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Instructional Objectives 
After reading this chapter the student will be able to 
1. Derive member stiffness matrix of a beam element. 
2. Assemble member stiffness matrices to obtain the global stiffness matrix for a 

beam. 
3. Write down global load vector for the beam problem. 
4. Write the global load-displacement relation for the beam. 
 
 
27.1 Introduction. 
In chapter 23, a few problems were solved using stiffness method from 
fundamentals. The procedure adopted therein is not suitable for computer 
implementation. In fact the load displacement relation for the entire structure was 
derived from fundamentals. This procedure runs into trouble when the structure 
is large and complex. However this can be much simplified provided we follow 
the procedure adopted for trusses. In the case of truss, the stiffness matrix of the 
entire truss was obtained by assembling the member stiffness matrices of 
individual members.  
In a similar way, one could obtain the global stiffness matrix of a continuous 
beam from assembling member stiffness matrix of individual beam elements. 
Towards this end, we break the given beam into a number of beam elements. 
The stiffness matrix of each individual beam element can be written very easily. 
For example, consider a continuous beam  as shown in Fig. 27.1a. The 
given continuous beam is divided into three beam elements as shown in Fig. 
27.1b. It is noticed that, in this case, nodes are located at the supports. Thus 
each span is treated as an individual beam. However sometimes it is required to 
consider a node between support points. This is done whenever the cross 
sectional area changes suddenly or if it is required to calculate vertical or 
rotational displacements at an intermediate point. Such a division is shown in Fig. 
27.1c. If the axial deformations are neglected then each node of the beam will 
have two degrees of freedom: a vertical displacement (corresponding to shear) 
and a rotation (corresponding to bending moment). In Fig. 27.1b, numbers 
enclosed in a circle represents beam numbers. The beam  is divided into 
three beam members. Hence, there are four nodes and eight degrees of 
freedom. The possible displacement degrees of freedom of the beam are also 
shown in the figure. Let us use lower numbers to denote unknown degrees of 
freedom (unconstrained degrees of freedom) and higher numbers to denote 
known (constrained) degrees of freedom. Such a method of identification is 
adopted in this course for the ease of imposing boundary conditions directly on 
the structure stiffness matrix. However, one could number sequentially as shown 
in Fig. 27.1d.  This is preferred while solving the problem on a computer.           

ABCD

ABCD

 

Version 2 CE IIT, Kharagpur 
                                                         



 
 

 
 
 

 

Version 2 CE IIT, Kharagpur 
                                                         



 
 
In the above figures, single headed arrows are used to indicate translational and 
double headed arrows are used to indicate rotational degrees of freedom. 
 
 
27.2 Beam Stiffness Matrix. 
Fig. 27.2 shows a prismatic beam of a constant cross section that is fully 
restrained at ends in local orthogonal co-ordinate system . The beam ends 
are denoted by nodes 

''' zyx
j and . The  axis coincides with the centroidal axis of 

the member with the positive sense being defined from
k 'x

j  to . Letk L  be the length 
of the member, A  area of cross section of the member and is the moment of 
inertia about 'axis. 

zzI
z

 

 
 
Two degrees of freedom (one translation and one rotation) are considered at 
each end of the member. Hence, there are four possible degrees of freedom for 
this member and hence the resulting stiffness matrix is of the order . In this 
method counterclockwise moments and counterclockwise rotations are taken as 
positive. The positive sense of the translation and rotation are also shown in the 
figure. Displacements are considered as positive in the direction of the co- 
ordinate axis. The elements of the stiffness matrix indicate the forces exerted on 
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the member by the restraints at the ends of the member when unit displacements 
are imposed at each end of the member. Let us calculate the forces developed in 
the above beam member when unit displacement is imposed along each degree 
of freedom holding all other displacements to zero. Now impose a unit 
displacement along axis at 'y j end of the member while holding all other 
displacements to zero as shown in Fig. 27.3a. This displacement causes both 
shear and moment in the beam. The restraint actions are also shown in the 
figure. By definition they are elements of the member stiffness matrix. In 
particular they form the first column of element stiffness matrix.  
In Fig. 27.3b, the unit rotation in the positive sense is imposed at j  end of the 
beam while holding all other displacements to zero. The restraint actions are 
shown in the figure. The restraint actions at ends are calculated referring to 
tables given in lesson …  
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In Fig. 27.3c, unit displacement along  axis at end is imposed and 
corresponding restraint actions are calculated. Similarly in Fig. 27.3d, unit 
rotation about '  axis at end  is imposed and corresponding stiffness 
coefficients are calculated. Hence the member stiffness matrix for the beam 
member is 

'y k
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     (27.1) 

 
The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate 
the actions associated with two ends of the member. For continuous beam 
problem, if the supports are unyielding, then only rotational degree of freedom 
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shown in Fig. 27.4 is possible. In such a case the first and the third rows and 
columns will be deleted. The reduced stiffness matrix will be, 
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Instead of imposing unit displacement along at 'y j  end of the member in Fig. 
27.3a, apply a displacement  along at 1'u 'y j  end of the member as shown in 
Fig. 27.5a, holding all other displacements to zero. Let the restraining forces 
developed be denoted by and . 312111 ,, qqq 41q
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The forces are equal to, 
 

14141131311212111111 ';';';' ukqukqukqukq ====   (27.3) 
 
Now, give displacements and  simultaneously along displacement 
degrees of freedom and respectively. Let the restraining forces developed 
at member ends be and respectively as shown in Fig. 27.5b along 
respective degrees of freedom. Then by the principle of superposition, the force 
displacement relationship can be written as, 

321 ',',' uuu 4'u
3,2,1 4
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   (27.4) 

 
This may also be written in compact form as, 
 

{ } [ ] { }'ukq =        (27.5) 
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27.3 Beam (global) Stiffness Matrix. 
The formation of structure (beam) stiffness matrix from its member stiffness 
matrices is explained with help of two span continuous beam shown in Fig. 
27.6a. Note that no loading is shown on the beam. The orthogonal co-ordinate 
system xyz denotes the global co-ordinate system.  
 

 
 

 
 
For the case of continuous beam, the x - and - axes are collinear and other 
axes ( and , and ) are parallel to each other. Hence it is not required to 
transform member stiffness matrix from local co-ordinate system to global co 

'x
y 'y z 'z
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ordinate system as done in the case of trusses. For obtaining the global stiffness 
matrix, first assume that all joints are restrained. The node and member 
numbering for the possible degrees of freedom are shown in Fig 27.6b. The 
continuous beam is divided into two beam members. For this member there are 
six possible degrees of freedom. Also in the figure, each beam member with its 
displacement degrees of freedom (in local co ordinate system) is also shown. 
Since the continuous beam has the same moment of inertia and span, the 
member stiffness matrix of element 1 and 2 are the same. They are, 
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The local and the global degrees of freedom are also indicated on the top and 
side of the element stiffness matrix. This will help us to place the elements of the 
element stiffness matrix at the appropriate locations of the global stiffness matrix. 
The continuous beam has six degrees of freedom and hence the stiffness matrix 
is of the order 6 . Let  denotes the continuous beam stiffness matrix of 
order . From Fig. 27.6b,  may be written as, 
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The upper left hand section receives contribution from member 1  and 

lower right hand section of global stiffness matrix receives contribution from 
member 2. The element of the global stiffness matrix corresponding to global 
degrees of freedom 3 and 4 [overlapping portion of equation ( ] receives 
element from both members 1 and 2. 

44× )(AB
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27.4 Formation of load vector. 
Consider a continuous beam as shown in Fig. 27.7. ABC
 

 
 
We have two types of load: member loads and joint loads. Joint loads could be 
handled very easily as done in case of trusses. Note that stiffness matrix of each 
member was developed for end loading only. Thus it is required to replace the 
member loads by equivalent joint loads. The equivalent joint loads must be 
evaluated such that the displacements produced by them in the beam should be 
the same as the displacements produced by the actual loading on the beam. This 
is evaluated by invoking the method of superposition.  
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The loading on the beam shown in Fig. 27.8(a), is equal to the sum of Fig. 
27.8(b) and Fig. 27.8(c). In Fig. 27.8(c), the joints are restrained against 
displacements and fixed end forces are calculated. In Fig. 27.8(c) these fixed end 
actions are shown in reverse direction on the actual beam without any load. 
Since the beam in Fig. 27.8(b) is restrained (fixed) against any displacement, the 
displacements produced by the joint loads in Fig. 27.8(c) must be equal to the 
displacement produced by the actual beam in Fig. 27.8(a). Thus the loads shown 
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in Fig. 27.8(c) are the equivalent joint loads .Let, and be the 
equivalent joint loads acting on the continuous beam along displacement 
degrees of freedom and 6 respectively as shown in Fig. 27.8(b). Thus the 
global load vector is, 

54321 ,,,, ppppp 6p

5,4,3,2,1

            
 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ +−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟
⎠
⎞

⎜
⎝
⎛ +−

−

−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

12

2
2

12

2

2

2

22

2

2

6

5

4

3

2

1

wL

PwL
L

PbawL

wL
L

Pa
L

Pab
L
Pb

p

p

p

p

p

p

         (27.8) 

 
 
27.5 Solution of equilibrium equations 
After establishing the global stiffness matrix and load vector of the beam, the 
load displacement relationship for the beam can be written as, 
 

{ } [ ]{ }uKP =        (27.9) 
 
where is the global load vector, { }P { }u  is displacement vector and  is the 
global stiffness matrix. This equation is solved exactly in the similar manner as 
discussed in the lesson 24. In the above equation some joint displacements are 
known from support conditions. The above equation may be written as 
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where and  denote respectively vector of known forces and known 
displacements. And { }, {  denote respectively vector of unknown forces and 
unknown displacements respectively. Now expanding equation (27.10),  
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[ ] [ ] }{}{}{ 1211 kuk ukukp +=     (27.11a) 
[ ] [ ] }{}{}{ 2221 kuu ukukp +=     (27.11b) 

     
Since  is known, from equation 27.11(a), the unknown joint displacements 
can be evaluated. And support reactions are evaluated from equation (27.11b), 
after evaluating unknown displacement vector. 

{ }ku

 
Let and be the reactions along the constrained degrees of freedom as 
shown in Fig. 27.9a. Since equivalent joint loads are directly applied at the 
supports, they also need to be considered while calculating the actual reactions. 
Thus, 
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The reactions may be calculated as follows. The reactions of the beam shown in 
Fig. 27.9a are equal to the sum of reactions shown in Fig. 27.9b, Fig. 27.9c and 
Fig. 27.9d. 
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From the method of superposition, 
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Equation (27.14a) may be written as, 
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Member end actions are calculated as follows. For example consider 
the first element 1. 
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In the next lesson few problems are solved to illustrate the method so far 
discussed. 
 
 
Summary 
In this lesson the beam element stiffness matrix is derived from fundamentals. 
Assembling member stiffness matrices, the global stiffness matrix is generated. 
The global load vector is defined. The global load-displacemet relation is written 
for the complete beam structure. The procedure to impose boundary conditions 
on the load-displacement relation is discussed. With this background, one could 
analyse continuous beam by the direct stiffness method. 
 

Version 2 CE IIT, Kharagpur 
                                                         


	Analysis of Statically Indeterminate Structures by the Direct Stiffness Method
	The Direct Stiffness Method: Beams
	Instructional Objectives
	27.1 Introduction.
	27.2 Beam Stiffness Matrix.
	27.3 Beam (global) Stiffness Matrix.
	27.4 Formation of load vector.
	27.5 Solution of equilibrium equations
	Summary



