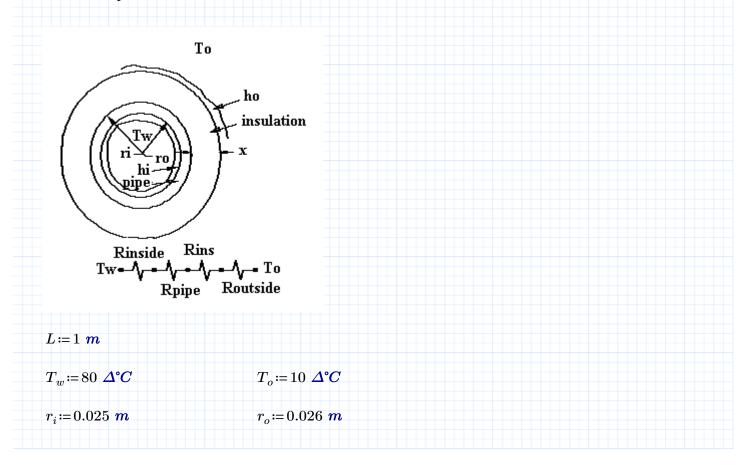
## PTC° Mathcad°




As in multilayered walls, conduction is assumed to be one-dimensional. The thermal resistance of an uninsulated cylinder of inner radius ri and outer radius ro is given by

$$R = \frac{ln\left(\frac{r_o}{r_i}\right)}{2 \cdot \pi \cdot k \cdot L}$$

For a pipe with one layer of insulation (conductivity kins), the thermal resistance of the insulation is calculated in a similar manner, but with ri and ro being the inner and outer radii of the insulation. The total thermal resistance of the insulated pipe is thus calculated by adding the thermal resistance of the interior and exterior films (surface resistances) to the thermal resistance of the pipe and the insulation.

**Example**: The insulated copper pipe shown below carries hot water at 80 degC from a solar collector to a hot water storage tank. Insulation of thermal conductivity  $0.03 \text{ watt/m} \cdot \text{degC}$  is employed to reduce heat loss. Determine the heat loss per meter of length for thickness of insulation in the range 0.01 m - 0.06 m. What is the surface temperature in each case?



1.2\_Heat\_Conduction\_Through\_Insulated\_Pipes.mcdx

## **PTC° Mathcad°**

$$k = 386 \frac{W}{m \cdot \Delta^{*}C}$$
thermal conductivity  
of pipe and insulation  

$$k_{uv} = 0.03 \frac{W}{m \cdot \Delta^{*}C}$$

$$x = 0.01 m, 0.02 m. 0.06 m$$

$$h_{1} = 300 \frac{W}{m^{2} \cdot \Delta^{*}C}$$
interior heat  
transfer coefficient  

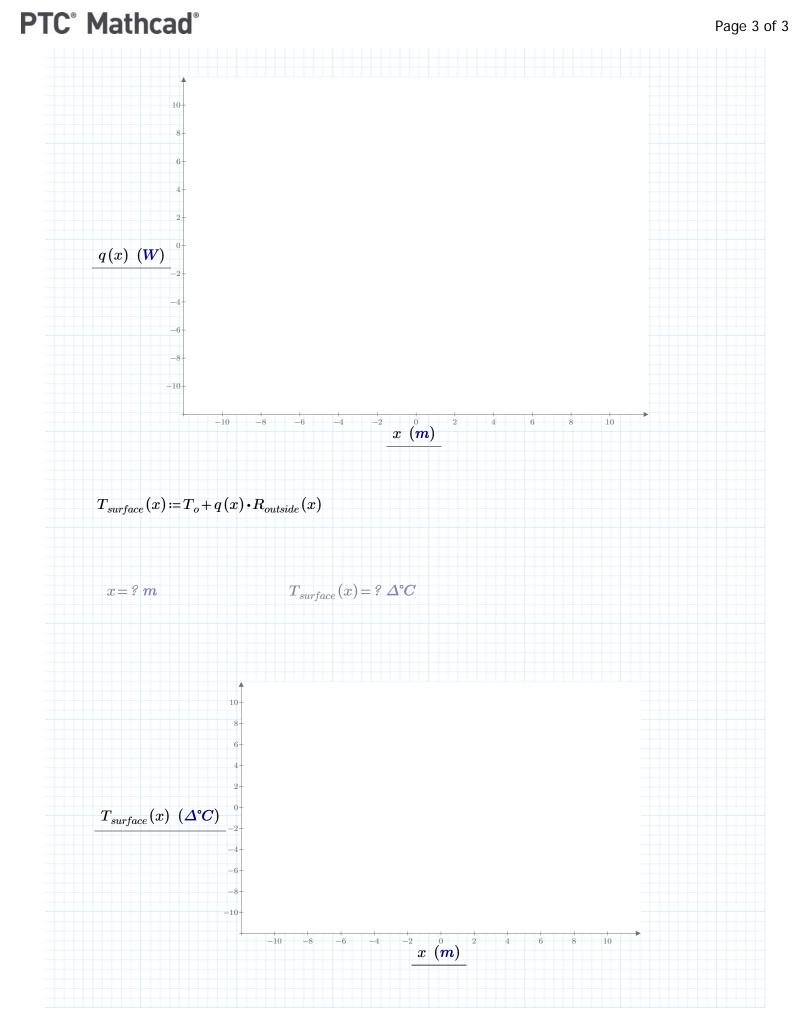
$$h_{o} = 14 \frac{W}{m^{2} \cdot \Delta^{*}C}$$
exterior heat  
transfer coefficient  

$$R_{uvide} = \frac{1}{2 \cdot \pi \cdot r_{*} \cdot h_{*} \cdot L}$$
interior film  
resistance  

$$R_{outside}(x) = \frac{1}{2 \cdot \pi \cdot (r_{*} + x) \cdot L \cdot h_{v}}$$
exterior film  
resistance  

$$R_{uvide}(x) = \frac{\ln\left(\frac{r_{o} + x}{r_{o}}\right)}{2 \cdot \pi \cdot k_{uv} \cdot L}$$
insulation thermal  
resistance as a function  
of insulation thickness x  

$$R_{pipe} = \frac{\ln\left(\frac{r_{*}}{r_{o}}\right)}{2 \cdot \pi \cdot k_{uv} \cdot L}$$
ippe thermal resistance  
(usually very small compared  
to the other three resistances)  


$$R_{tor}(x) = \frac{T_{u} - T_{o}}{R_{tor}(x)}$$
heat loss from pipe  

$$x = ? m$$

$$R_{tor}(x) = \frac{2 \cdot \frac{\Delta^{*}C}{W}}{R_{tor}(x)} = \frac{2 \cdot \frac{\Delta^{*}C}{W}}{W}$$

$$q(x) = ? W$$
variation of thermal  
resistance with  
insulation thickness x

1.2\_Heat\_Conduction\_Through\_Insulated\_Pipes.mcdx



1.2\_Heat\_Conduction\_Through\_Insulated\_Pipes.mcdx