
Prestressed or Postensioned
Simple Span Beam

Can be applied to both prestressed and postensioned simple span beams
(with some engineering judgement and may be slightly different input data values)

Service level limit stress and limit shear strength checks are included. Deflection and Limit fle
Straight, 1 or 2-points draped and parabolic tendon layouts are included.
Allows for concentrated loads, own weight and uniform load.
Single stage construction is here contemplated.
You do input in blue background cells and get output in the yellow background cells.

A further and not difficult development of this is to make an optimal cost fully automatical design 

l 20 m span length

qD 1.5
ton

m
 uniform dead load, exclusive of (i.e., not including) beam's weight

qL 2
ton

m
 uniform live load

CSD 1.6 safety factor for the dead loads
These are the
common values in
Spain, enter yours.

CSL 1.6 safety factor for the uniform live loads

safety factor for the point live loads, just in case if inferior to CSL in account

load reduction; for limit strength evaluation
CSLR 1.6

Point Loads 
If needed, use Mathcad to add rows to vector data 

Dead Live Abscissa, from left bearing
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Concrete 

fc 45 MPa specified strength kci 0.9
γc 2400

kgf

m
3



fci kci fc fci 40.5MPa at transfer

ϕs 0.85 shear strength reduction factor

Concrete Geometry each row means a stacked trapeze of concrete, s
(you can freely add or reduce rows of data=st

first column is width of bottom of trapeze
second colum is width of top base of trapeze
third colum is height of trapeze
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Properties of the defined beam

h 160cm

yg 102.03cm

Area 0.54m
2

weightgirder 1.3
ton

m


Ix 16816202.21cm
4

Sb 164820.92cm
3 elastic modulus of section at bottom face

Propertie
section o

St 290070.11cm
3 elastic modulus of section at top face



Moment from exclusively weight, service level

Mw x( )
weightgirder x

2
l x( )

Moment, Shear of a point load P at abscissa ab

MP P ab x( ) P
l ab( )

l
 x x abif

P
ab

l
 l x( ) otherwise



VP P ab x( ) P
l ab( )

l
 x abif

P
ab

l
 otherwise



Service Level

M x( )
qD qL weightgirder  x

2
l x( )

1

NP

i

MP PDi
PLi

 Ai x 




V x( ) qD qL weightgirder  l

2
x







1

NP

i

VP PDi
PLi

 Ai x 




Moment and Shear required at the factored (limit) level



Mu x( )
CSD qD CSL qL CSD weightgirder  x

2
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MP CSD PD




Vu x( ) CSD qD CSL qL CSD weightgirder  l

2
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

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

1
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VP CSD PD




by setting to a irregular number you may avoid discontinuity
problems in evaluation of slope when harped tendons are usedNparts 200

j 1 Nparts 1 xxj
l

Nparts
j 1( ) MMj M xxj  MMUj

MWj Mw xxj 

In red the factored 
In blue service level.
In magenta from dead weight only. 
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Tendon profile

Choice 3 3 if Parabolic
2 if harped at 2 points
1 if harped at center
0 if straight

Drape poin
will have ukL 0.4

ye yg height of tendon at end
from bottom

yc 12 cm height of tendon at center

Chart Profile

tendon
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Prestress Force

Nstrands 18 Ap_1 0.217 in
2 ϕ 0.6 in fpu 270

Initial 

ki 0.75 locked fraction of fpu fpi fpu ki fpi 202.5ksi

Pi Nstrands Ap_1 fpi Pi 358.78 ton

Final 

loss 0.2 per one, long term

kpe ki 1 loss( ) kpe 0.6 fpe kpe fpu fpe 162ksi

Pe Nstrands Ap_1 fpe Pe 287.02 ton



Transfer length

We take it 50 diameters (we are assuming strand built up tendons)

lt 50 ϕ lt 76.2cm

Transfer length deflation of prestress at ends

We surmiss a linear decay from the full value of prestress at the age towards ends, hence
prestress forces at each section have to be redefined... 

Initial Final or effective

PIj Pi
xxj

lt
 xxj ltif

Pi AND2 xxj lt xxj l lt if

Pi
l xxj

lt
 otherwise

otherwise


PEj Pe

xxj

lt
 xxj ltif

Pe AND2 xif

Pe
l xxj

lt
 othe

otherwise



Stresses 

Compression figures positive t stands for top face and b for bottom face

Check initial stresses at service level

Caused by weight plus highest ever prestress



σbij

PIj
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PIj yg yt xxj  

Sb

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Sb
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σtij
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Caused by weight plus highest ever prestress
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Note how for the example the full service level condition is very favourable, since the full beam
remains compressed around the average 5 MPa level. However the beam has to have too
much depth for our taste, due to uncommon loading.

fpc
Pe

Area
 fpc 5.2MPa

Change the choice of tendon profile and see the stresses vary.

Checking Limit Strength

Logic for this we don't include here but do with another Mathcad sheet, fx124b.mcd



We only will check center point which here takes maximum moment

Mmaxfactored max MMU( ) Mmaxfactored 431.87m ton

It is usual to provide bonded reinforcement at 4 per thousand of area between cgc and bottom
face, distributed cgc down. 
When no tensile stresses appear long term (like here) or they are moderate, no bonded
reinforcement is required per ACI 18.9.3.1. Still it is a good practice.

As_recommended 0.004 Areacgc_down As_recommended 8.93cm
2

We check limit strength with fx124b.mcd and 6 16 mm passive rebar (more than
recommended) close to the bottom of the beam and we see that at the center we have
·Mn=429.15 m·ton capacity, which is close enough for the factored condition (any arbitrary
or based in engineering practice assumed value can cause such difference in flexural
capacity) and we decide to approve flexural strength at least for this theoretical case.
Other sections would need to be checked. 

The compatibility of deformations analysis based in a realistic asessment of stress-strain
laws for both concrete and steels discovers that the moment strength attains its maximum
for this section when all the materials remain practically elastic, whereas further progression
in the inelastic behaviour for them can only be made with some accompanying reduction of
the capacity attained at such maximum.

Raising eyebrows? Take this then. Rare as it may sound to you, it may be happening that in
some bridge decks where concrete is of much lower strength than the precast beams below,
the deck adds nothing to limit bending strength; it is no more than butter (and flexurally a
nonuseful burden) to the stiff members below. The overall maximum flexural strength never
will be more than that of the strong supporting precast members. 

This can also happen for composite decks on steel stringers. Once the compressed part of
the steel shape attains plasticity, the axial rigidity of the deck is (for such cases) unable to
refrain it. Many composite beam checks can be promptly dismissed if you prove such is the
case, since the deck is then more than anything another superimposed dead load.

Checking shear

First we also state mean compression at every point taking into account transfer length

Fpcj

PEj

Area




Slopet x( )
x

yt x( )
d

d
 SLOPEj Slopet xxj  the harped tendons may re

other treatment due to met
discontinuity

Since prestress is always favourably opposing shearing action, we can consider it always
positive.

Vpj
PEj SLOPEj vertical component of prestress force

Depthj max
0.8 h

h yt xxj 



















We identify width of web as the lesser of the stated widths bw1 min d 1   b

bw 16cm

Vcwj
3.5

fc

psi
 psi 0.3 Fpcj










bw Depthj Vpj
 Web shear cracking capacity

at the investigated points

σb_pj

PEj

Area

PEj yg yt xxj  

Sb




Moment at which upon
decompression by flexion action
and further bending causing
tension, the bottom face cracks 

Mcrj
σb_pj

σt_limj
  Sb

j 2 Nparts to avoid divide by moment zero

since in a quotient facto
unfactored moments if c
don't mind.
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psi
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Shear capacity (of concrete plus vertical projection of tend
(Factored loads level) Shear demand in this beam
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The calculated shear capacity is the minimum of that limit for 
web shear cracking 
or 
flexure-shear cracking
since both would amount to unwanted cracks at the being checked factored level.

It is seen that in our case we remain safe by calculation against shear failure even without reso
stirrups. 
We always dispose anyway minimum shear reinforcement.
The chart is curtailed at 0.5 h from both ends as pertains to shear checks for prestressed beam
the beam themselves are not being shown.
Note that the shear strength reduction factor is already applied in the chart. 
The proper level of shear strength requirement is established by the amplification of dead and li
nothing to do with the shear strength reduction factor.
Where the red line exceeds the blue line, stirrups or other shear reinforcement are required. The
required to be delivered by stirrups afterϕsfactor  reduction is given by such excess. 

It is interesting to observe how the shear capacity is lesser in the regions of maximum moment
implied Shear-Moment interaction in the formulation of shear capacity, even we don't use to thin
concrete beams.

See where we stand in top smeared shear capacity 



Vcmax max Vc  vcmax
Vcmax

bw 0.9 h
 vcmax 5.14MPa maximum smeared ca

only concrete plus in

Stirrups reinforcement

ϕVsj
max

VVUj Vcj
ϕs

0 ton













AND2 xxj 0.5 h xxj l 0.5 h if

0 ton otherwise



Vsj

ϕVsj

ϕs


Note that we exclude from any stirrups need the sections closer than 0.5h to supports, as
proper for prestressed beams. This is not to say we won't be placing stirrups there.

Checksizej
Vsj

4 Vcj
 Checksize_max max Checksize 

SectionSize "is valid anywhere from the viewpoint of size required for the assume

"you need enlarge the shear section since it does not meet the shear siz



SectionSize "is valid anywhere from the viewpoint of size required for the assumed f

Will reinforce in this sheet in the classical approach where the  angle formed by the concrete
struts with longitudinal axis is not a factor. This is not consistent but is a conservative
assumption for any prestressed beam. Note however that prestress effect is at least partially
accounted for in the evaluation of the web shear and shear-flexural strength capacities above.

Let's define a tentative stirrups arrangement. 
Required separations will be calculated. fy 400 MPa stirrup's steel

fraction of le
stirrup arranNleg_e 2 number of legs per plane

of stirrups at beams ends
ϕe 8 mm ke 0.3



number of legs per plane of
stirrups at remaining centerNleg_c 2 ϕc 8 mm

se 60cm sc 60cm

Plot shear strength check with the input stirrups (at the
given separation) contribution 
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Whatever the result, I wouldn't reinforce in shear with stirrups farther apart than 2·bw for thin

web beams.

Manuel Oliveros Martínez, Architect, 1999
Comments & Corrections e-mail 

 mom@arrakis.es
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Di
CSLR PLi

 Ai x 


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CSLR PLi
 Ai x 

Mu xxj  VVj V xxj  VVUj Vu xxj 



nt inf fraction of span, only
use if harped at 2 points



0 ksi

fpi 1396.21MPa

fpe 1116.97MPa
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w2 min d 2   bw min
bw1

bw2
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


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
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



Note we are not curtailing to
maximum shear 100 psi so beware
very high concrete strengths
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