PTC° Mathcad°

The following example demonstrates calculation of the thermal resistance and temperature distribution within a wall assuming one-dimensional steady-state heat transfer. Note that in some cases different parts of the wall may have different layers, such as wood studs providing structural support. To determine a correct wall R-value in such cases, we need to calculate the correct value through each heat flow path and determine the overall R-value based on the relative area of each path.

Basic Equations

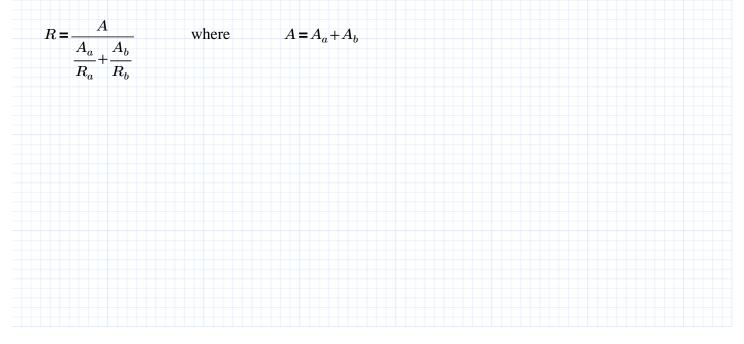
Heat flow q through a wall layer of thickness L, surface area A and thermal conductivity k is given by

$T_{hot} - T_{cold}$	with	D = L
<i>q</i> =	WIUI	R =
¹ R		$k \cdot A$
10		11 - 11

Heat flow q by convection or radiation described in approximate terms by a heat transfer coefficient h (convective, radiative, or combined):

$T_{hot} - T_{cold}$	•.1	<u>р</u> 1
<i>q</i> =	with	R =
I B		b. A
11		$n \cdot A$
R		$h \cdot A$

Thermal resistance R_a through a path a is given by the sum of the resistances of the interior film, each wall layer and the exterior film. If a different path has thermal resistance Rb then the total wall resistance based on parallel heat flow paths is given by

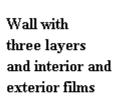


PTC° Mathcad°

In the example below, consider a wall with three layers:

- **1.** Gypsum board
- 2. Insulation
- 3. Brick





Thermal network also shown

interior heat transfer (film) coefficient

exterior heat transfer coefficient

heat transfer area (surface)

L_i = thickness of layer i

conductivity of layer i

 $k_i = thermal$

Input parameters:

 $hi \coloneqq 9 \ \frac{W}{m^2 \cdot \Delta^\circ C}$

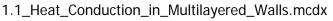
 $ho \coloneqq 20 \ \frac{W}{m^2 \cdot \Delta^{\circ}C}$

- $A \coloneqq 1.0 \ m^2$
- $L_{1} = 0.013 \ m$

 $k_1 \coloneqq 0.16 \ \frac{W}{m \cdot \Delta^{\circ} C}$

$$L_{_2} = 0.05 \ m$$

$$k_2 \coloneqq 0.025 \frac{W}{m \cdot \Delta^{\circ} C}$$



PTC° Mathcad°

$$L_{a} = 0.10 \text{ m}$$

$$k_{a} = 1.5 \frac{W}{m \cdot \Delta^{*}C}$$

$$N = 3 \qquad N = \text{number of layers}$$

$$i = 1..N$$

$$HI = \frac{1}{hi \cdot A} \qquad RI = \text{interior film resistance}$$

$$RO = \frac{1}{ho \cdot A} \qquad RO = \text{exterior film resistance}$$

$$R_{i} = \frac{L_{i}}{hi \cdot A} \qquad RI = \text{resistance of wall layer i}$$

$$Rlot = RI + \sum_{i} R_{i} + RO$$

$$Rtot = 2.309 \frac{\Delta^{*}C}{W} \qquad Rtot = \text{total resistance of wall}$$
Calculation of heat flow Q from inside (temperature TI) to outside (temperature TO):

$$TO = -20 \Delta^{*}C \qquad TI = 20 \Delta^{*}C$$

$$m = 2..N \qquad Q = \frac{TI - TO}{Rtot}$$

$$Twi = TI - Q \cdot R_{i} \qquad T_{m} = T_{m-1} - Q \cdot R_{m}$$

$$Q = 17.323 W \qquad Twi = 18.075 \Delta^{*}C$$

$$i = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} \qquad T_{a} = \begin{bmatrix} 1.6.668\\ -17.973 \end{bmatrix} \Delta^{*}C$$

 $1.1_Heat_Conduction_in_Multilayered_Walls.mcdx$