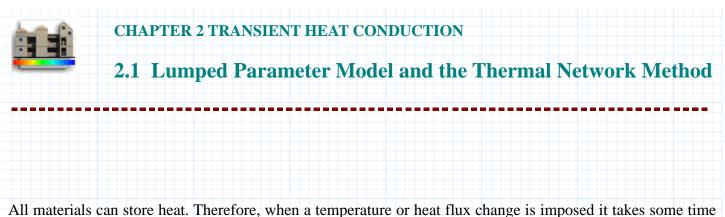
PTC[®] Mathcad[®]



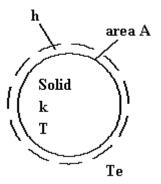
to reach steady state. During this time, we must perform a transient analysis to determine temperatures and heat flows. For systems with negligible thermal resistance, we may perform a simplified analysis.

The Biot number (Bi) is a dimensionless number, equal to the ratio of the internal thermal resistance (1/k) to the surface thermal resistance (1/ h·L). This number determines whether lumped parameter analysis is applicable.

 $Bi = \frac{h \cdot L}{k}$ where L is a characteristic length (L = Volume / Area).

If B_i is small (< 0.1), we can assume with reasonable accuracy that the body is isothermal, and lumped parameter analysis can be performed.

Consider the cooling of a resistance element in an electric heater at initial temperature T₀ exposed to an environment at Te. Assume that the element is a cylindrical wire.



Objective:	Determine T(t)	
v		

Initial condition: T(t=0)= To, Environment temp. = Te

Given data.

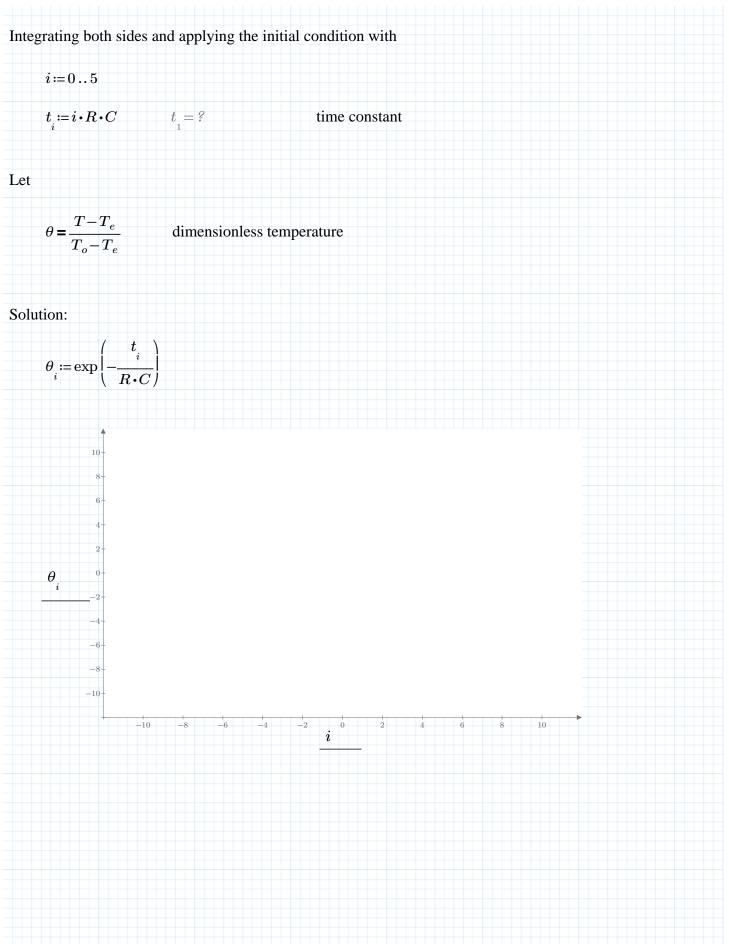
$L \coloneqq 0.5 \ m$	wire length	
$D := 0.001 \ m$	diameter	
$k \coloneqq 374 \; \frac{W}{m \cdot \Delta^{\circ} C}$	thermal conductivity	

PTC° Mathcad°

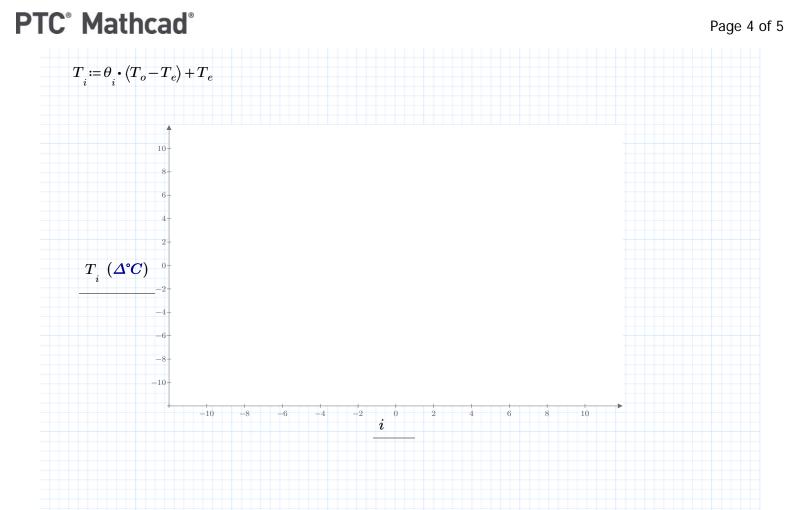
$c \coloneqq 383 \frac{J}{kg \cdot \Delta^{\circ}C}$	specific heat capacity
$\rho \coloneqq 8930 \ \frac{kg}{m^3}$	density
$h \coloneqq 10 \ \frac{W}{m^2 \cdot \Delta^{\circ} C}$	heat transfer coefficient
$A \coloneqq \pi \cdot D \cdot L$	surface area
$V \coloneqq \pi \cdot \frac{D^2}{4} \cdot L$	wire volume
$L := \frac{V}{A}$	characteristic length
$Bi := h \cdot \frac{L}{k} = ?$	
$T_o \coloneqq 150 \ \Delta^{\circ}C$	$T_e \coloneqq 40 \ \Delta^{\circ}C$
Energy balance (Biot num) change in internal energy	ber < 0.1): gy during time dt = net heat flow from body during dt
$-C \cdot dT = (T - T_e) \cdot \frac{dt}{R}$	
where	
$C \coloneqq c \cdot \rho \cdot V$	thermal capacitance of body
$R \coloneqq \frac{1}{A \cdot h}$	surface resistance
Therefore	
$\frac{d\left(T-T_{e}\right)}{T-T_{e}} = -\frac{dt}{R \cdot C}$	

2.1_Lumped_Parameter_Model_and_the_Thermal_Network_Method.mcdx

PTC° Mathcad°



2.1_Lumped_Parameter_Model_and_the_Thermal_Network_Method.mcdx



Note that 63% of the change occurs after one time interval (from i=0 to i=1), i.e. a temperature drop of $0.63 \cdot (T_0 - T_e)$

 $\theta_{0} - \theta_{1} = 18.075 \ 1\% \qquad \qquad \frac{T_{0} - T_{1}}{T_{0} - T_{5}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} 1\%$

Thermal Network Model

The body can be modeled with an isothermal capacitance C in parallel with a resistance R (equal to $1/A \cdot h$) both connected to the environment at temperature T_e.

Note that the capacitance (or capacitances) in a thermal network are always modeled as connected between a reference temperature (usually the environment temperature Te) and their own temperature T. Heat flow into the capacitance means flow from T to Te.

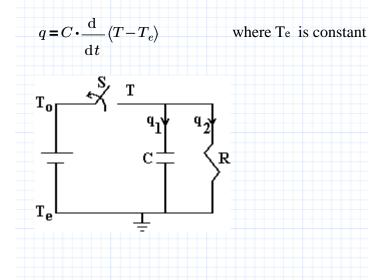
The initial condition $T(t=0) = T_0$ can be simulated by a "battery" To-Te connected through a switch S to the capacitance, and also connected to the reference node.

The constitutive equation for a thermal resistance is simply

 $q = \frac{T_{hot} - T_{cold}}{R}$

PTC° Mathcad°

Similarly, for a capacitance we have



Switch S opens at t = 0. Energy balance at T: Heat flow into C + Heat flow to R = 0

or $q_1 + q_2 = 0$ $C \cdot \frac{\mathrm{d}}{\mathrm{d}t} (T - Te) + \frac{T - T_e}{R} = 0$ $\frac{\mathrm{d}}{\mathrm{d}t} (T - Te) + \frac{T - T_e}{R \cdot C} = 0$

The same solution as before is obtained (initial condition $T(0)=T_0$).

In <u>Chapter 9</u>, we will see how a transient thermal network of a room is developed and solved to determine heating/cooling loads and room temperatures.

2.1_Lumped_Parameter_Model_and_the_Thermal_Network_Method.mcdx