CHAPTER 2: Structural Steel Beams

2.3 Section Properties of Built-Up Steel Sections

Description

This document calculates the moment of inertia and section modulus for a steel section that has at least one axis of symmetry built-up from plates or from a combination of plates and sections with known section properties. Any number of plates or sections may be used.

Built-up sections are used when reinforcing existing members, as plate girders, and for composite steel beams using bottom plates. The application may also be used to calculate section properties for nonstandard T sections cut from I-shaped members. The properties of fillets or continuous welds may also be included when required. The required input includes the overall depth of the built-up section, plate dimensions (in the horizontal and vertical directions) and the area and moment of inertia of any sections with known properties making up the built-up section, and the dimensions from the centroids of plates or sections to the bottom of the built-up section.

Input

Notation

\[
\begin{align*}
\ y_t & \quad \text{N.A.} \quad \ y_2 \\
\ y_b & \quad \ y_1 \\
\ y_0 & \quad \ d
\end{align*}
\]
Input Variables

Enter depth of the built-up section, moments of inertia and areas of individual sections, horizontal and vertical dimensions of plates, and distances from the centroids of individual plates and sections to the bottom of the built-up section. Moments of inertia, areas, or plate dimensions referring to a given section or plate must have the same corresponding subscript number.

Depth of the built-up section:

\[d := 17.81 \text{ in} \]

Moments of inertia of individual sections:

\[I_0 := 704.5 \text{ in}^4 \]
\[I_1 := 3.6 \text{ in}^4 \]

Areas of individual sections:

\[A_0 := 13.24 \text{ in}^2 \]
\[A_1 := 4.22 \text{ in}^2 \]

Horizontal plate dimensions:

\[h := 9 \text{ in} \]

Vertical plate dimensions:

\[v := 0.25 \text{ in} \]

Distances from the bottom of the built-up section to area centroid of any sections or plates:

\[y_0 := 9.03 \text{ in} \]
\[y_1 := 16.42 \text{ in} \]
\[y_2 := 0.125 \text{ in} \]

Note ⇒ Section must be symmetrical about the vertical axis.
Computed Variables

The following variables are calculated in this document:

\(d \) depth of the built-up section

\(A_s \) cross section area of built-up section

\(I_s \) moment of inertia of the built-up section about the horizontal centroidal axis

\(S_t \) section modulus of the built-up section about the horizontal centroidal axis referred to the top of the section

\(S_b \) section modulus of the built-up section about the horizontal centroidal axis referred to the bottom of the section

\(y_t \) dimension form the horizontal centroidal axis to the top of the built-up section

\(y_b \) dimension form the horizontal centroidal axis to the bottom of the built-up section

Calculations

Areas of all sections and plates:

\[i := 0 \ldots \text{last} \left(y \right) \]

\[A_i := \text{if} \left(h_i = 0 \cdot \text{in}, A_i, h_i \cdot v_i \right) \]

\[A^T = \begin{bmatrix} 13.24 & 4.22 & 2.25 \end{bmatrix} \text{in}^2 \]
Moments of inertia of all sections and plates:

\[I_i := \begin{cases} h_i = 0 \cdot \text{in}, & \frac{1}{12} h_i \cdot \left(v_i \right)^3 \\ \end{cases} \]

\[I^T = [704.5 \ 3.6 \ 0.012] \ \text{in}^4 \]

Area of the built-up section:

\[A_s := \sum A \quad A_s = 19.71 \ \text{in}^2 \]

Dimension form the horizontal centroidal axis to the bottom of the built-up section:

\[y_b := \sum \frac{A_i \cdot y_i}{A_s} \quad y_b = 9.596 \ \text{in} \]

Dimension form the horizontal centroidal axis to the top of the built-up section:

\[y_t := d - y_b \quad y_t = 8.214 \ \text{in} \]

Moment of inertia of the built-up section about the horizontal centroidal axis:

\[I_s := \sum I + \sum \left(A_i \cdot \left(y_i - y_b \right)^2 \right) \]

\[I_s = 1110.691 \ \text{in}^4 \]

Section modulus of the built-up section about the horizontal centroidal axis referred to the top of the built-up section:

\[S_t := \frac{I_s}{y_t} \]

\[S_t = 135.214 \ \text{in}^3 \]
Section modulus of the built-up section about the horizontal centroidal axis referred to the bottom of the built-up section:

\[S_b := \frac{I_s}{y_b} \]

\[S_b = 115.749 \text{ in}^3 \]