.076	0.1522	0.304	0.365
0.0479	1250	0.0691	0.0692	0.0694	0.0695	0.0761	0.0771	0.0792	0.0803	0.1536	0.307	0.369
0.0465	1200	0.0734	0.0735	0.0737	0.0738	0.0808	0.0819	0.084	0.0851	0.1551	0.31	0.372
0.045	1160	0.0783	0.0784	0.0786	0.0788	0.0862	0.0872	0.0894	0.0906	0.1568	0.314	0.376
0.0435	1110	0.0839	0.084	0.0842	0.0844	0.0924	0.0935	0.0957	0.0969	0.1585	0.317	0.38
0.042	1080	0.0903	0.0905	0.0907	0.0909	0.0994	0.1005	0.1025	0.1035	0.1603	0.321	0.385
0.0403	1010	0.0979	0.098	0.0981	0.0982	0.1078	0.1088	0.1118	0.1128	0.1624	0.325	0.39
0.0391	970	0.104	0.104	0.104	0.104	0.1145	0.1155	0.1175	0.1185	0.1639	0.328	0.393
0.0386	950	0.107	0.107	0.107	0.108	0.1178	0.1188	0.1218	0.1228	0.1646	0.329	0.395
0.0368	900	0.117	0.118	0.118	0.119	0.1288	0.1308	0.1358	0.1378	0.167	0.334	0.401
0.0375	900	0.117	0.117	0.117	0.117	0.1288	0.1288	0.1288	0.1288	0.166	0.332	0.399
0.0393	910	0.117	0.117	0.117	0.117	0.1288	0.1288	0.1288	0.1288	0.1637	0.327	0.393
0.0349	830	0.131	0.131	0.131	0.132	0.1442	0.1452	0.1472	0.1482	0.1697	0.339	0.407
0.0355	840	0.131	0.131	0.131	0.131	0.1442	0.1442	0.1442	0.1442	0.1687	0.337	0.405
0.0372	840	0.131	0.131	0.131	0.131	0.1442	0.1442	0.1442	0.1442	0.1664	0.333	0.399
0.0337	800	0.14	0.14	0.141	0.141	0.1541	0.1571	0.1591	0.1601	0.1715	0.343	0.412
0.0329	770	0.147	0.147	0.148	0.148	0.1618	0.1638	0.1678	0.1688	0.1726	0.345	0.414

				ra Resista								
Mean Rad.+	Capac++		25°C Sma	all Currents	s	50°C Cur	rent Appro	ox. 75% Cap	Indu	Inductive Reactance		
		d-c	25 cycles	50 cycles	60 cycles	d-c	25 cycles	50 cycles	60 cycles	25 cycles	50 cycles	60 cycles
0.0335	780	0.147	0.147	0.147	0.147	0.1618	0.1618	0.1618	0.1618	0.1718	0.344	0.412
0.0351	780	0.147	0.147	0.147	0.147	0.1618	0.1618	0.1618	0.1618	0.1693	0.339	0.406
0.0321	750	0.154	0.155	0.155	0.155	0.1695	0.1715	0.1755	0.1775	0.1739	0.348	0.417
0.0327	760	0.154	0.154	0.154	0.154	0.17	0.172	0.172	0.172	0.173	0.346	0.415
0.0313	730	0.168	0.168	0.168	0.168	0.1849	0.1859	0.1859	0.1859	0.1751	0.35	0.42
0.0328	730	0.168	0.168	0.168	0.168	0.1849	0.1859	0.1859	0.1859	0.1728	0.346	0.415
0.0311	690	0.187	0.187	0.187	0.187	0.206	0.206	0.206	0.206	0.1754	0.351	0.421
0.029	670	0.196	0.196	0.196	0.196	0.216	0.216	0.216	0.216	0.179	0.358	0.43
0.0304	670	0.196	0.196	0.196	0.196	0.216	0.216	0.216	0.216	0.1766	0.353	0.424
0.0265	590	0.235	0.235	0.235	0.235	0.259	0.259	0.259	0.259	0.1836	0.367	0.441
0.0278	600	0.235	0.235	0.235	0.235	0.259	0.259	0.259	0.259	0.1812	0.362	0.435
0.0244	530	0.278	0.278	0.278	0.278	0.306	0.306	0.306	0.306	0.1872	0.376	0.451
0.0255	530	0.278	0.278	0.278	0.278	0.306	0.306	0.306	0.306	0.1855	0.371	0.445
0.023	490	0.311	0.311	0.311	0.311	0.342	0.342	0.342	0.342	0.1908	0.382	0.458
0.0241	500	0.311	0.311	0.311	0.311	0.342	0.342	0.342	0.342	0.1883	0.377	0.452
0.0217	460	0.35	0.35	0.35	0.35	0.385	0.385	0.385	0.385	0.1936	0.387	0.465