## $x, y$ are from original data file

| scale factor | pole | zero |
| :--- | :--- | :---: |
| $\mathrm{a}:=23$ | $\mathrm{p}:=2$ | $\mathrm{z}:=0.2$ |

Given

$$
y=\left\lvert\, \begin{array}{|c|c|c|c|c|}
j \cdot x \cdot(j \cdot x+p) \\
\end{array}\right.
$$

$\left(\begin{array}{l}a \\ m \\ p \\ z \\ z\end{array}\right):=\operatorname{Minerr}(a, p, z) \quad\left(\begin{array}{l}a \\ p \\ z\end{array}\right)=\left(\begin{array}{c}24.576 \\ 2.029 \\ 0.196\end{array}\right)$
approximation:

$$
\begin{aligned}
& y 2:=\overrightarrow{\left|a \cdot \frac{(j \cdot x+z)}{j \cdot x \cdot(j \cdot x+p)}\right|} \quad y 2=\left\lvert\, \frac{\left.a \cdot \frac{(x-j z)}{x \cdot(x-j p)} \right\rvert\, \quad \text { equiv form with real } x \text {, complex pole and zero }}{\text { err }:=\overrightarrow{|y-y 2|}}\right. \text { }
\end{aligned}
$$



