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CHAPTER 2 TRANSIENT HEAT CONDUCTION 

2.1 Lumped Parameter Model and the Thermal Network Method

All materials can store heat. Therefore, when a temperature or heat flux change is imposed it takes some time 
to reach steady state. During this time, we must perform a transient analysis to determine temperatures and 
heat flows. For systems with negligible thermal resistance, we may perform a simplified analysis.

The Biot number (Bi) is a dimensionless number, equal to the ratio of the internal thermal resistance (1/k) to 
the surface thermal resistance (1/ h·L). This number determines whether lumped parameter analysis is
applicable.

where L is a characteristic length
(L = Volume / Area).＝Bi ――

⋅h L

k

If Bi is small (< 0.1), we can assume 
with reasonable accuracy that the 
body is isothermal, and lumped 
parameter analysis can be performed.

Consider the cooling of a resistance 
element in an electric heater at initial 
temperature To exposed to an 
environment at Te. Assume that the
element is a cylindrical wire.

Objective: Determine T(t)

Initial condition: T(t=0)= To, Environment temp. = Te

Given data:

≔L 0.5 wire length

≔D 0.001 diameter

≔k 374 ―――
⋅

thermal conductivity
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≔c 383 ―――
⋅

specific heat capacity

≔ρ 8930 ――
3

density

≔h 10 ―――
⋅

2
heat transfer coefficient

≔A ⋅⋅ D L surface area

≔V ⋅⋅ ――
D

2

4
L wire volume

≔L ―
V

A
characteristic length

≔To 150 ≔Te 40

Energy balance (Biot number < 0.1):

change in internal energy during time dt = net heat flow from body during dt

＝⋅−C dT ⋅⎛⎝ −T Te⎞⎠ ―
dt

R

where

≔C ⋅⋅c ρ V thermal capacitance of body

≔R ――
1

⋅A h
surface resistance

Therefore

＝――――
d ⎛⎝ −T Te⎞⎠

−T Te

−――
dt

⋅R C
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Integrating both sides and applying the initial condition with

≔i ‥0 5

≔t
i

⋅⋅i R C time constant

Let

＝θ ―――
−T Te

−To Te

dimensionless temperature

Solution:

≔θ
i

exp

⎛
⎜
⎝
−――

t
i

⋅R C

⎞
⎟
⎠
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≔T
i

+⋅θ
i

⎛⎝ −To Te⎞⎠ Te
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Note that 63% of the change occurs after one time interval (from i=0 to i=1), i.e. a temperature drop of 
0.63·(To - Te)
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Thermal Network Model

The body can be modeled with an isothermal capacitance C in parallel with a resistance R (equal to 1/A·h) 
both connected to the environment at temperature Te. 
Note that the capacitance (or capacitances) in a thermal network are always modeled as connected between a 
reference temperature (usually the environment temperature Te) and their own temperature T. Heat flow into 
the capacitance means flow from T to Te. 

The initial condition T(t=0) = To can be simulated by a "battery" To-Te connected through a switch S to the 
capacitance, and also connected to the reference node. 

The constitutive equation for a thermal resistance is simply

＝q ――――
−Thot Tcold

R
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Similarly, for a capacitance we have

＝q ⋅C ――
d

dt

⎛⎝ −T Te⎞⎠ where Te is constant

Switch S opens at  t = 0. Energy balance at T:

Heat flow into C + Heat flow to R = 0

or ＝+q1 q2 0

＝+⋅C ――
d

dt

(( −T Te)) ―――
−T Te

R
0

＝+――
d

dt

(( −T Te)) ―――
−T Te

⋅R C
0

The same solution as before is obtained (initial condition T(0)=To).

In Chapter 9, we will see how a transient thermal network of a room is developed and solved to determine 
heating/cooling loads and room temperatures.
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