$$N_{\rm b,Rd} = \kappa \chi A_{\rm eff} f_{\rm o} / \gamma_{\rm M1} \tag{6.49}$$

where:

 χ is the reduction factor for the relevant buckling mode as given in 6.3.1.2.

 κ is a factor to allow for the weakening effects of welding. For longitudinally welded member κ is given in Table 6.5 for flexural buckling and $\kappa = 1$ for torsional and torsional-flexural buckling. In case of transversally welded member $\kappa = \omega_{\kappa}$ according to 6.3.3.3.

 $A_{\rm eff}$ is the effective area allowing for local buckling for class 4 cross-section. For torsional and torsional-flexural buckling see Table 6.7.

 $A_{\text{eff}} = A$ for class 1, 2 or 3 cross-section

6.3.1.2 Buckling curves

(1) For axial compression in members the value of χ for the appropriate value of $\overline{\lambda}$ should be determined from the relevant buckling curve according to:

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}} \quad \text{but } \chi < 1.0 \tag{6.50}$$

where:

$$\phi = 0.5(1 + \alpha(\overline{\lambda} - \overline{\lambda}_0) + \overline{\lambda}^2)$$

$$\overline{\lambda} = \sqrt{\frac{A_{\text{eff}} f_0}{N_{\text{cr}}}}$$
(6.51)

 α is an imperfection factor

 $\overline{\lambda}_0$ is the limit of the horizontal plateau

 $N_{\rm cr}$ is the elastic critical force for the relevant buckling mode based on the gross cross-sectional properties

- (2) The imperfection factor α and limit of horizontal plateau $\overline{\lambda}_0$ corresponding to appropriate buckling curve should be obtained from Table 6.6 for flexural buckling and Table 6.7 for torsional flexural buckling.
- (3) Values of the reduction factor χ for the appropriate relative slenderness $\overline{\lambda}$ may be obtained from Figure 6.11 for flexural buckling and Figure 6.12 for torsional or torsional-flexural buckling.
- (4) For slenderness $\overline{\lambda} \le \overline{\lambda}_0$ or for $N_{\rm Ed} \le \overline{\lambda}_0^2 N_{\rm cr}$ the buckling effects may be ignored and only cross-sectional check apply.

Table 6.5 - Values of κ factor for member with longitudinal welds

Class A material according to Table 3.2	Class B material according to Table 3.2
with $A = A - A$, $(1 - Q)$,	$\kappa = 1 \text{ if } \overline{\lambda} \le 0,2$ $\kappa = 1 + 0,04(4\overline{\lambda})^{(0,5-\overline{\lambda})} - 0,22\overline{\lambda}^{1.4(1-\overline{\lambda})}$ $\text{if } \overline{\lambda} > 0,2$

Table 6.6 - Values of α and $\bar{\lambda}_0$ for flexural buckling

Material buckling class according to Table 3.2	α	$\overline{\lambda}_0$
Class A	0,20	0,10
Class B	0,32	0,00

Figure 6.11 - Reduction factor χ for flexural buckling

Table 6.7 - Values of $\,lpha$, $\,\overline{\lambda}_0$ and $\,A_{\rm eff}$ for torsional and torsional-flexural buckling

Cross-section	α	$\overline{\lambda}_0$	$A_{ m eff}$
General ¹⁾	0,35	0,4	$A_{\rm eff}^{-1)}$
Composed entirely of radiating outstands ²⁾	0,20	0,6	$A^{(2)}$

- 1) For sections containing reinforced outstands such that mode 1 would be critical in terms of local buckling (see 6.1.4.3(2)), the member should be regarded as "general" and $A_{\rm eff}$ determined allowing for either or both local buckling and HAZ material.
- 2) For sections such as angles, tees and cruciforms, composed entirely of radiating outstands, local and torsional buckling are closely related. When determining $A_{\rm eff}$ allowance should be made, where appropriate, for the presence of HAZ material but no reduction should be made for local buckling i.e. $\rho_{\rm c}=1$.

O C 1

2 General cross section

Figure 6.12 - Reduction factor χ for torsional and torsional-flexural buckling

6.3.1.3 Slenderness for flexural buckling

(1) The relative slenderness $\bar{\lambda}$ is given by:

$$\overline{\lambda} = \sqrt{\frac{A_{\text{eff}} f_{\text{o}}}{N_{\text{cr}}}} = \frac{L_{\text{cr}}}{i} \frac{1}{\pi} \sqrt{\frac{A_{\text{eff}} f_{\text{o}}}{A E}}$$
(6.52)

where:

 $L_{\rm CI}$ is the buckling length in the buckling plane considered