\square functions
data :=

..Idata.tx

data1 $:=\operatorname{submatrix}($ data $, 1, \operatorname{rows}($ data $)-1,0,1) \quad$ remove header row

$$
\begin{aligned}
& \max (\mathrm{dt})=0.004 \\
& \min (\mathrm{dt})=0.003
\end{aligned} \quad \text { Time values in vector are not uniformly spaced, but can ignore for now. }
$$

$$
\begin{array}{ll}
\text { Tspan }:=\max (\mathrm{t})-\min (\mathrm{t}) & \text { Tspan }=60.250942 \\
\text { Ts }:=\frac{\mathrm{Tspan}}{\mathrm{~N}-1} & \mathrm{Ts}=0.003058 \quad \text { average sampling inteval (N-1 intervals between } N \text { points }) \\
\text { fs }:=\frac{1}{\mathrm{Ts}} & \text { fs }=326.999037 \quad \text { sampling frequency }
\end{array}
$$

The DC component:

$$
\operatorname{pavg}:=\operatorname{mean}(\mathrm{p}) \quad \operatorname{pavg}^{2}=6727.000312 \mathrm{DC} \text { power }
$$

The remaining AC component:

$$
\mathrm{p} 0:=\mathrm{p}-\operatorname{pavg} \quad \operatorname{var}(\mathrm{p} 0)=100.635957 \quad \text { total AC power }
$$

$\mathrm{P}:=\mathrm{CFFT}(\mathrm{p} 0) \quad$ DFT of vector p 0 , without DC term
$\mathrm{f}:=\operatorname{linvector}\left(0, \frac{\mathrm{~N}-1}{\mathrm{~N}} \cdot \mathrm{fs}, \mathrm{N}-1\right) \quad \mathrm{f}$ vector for full spectrum P
$\Delta f:=\frac{\mathrm{fs}}{\mathrm{N}} \quad$ width of one frequency bin

Compute Sp1, the single-sided PSD ($f=0$ to $f N y q u i s t$). The factor $N / f s$ gives $S p(f)$ in physical units, e.g., $\mathrm{V}^{2} / \mathrm{Hz}$ or $\mathrm{mm}^{2} / \mathrm{Hz}$, depending on units of input data p .

$$
\begin{aligned}
& \mathrm{Np}:=\text { floor }\left(\frac{\mathrm{N}}{2}\right) \quad \mathrm{Np}=9851 \quad \begin{array}{l}
\text { highest index need for single-sided output power density spectrum; } \\
\text { the max index at or below fNyquist. }
\end{array} \\
& \mathrm{fp}:=\operatorname{submatrix}(\mathrm{f}, 0, \mathrm{~Np}, 0,0) \quad \text { corresponding } \mathrm{f} \text { vector. } \\
& \mathrm{fp}_{0}:=10^{-6} \quad \mathrm{fp}_{0}=0 \text {, so redefine } \mathrm{fp}_{0} \text { as a small, nonzero qty to allow log scale frequency plots. } \\
& \mathrm{k}:=1 . . \mathrm{Np}-1
\end{aligned}
$$

$\mathrm{Sp}_{\mathrm{k}}:=2 \cdot \frac{\mathrm{~N}}{\mathrm{fs}} \cdot\left(\left|\mathrm{P}_{\mathrm{k}}\right|\right)^{2} \quad$ single-sided PSD has twice the value of the double-sided-sided PSD.

$$
\mathrm{Sp} 1_{\mathrm{Np}}:=\frac{2}{2-\bmod (\mathrm{Np}, 2)} \cdot \frac{\mathrm{N}}{\mathrm{fs}} \cdot\left(\left|\mathrm{P}_{\mathrm{Np}}\right|\right)^{2}
$$

If $N p$ is even, then this term is exactly at Nyquist, and should not be doubled. If Np is odd, then the term is not at Nyquist and has a mirror term, hence is doubled.
total power of single-sided PSD, evaluated in frequency domain over $f=0$ to $f=f s / 2$.

$$
\sum_{\mathrm{k}=0}^{\mathrm{Np}}\left(\mathrm{Sp}_{\mathrm{k}} \cdot \Delta \mathrm{f}\right)=100.635957
$$

$\operatorname{Sp1sm}:=\operatorname{smooth}(\operatorname{Sp} 1,0,4,500)$
smoothed version of Sp1

power spectral density of p in counts ${ }^{2} / \mathrm{Hz}$
red: PSD, blue: smoothed PSD, brown: 1/f²

