
2 POWER SYSTEM PROTECTION

Section 2.3b Out-Of-Step Protection

Section 2.3.4 Out-of-Step Protection - Application

All impedance values are in per unit on 100 MVA base. All angles are in degrees.

System Data

≔Zgs 0.05 impedance and 
impedance angle of 
generator at bus S

Line impedance and 
impedance angle

Impedance and 
impedance angle of 
generator at bus R

angular momentum of 
generator at bus R

angular momentum of 
generator at bus S

transmitted steady state 
power

ratio of VG over VH

≔θ11 90 deg

≔Zsr 1.3

≔θ22 75 deg

≔Zrh 0.05

≔θ33 90 deg

≔Mr 4

≔Ms 5

≔Pss 0.61

≔n 1.0

Relay Settings

≔T 0.9 relay reach in percent of SR

relay maximum torque angle≔θ44 75 deg

Fault 
Characteristic

≔tc 0.06 fault clearing time 



Method of Solution

The procedure to verify the coordination of the protection scheme at point b is as follows:

From the system data, a graph is obtained on the R-X plane of the relay characteristic and the system 
impedance. From the system impedance and source voltage, the swing ohms trajectory is obtained and 
plotted on the R-X plain along with the relay characteristic. This curve indicates the ohm value seen by the 
relay as a result of varying line conditions. It is independent of the system loading conditions (i.e. prefault 
power transfer and transmission angle). The intersections of this trajectory with the relay characteristic 
determine the values of the transmission angle for which swing ohms are within that characteristic. These 
are the entry and exit angles. A stable swing generally will remain in the relay characteristic for some time 
and then exit from its entry angle. On the other hand, an unstable swing will traverse the relay characteristic 
through its entry and exit angles.

The time the swing ohms remain in the relay characteristic are found by solving the system dynamic 
equation and obtaining the transmission angle response. The values of the transmission angle are compared 
against the entry and exit angle of the swing and the above time is determined. This procedure can help in 
selecting time delays for relay operation.

Equation (2.3.1) is a polar-to-rectangular conversion function that is used throughout the example.

≔r((θ)) +cos ((θ)) ⋅1j sin ((θ)) (2.3.1)

Equations (2.3.2) to (2.3.4) allow the system impedance to be graphed on an impedance diagram along
with the impedance-relay characteristic.

≔θ11 if ⎛⎝ ,,⎛⎝ ＝θ11 90 deg⎞⎠ 88 deg θ11⎞⎠ (2.3.2)

(2.3.3)

(2.3.4)

≔θ22 if ⎛⎝ ,,⎛⎝ ＝θ22 90 deg⎞⎠ 88 deg θ22⎞⎠

≔θ33 if ⎛⎝ ,,⎛⎝ ＝θ33 90 deg⎞⎠ 88 deg θ33⎞⎠

The following relationships convert the polar impedance values to rectangular form.

≔zgs ⋅Zgs r ⎛⎝θ11⎞⎠ ≔zsr ⋅Zsr r ⎛⎝θ22⎞⎠

≔zrh ⋅Zrh r ⎛⎝θ33⎞⎠ ≔zrelay ⋅⋅T Zsr r ⎛⎝θ44⎞⎠

Combine the generator and line impedances to get the total impedance.

≔ZT ++zsr zrh zgs



Define the R-X relay characteristic.

≔Zr0 ――
zrelay

2
center

≔i , ‥0 2 360 index for system impedance plots

Offset the characteristic to pass through zero.

≔Zri
+⋅||Zr0|| r (( ⋅i deg)) Zr0

Define the system impedance as a piece-wise linear function so it can be shown on the R-X diagram.

≔F1 ((x)) ⋅tan ⎛⎝θ11⎞⎠ x (2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

≔F2 ((x)) ⋅tan ⎛⎝θ22⎞⎠ x

≔F3 ((x)) +⋅tan ⎛⎝θ33⎞⎠ ⎛⎝ −x Re ⎛⎝zsr⎞⎠⎞⎠ Im ⎛⎝zsr⎞⎠

≔c1 0 Used by following if statements to produce 
zero traces of system impedance on graphs.

Substitute Equations (2.3.5)-(2.3.7) to create the following piece-wise linear functions. 

≔G1 ((x)) if ⎛⎝ ,,⎛⎝ <x −Re ⎛⎝zgs⎞⎠⎞⎠ c1 F1 ((x))⎞⎠

≔G2 ((x)) if ⎛⎝ ,,(( <x 0)) G1 ((x)) F2 ((x))⎞⎠

≔G3 ((x)) if ⎛⎝ ,,⎛⎝ <x Re ⎛⎝zsr⎞⎠⎞⎠ G2 ((x)) F3 ((x))⎞⎠

Create the line impedance function. 

≔Zline ((x)) if ⎛⎝ ,,⎛⎝ <x Re ⎛⎝ +zsr zrh⎞⎠⎞⎠ G3 ((x)) c1⎞⎠

≔x , ‥−0.2 −0.19 0.4 range to plot



Line Impedance and Relay Characteristic

The figure below shows the relay characteristic with the line impedance superimposed. The maximum 
torque angle of the relay is assumed to be the same as the line impedance angle.
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Fig. 2.3.2 Relay and system impedance plots

Determine the Swing Ohm Trajectory

The swing ohm trajectory appears as a circle on an R-X diagram. The radius for this circle is given by

≔n if (( ,,＝n 1 0.999 n))

≔R ――
⋅ZT n

−n
2

1
(2.3.12)

The if statement removes the singularity for a circle of infinite radius.



Define the trajectory of the swing ohms in rectangular form.

≔cswing −+ZT ――
ZT

−n
2

1
zgs center of the swing impedance circle

radius of the swing impedance circle≔rswing ⋅n ―――
||ZT||

|| −n
2

1||

≔Yswing ((s)) +
⎛
⎝

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−rswing

2
Re ⎛⎝ −s cswing⎞⎠

2 ⎞
⎠ Im ⎛⎝cswing⎞⎠

≔x , ‥−0.5 −.45 0.8 plot range
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Fig 2.3.3 Plot of line Z, relay characteristic, and system swing ohms



Determination of the Entry and Exit Angles

System power swings will follow the trajectory of the swing ohms plot. The intersections of this trajectory 
with the relay characteristic provide the relative rotor angles at the entry and exit of the swing through the 
relay characteristic. The intersection points, (xo, yo), are found using the following solve block:

G
ue

ss
 V

al
ue

s
Co
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tr

ai
nt

s
So

lv
er

＝+⎛⎝ −xo Re ⎛⎝cswing⎞⎠⎞⎠
2

⎛⎝ −yo Im⎛⎝cswing⎞⎠⎞⎠
2

rswing
2

＝+⎛⎝ −xo Re ⎛⎝Zr0⎞⎠⎞⎠
2

⎛⎝ −yo Im ⎛⎝Zr0⎞⎠⎞⎠
2

⎛⎝||Zr0||⎞⎠
2

Define a function Int(xo, yo) of the intersection point coordinates, 
where xo and yo are the initial guesses of these points for the 
solve block.

≔Intsct ⎛⎝ ,xo yo⎞⎠ Find ⎛⎝ ,xo yo⎞⎠

Find the two intersection points by giving different initial guesses to Int.

≔P1 Intsct(( ,0.4 0.2)) intersection at entry of swing trajectory

intersection at exit of swing trajectory≔P2 Intsct⎛⎝ ,−0.2 0.1⎞⎠

=P1
0.731
0.486

⎡
⎢⎣

⎤
⎥⎦

=P2
−0.397

0.769
⎡
⎢⎣

⎤
⎥⎦

Calculate the corresponding rotor angle at P1 and P2.

≔O((P)) +P
0

⋅1j P
1

polar impedance at intersections

polar impedance between points H and R

polar impedance between points S and G

≔H +zsr zrh

≔G −zgs

Compute the value of power angle where the swing trajectory intersects the characteristics using the law of 
cosines: 

≔δint ((P)) acos
⎛
⎜
⎝
―――――――――――――

−+((|| −O ((P)) G||))
2

((|| −O((P)) H||))
2

((|| −G H||))
2

⋅2 (( ⋅((|| −O((P)) G||)) || −O ((P)) H||))

⎞
⎟
⎠

≔δ1 δint⎛⎝P1⎞⎠ entry angle

exit angle≔δ2 −360 deg δint⎛⎝P2⎞⎠

=δ1 100.577 deg =δ2 259.626 deg



Computation of the Transient Response

After the swing entry and exit angles through the relay characteristic are determined, a transient simulation 
of the swing is computed. This simulation determines the time the swing ohms stay within the relay 
characteristic.

The steady-state power transfer determines the initial power angle of the system before the disturbance 
occurs. 

≔δοο asin
⎛
⎜⎝
―――

⋅Pss ||ZT||

n

⎞
⎟⎠

initial angle

=――
δοο
c

⎛⎝ ⋅3.411 10
−9⎞⎠ ―

s

m

The equivalent angular momentum is

≔M ―――
⋅Mr Ms
+Mr Ms

=M 2.222

A simple numerical integration is used to solve the differential equation describing the system.

Define the integration index.

≔i ‥1 60

Define the time step of the integration.

≔dt 0.01

Define the initial conditions.

≔ω
0

0.0 ≔ω
1

0.0 ≔δ
0

δοο

≔δ
1

δοο ≔t
0

0.0 ≔t
1

0.0

≔t
i

⋅i dt increment time by the integration time interval

These are the coefficients of the Adams-Bashford two-step numerical integration formula. This formula 
will produce the solution to the system.

≔h1 ⋅1.5 dt ≔h2 ⋅0.5 dt

Define a function for power with respect to power angle and clearing time. Assuming a three-phase fault, 
the line power is zero during the fault. Therefore,

≔P (( ,δ t)) if
⎛
⎜⎝

,,⎛⎝ <t tc⎞⎠ 0
⎛
⎜⎝

⋅n ――
sin ((δ))

||ZT||

⎞
⎟⎠

⎞
⎟⎠



Solution of System State-Equations

Define the necessary parameters.

≔Dδ ((ω)) ⋅377 ω derivative of the rotor angle

derivative of the rotor speed
≔Dω (( ,δ t)) ――――

−Pss P (( ,δ t))

M

Integration formula for finding the change in frequency and power angle from the previous two derivatives:

≔Δω (( ,,,δ1 δ2 t1 t2)) −⋅h1 Dω (( ,δ1 t1)) ⋅h2 Dω (( ,δ2 t2))

≔Δδ (( ,ω1 ω2)) −⋅h1 Dδ ((ω1)) ⋅h2 Dδ ((ω2))

Vectorize and solve.

≔
ω

+i 1

δ
+i 1

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

+ω
i
Δω ⎛

⎝
,,,δ

i
δ

−i 1
t
i
t

−i 1
⎞
⎠

+δ
i
Δδ⎛

⎝
,ω
i
ω

−i 1
⎞
⎠

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

Plot the dynamic response of the system to determine the system stability and the time interval inside the 
relay trip region. This interval is determined by the time the relative rotor angle is between the entry and 
exit angles calculated previously.
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Fig. 2.3.5 Dynamic response of the generator rotor angle

For the given system operating conditions and fault clearing time, the system generators remain stable. If 
the damping effects are included in the computations, the oscillations would decay to zero. The power 
swing causes the swing ohms to enter the relay characteristic and remain there for approximately 0.25 
seconds. A blocking relay should be added to this system to improve the tripping selectivity of the 
protection scheme. The above time is greatly affected by the system inertia.



Unstable System Operation

Different loading conditions may produce unstable operation. If the steady state power is increased as
≔Pss 0.7

then the system transient can be calculated again.

≔δοο asin
⎛
⎜⎝
―――

⋅Pss ||ZT||

n

⎞
⎟⎠

initial angle

=――
δοο
c

⎛⎝ ⋅4.56 10
−9⎞⎠ ―

s

m

Define the initial conditions.

≔ω
0

0.0 ≔ω
1

0.0 ≔δ
0

δοο

≔δ
1

δοο ≔t
0

0.0 ≔t
1

0.0

≔t
i

⋅i dt increment time by the integration time interval

Vectorize and solve.

≔
ω

+i 1

δ
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⎡
⎢
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⎥⎦
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Fig. 2.3.6 Unstable system response

For this case, the unstable swing enters the relay characteristic at t = 0.13 sec and exits at t = 0.57 sec. 
Therefore, for the worst case of swing, the swing ohms remain in the relay characteristic for 0.44 sec.


