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CHAPTER 9 HEATING AND COOLING LOAD CALCULATIONS

9.1 First Order Room Model

Building thermal network models are commonly used for heating/cooling load analysis, thermal comfort 
calculations and for building enclosure heat transfer studies. Room thermal models consisting of resistances 
representing convection, conduction and radiation, as well as capacitances representing thermal storage effects 
can have various degrees of modeling detail. Generally, detailed models represent thermal storage in each wall 
with separate capacitances or distributed elements (Section 4.2). An energy balance is performed for all 
capacitances, leading to a set of coupled first order differential equations. A first order model for a room 
represents its thermal storage capacity with only one thermal capacitance; this "effective" room thermal 
capacitance is usually lumped at the room temperature node or at a surface.

Consider a zone over a basement. Assume that only the floor has significant thermal capacitance and that it 
consists of a massive interior layer (room side) and layers without significant thermal capacity under it with 
insulation value Rins. The room schematic together with an approximate network are shown:

U is for total area
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Infiltration heat transfer (sensible):

＝qs Uinf ⎛⎝ −TR To⎞⎠

≔cpair ⋅1000 ―――
⋅

specific heat of air

≔ρair ⋅1.2 ――
3

density of air

Infiltration conductance:

＝Uinf ⋅⋅―――
⋅ach Vol

⋅3600
ρair cpair Vol= zone volume

＝Uinf ―――
⋅ach Vol

3
ach= air changes/hour

The total conductance between the basement temperature Tb and the top room temperature TR is given by

＝Uf ―――――
1

+
⎛
⎜⎝
――

1

⋅Af hi

⎞
⎟⎠

Rins

Now performing an energy balance at the two nodes (R - room air and  f- floor surface), we obtain

R: ＝++⋅URf ⎛⎝ −Tf TR⎞⎠ ⋅Ut ⎛⎝ −To TR⎞⎠ qaux 0

f: ＝+++⋅−C ――
dTf

dt
⋅URf ⎛⎝ −TR Tf⎞⎠ ⋅Uf ⎛⎝ −Tb Tf⎞⎠ QR 0

(1)

⋅−C ――
dTf

dt
is ⋅−Cs Tf in the Laplace domain

i.e. equations (1) in the Laplace domain (see Section 10.1) become

[ Y ] [ T ] = [ Q ]

＝⋅
+URf Ut −URf

−URf ++sC Uf URf

⎡
⎢⎣

⎤
⎥⎦

TR

Tf

⎡
⎢⎣

⎤
⎥⎦

+qaux ⋅Ut To

+QR ⋅Uf Tb

⎡
⎢⎣

⎤
⎥⎦
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Therefore, the solution (in the Laplace domain) is

[ T ] = [Y¯¹] [Q ] or

＝
TR

Tf

⎡
⎢⎣

⎤
⎥⎦

⋅⋅―
1

D

++sC Uf URf URf

URf +URf Ut

⎡
⎢⎣

⎤
⎥⎦

+qaux ⋅UT To

+QR ⋅Uf Tb

⎡
⎢⎣

⎤
⎥⎦

where the determinant D is given by

＝D −⋅⎛⎝ +URf Ut⎞⎠ ⎛⎝ ++sC Uf URf⎞⎠ URf

2

Therefore, the room temperature is 

＝TR +⋅―――――
++sC Uf URf

D
⎛⎝ +qaux ⋅Ut To⎞⎠

⎛
⎜⎝

⋅――
URf

D
⎛⎝ +QR ⋅Uf Tb⎞⎠

⎞
⎟⎠

(2)

Note that To, qaux, Tb, and TR are in the Laplace domain. Equation (2) may also be expressed as

＝TR +⋅Z11 ⎛⎝ +qaux ⋅Ut To⎞⎠ ⋅Z12 ⎛⎝ +QR ⋅Uf Tb⎞⎠ (3)

where

＝Z11 ((s)) ―――――――――――
++⋅s C Uf URf

−⋅⎛⎝ +URf Ut⎞⎠ ⎛⎝ ++⋅s C Uf URf⎞⎠ URf

2

＝Z12 ((s)) ―――――――――――
URf

−⋅⎛⎝ +URf Ut⎞⎠ ⎛⎝ ++⋅s C Uf URf⎞⎠ URf

2

(4)

Equations 3 and 4 relate TR (s) to inputs (forcing functions) qaux(s), To(s), QR(s) and Tb(s). Note that if TR is 
specified (known) the auxiliary heating/cooling may be determined  (by rearranging (3)) as

＝qaux ―――――――――――
−−TR ⋅Z12 ⎛⎝ +QR ⋅Uf Tb⎞⎠ ⋅⋅Z11 Ut To

Z11

(5)

9.1_First_Order_Room_Model.mcdx



Page 4 of 9

For steady state calculations the capacitance term sC is set to zero in equation (4), i.e. Z12 and Z11 become 
effectively resistances. We can determine the periodic variation of qaux(t) and TR(t) by representing the 
variation of the inputs To and QR by sinusoids as demonstrated in chapter 4. Then we have

Total response = mean term + harmonic variation

Frequency response analysis and input-output analysis may be performed more easily by using complex
numbers.

Z11 and Z12 are impedance transfer functions (analogous to impedances in a.c. electric circuits) and their phase 
and magnitude may be evaluated by substituting s = j where j = (-1) to power 0.5, and  is the frequency of 
interest (one cycle per day). In general, given a transfer function Z which relates the effect of an input Q on a 
temperature T we have the following:

for

＝Q ⋅A cos (( +⋅ω t θ))

we obtain

＝T ((t)) ⋅⋅A ||Z (( ⋅j w))|| cos ⎛⎝ ++⋅w t θ ϕz⎞⎠ (6)

where

||Z (( ⋅j w))|| = magnitude of Z and ＝ϕz arg ((Z (( ⋅j w))))

Note that the phase angle of the transfer function z determines the time lag between cause (Q) and effect (T). 
Because of the superposition principle, we can consider each input (e.g. absorbed solar radiation QR) alone or 
all together. Simple models for the sources are employed as follows: 

Outside temperature:

＝To +Tom ⋅――
ΔTo

2
cos ⎛⎝ +⋅w t θ1⎞⎠ (6a)

Solar radiation absorbed on floor:

＝QR +QRm ⋅ΔQR cos ⎛⎝ +⋅w t θ2⎞⎠ (6b)

Basement temperature:

＝＝Tb Tbm constant (6c)
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Room temperature:

＝TR constant (6d)

Let Z11m = value of Z11 for w = 0 and Z12m = value of Z12 for w = 0 (steady-state). The general solution for 
qaux (from equation 5) is then given by

＝qmean −−――
TR

Z11m

⋅――
Z12m

Z11m

⎛⎝ +QRm ⋅Uf Tb⎞⎠ ⋅Ut Tom steady state term

＝qTo ⋅⋅−Ut ――
ΔTo

2
cos ⎛⎝ +⋅w t θ2⎞⎠ variation due to To

＝qQR ((t)) −
⎛
⎜
⎝

⋅⋅――――
||Z12 (( ⋅j w))||
||Z11 (( ⋅j w))||

ΔQR cos ⎛⎝ −++⋅w t θ1 ϕz12 ϕz11⎞⎠
⎞
⎟
⎠

variation due to QR

＝qaux ((t)) ++qmean qQR qTo

The variation of qaux(t) due to the solar gains is particularly interesting. There is a phase lag of z12 - z11, that 
is a time lag of (z12 - z11)/w in qaux(t) relative to QR(t).

Example: We will consider a simple zone with the following data.

Dimensions: 

≔L ⋅5 ≔W ⋅5 ≔H ⋅3

≔Af ⋅L W ≔Aw ⋅4
2

floor and window areas (window on wall WxH)

≔Rwall 2.1
2

―― ≔Rroof 2.5
2

――

≔Rw 0.34
2

―― ≔Rins 1
2

――
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≔hi 9 ―――
⋅

2
film coefficient

≔ach 1 air changes per hour

≔Awall −(( +⋅⋅2 L H ⋅⋅W H 2)) Aw

≔Aroof ⋅L W ≔Vol ⋅⋅L W H

Floor cover layer -tiles with properties:

≔k 1.0 ―――
⋅

conductivity

≔ρ 1200 ――
3

density

≔c 700 ―――
⋅

specific heat

≔x 4 thickness

Calculate conductances:

≔Uinf ⋅⋅――――
⋅ach Vol

⋅3600 sec
ρair cpair =Uinf 25 ――

≔Ut +++Uinf ――
Aw

Rw

――
Awall

Rwall

――
Aroof

Rroof

=Ut 73.43137 ――

≔Uf ―――
Af

+―
1

hi
Rins

≔URf ⋅Af hi
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Thermal capacitance:

≔C ⋅⋅⋅c ρ Af x =C ⎛⎝ ⋅8.4 10
5 ⎞⎠ ――

≔w ⋅2 ―――
⋅86400

frequency
(1 cycle/day) ≔j ‾‾‾−1

Room transfer functions:

≔Z11 ((s)) ―――――――――――
++⋅s C Uf URf

−⋅⎛⎝ +URf Ut⎞⎠ ⎛⎝ ++⋅s C Uf URf⎞⎠ URf

2

≔Z12 ((s)) ―――――――――――
URf

−⋅⎛⎝ +URf Ut⎞⎠ ⎛⎝ ++⋅s C Uf URf⎞⎠ URf

2

=Z11

⎛
⎜⎝
―
0 ⎞

⎟⎠
0.01065 ――

=Z12

⎛
⎜⎝
―
0 ⎞

⎟⎠
0.00968 ――

≔Z11m Z11

⎛
⎜⎝
―
0 ⎞

⎟⎠
≔Z12m Z12

⎛
⎜⎝
―
0 ⎞

⎟⎠

=Z11 (( ⋅j w)) (( −0.00787 0.00355j)) ――

=Z12 (( ⋅j w)) (( −0.00599 0.0047j)) ――

Specified temperature and solar source:

≔TR 20 ≔Tb 16

≔Tom 0 ≔ΔTo 10

≔QRm ⋅⋅Aw 200 ――
2

≔ΔQR QRm

≔t , ‥⋅1 ⋅2 ⋅24 ≔θ1 ⋅−5 ―
4

≔θ2 −
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Load calculation:

≔qmean −−――
TR

Z11m

⋅――
Z12m

Z11m

⎛⎝ +QRm ⋅Uf Tb⎞⎠ ⋅Ut Tom

=qmean 823 watt

≔qTo ((t)) ⋅⋅−Ut ――
ΔTo

2
cos ⎛⎝ +⋅w t θ1⎞⎠

≔qQR ((t)) −
⎛
⎜
⎝

⋅⋅――――
||Z12 (( ⋅j w))||
||Z11 (( ⋅j w))||

ΔQR cos ⎛⎝ +−⎛⎝ +⋅w t θ2⎞⎠ arg ⎛⎝Z11 (( ⋅j w))⎞⎠ arg ⎛⎝Z12 (( ⋅j w))⎞⎠⎞⎠
⎞
⎟
⎠

≔qaux ((t)) ++qmean qQR ((t)) qTo ((t))

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-0.25

0

2.25

6 8.5 11 13.5 16 18.5 21 23.51 3.5 26

qaux ((t)) (( ))

t (( ))
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≔To ((t)) +Tom ⋅――
ΔTo

2
cos ⎛⎝ +⋅w t θ1⎞⎠

-3

-2

-1

0

1

2

3

4

-5

-4

5

6 8.5 11 13.5 16 18.5 21 23.51 3.5 26

To ((t)) (( ))

t (( ))

The above results indicate a peak heating load of 2.1 kW based on this simple room model and the 
approximate solar radiation model. More detailed and accurate models are employed in the next sections, 
including complete solar radiation calculations. This model may be employed for fast analysis of simple cases 
and to understand the basic concepts employed in the next two sections.
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