
$f_{1}(x):=\frac{3+\sin \left(\ln (x)+x^{4}\right) \cdot x^{2}+x^{4}}{3 x^{2} \cdot \tan (x)+5} \quad f_{2}(y):=\frac{3 y^{2} \cdot \tan (y)+5}{5 y^{2}-3 y^{3}+7}$
$\operatorname{IsDenomPoly}\left(\mathrm{f}_{1}\right) \rightarrow 0$
IsDenomPoly $\left(\mathrm{f}_{2}\right) \rightarrow 1$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}, \mathrm{y}):=\mathrm{x}+\mathrm{y}^{2} \\
& \mathrm{~g}:=\mathrm{f}(3) \\
& \mathrm{g}(10)=103 \quad \mathrm{~g}(2)=7 \\
& \mathrm{~g}(\mathrm{a}) \rightarrow \mathrm{a}^{2}+3
\end{aligned}
$$

IsDenomPoly_(f) $:=\mid \mathrm{v}\left(\mathrm{x}_{-}\right) \leftarrow \operatorname{denom}\left(\mathrm{f}\left(\mathrm{x}_{-}\right)\right)$coeffs, $\mathrm{x}_{-} \rightarrow\left(\begin{array}{c}7 \\ 0 \\ 5 \\ -3\end{array}\right)$
return 0 on error $\mathrm{R} \leftarrow$ IsPoly2_(v) \rightarrow

IsDenomPoly_($\left.\mathrm{f}_{1}\right) \rightarrow 0 \quad$ IsDenomPoly_($\left.\mathrm{f}_{2}\right) \rightarrow 1$
So here it looks that we don't need "aux", etc. in IsPoly2

History:
$\mathrm{g}_{1}(\mathrm{x}):=3 \mathrm{x}^{2} \cdot \tan (\mathrm{x})+5 \quad \mathrm{~g}_{2}(\mathrm{y}):=5 \mathrm{y}^{2}-3 \mathrm{y}^{3}+7$
First approach was to compare the result of "coeffs" for different values of x
We have a polynom if coeffs returns a vector of constat scalars, otherwise the results should be different depending on the arguments
should be different depending on the arguments
$\operatorname{test} 0(\mathrm{f}):=\begin{aligned} & \mathrm{v}\left(\mathrm{x}_{-}\right) \\ & \mathrm{v}(\mathrm{x})\end{aligned} \leftarrow \mathrm{f}\left(\mathrm{x}_{-}\right)$coeffs, $\mathrm{x}_{-} \rightarrow$$\quad \operatorname{test} 0\left(\mathrm{~g}_{1}\right) \rightarrow\left(\begin{array}{c}5 \\ 0 \\ 3 \cdot \tan (\mathrm{x})\end{array}\right) \quad$ test0 $\left(\mathrm{g}_{2}\right) \rightarrow\left(\begin{array}{c}7 \\ 0 \\ 5 \\ -3\end{array}\right)$
IsPoly0(f) $:=\left\lvert\, \begin{aligned} & \mathrm{v}\left(\mathrm{x}_{-}\right) \leftarrow \mathrm{f}\left(\mathrm{x}_{-}\right) \text {coeffs }, \mathrm{x}_{-} \\ & \text {return } 1 \text { if } \mathrm{v}(1)=\mathrm{v}(2) \\ & 0\end{aligned} \rightarrow\right.$
$\operatorname{IsPoly} 0\left(\mathrm{~g}_{1}\right) \rightarrow 0 \quad \operatorname{IsPoly} 0\left(\mathrm{~g}_{2}\right) \rightarrow 0$
Obviously this approach does not work as the second call should return a 1.

Next try:

$$
\begin{aligned}
& \operatorname{test} 1(\mathrm{f}):=\left\lvert\, \begin{array}{l}
\mathrm{v}\left(\mathrm{x}_{-}\right) \leftarrow \mathrm{f}\left(\mathrm{x}_{-}\right) \text {coeffs, } \mathrm{x}_{-} \rightarrow \\
\mathrm{v}
\end{array}\right. \\
& \mathrm{v}:=\operatorname{test} 1\left(\mathrm{~g}_{1}\right) \quad \mathrm{v}(1) \rightarrow\left(\begin{array}{c}
5 \\
0 \\
3 \cdot \tan (1)
\end{array}\right) \\
& \mathrm{v}(2) \rightarrow\left(\begin{array}{c}
5 \\
0 \\
3 \cdot \tan (2)
\end{array}\right) \\
& \text { I dont understand the error } \\
& \mathrm{v}:=\operatorname{test} 1\left(\mathrm{~g}_{2}\right) \quad \mathrm{v}(1) \rightarrow\left(\begin{array}{c}
7 \\
0 \\
5 \\
-3
\end{array}\right) \quad \mathrm{v}(2) \rightarrow\left(\begin{array}{c}
7 \\
0 \\
5 \\
-3
\end{array}\right) \\
& \text { message which says } \\
& \text { This value must be a scalar. } \\
& \text { but the function seems to work } \\
& \text { as expected nonetheless } \\
& \operatorname{IsPoly1}(\mathrm{f}):=\left\lvert\, \begin{array}{l}
\operatorname{aux}(\mathrm{f}) \leftarrow \left\lvert\, \begin{array}{l}
\mathrm{v}\left(\mathrm{x}_{-}\right) \leftarrow \mathrm{f}\left(\mathrm{x}_{-}\right) \operatorname{coeffs}, \mathrm{x}_{-} \rightarrow \\
\mathrm{v}
\end{array}\right. \\
\mathrm{v} \leftarrow \operatorname{aux}(\mathrm{f}) \\
\text { return 1 if } \mathrm{v}(1)=\mathrm{v}(2) \\
0
\end{array}\right. \\
& \begin{array}{l}
\text { IsPoly1_(f) := } \left\lvert\, \begin{array}{l}
\mathrm{v}\left(\mathrm{x}_{-}\right) \leftarrow \mathrm{f}\left(\mathrm{x}_{-}\right) \text {coeffs }, \mathrm{x}_{-} \rightarrow \\
\text { return } 1 \\
\begin{array}{l}
\text { 1 }
\end{array} \text { if } \mathrm{v}(1)=\mathrm{v}(2)
\end{array}\right. \\
\text { IsPoly1_(} \left.\left.\mathrm{g}_{1}\right) \rightarrow 0 \quad \text { IsPoly1_(} \mathrm{g}_{2}\right) \rightarrow 0 \text { WRONG! }
\end{array} \\
& \text { ???? For some reason we need aux here - no idea, why! } \\
& \operatorname{IsPoly1}\left(\mathrm{g}_{1}\right) \rightarrow 0 \quad \operatorname{IsPoly} 1\left(\mathrm{~g}_{2}\right) \rightarrow 1
\end{aligned}
$$

So this approach seems to work, but it may happen that we run into functions not defined for arguments 1 and 2 or which by chance return the very same result for both and so we would get a 1 while a 0 would be correct.

So the next idea was to use two different variables instead of the constants 1 and 2.
After all we evaluate symbolically and expressions which include those variables should return a zero if compared, but, alas, we get an error:

$\operatorname{IsPoly} 2\left(\mathrm{~g}_{1}\right) \rightarrow \quad \operatorname{IsPoly} 2\left(\mathrm{~g}_{2}\right) \rightarrow 1$
The error message is again

$$
\begin{aligned}
& \text { IsPoly2_(f) :=} \\
& \begin{array}{l}
\mathrm{v}\left(\mathrm{x} _\right) \leftarrow \mathrm{f}\left(\mathrm{x} _\right) \text {coeffs }, \mathrm{x}_{-} \rightarrow \\
\text { return 1 } \\
0
\end{array} \text { if } \mathrm{v}(\mathrm{x})=\mathrm{v}(\mathrm{y})
\end{aligned}
$$

Here omitting "aux" still yields the same correct result!! Strange!

So this function alone is not capable to give us the result 0 in case of a non-polynomial.
We would need a second function which simply looks if an error occurs when calling IsPoly2 and the yields 0 .
We can use either IsPoly2 or IsPoly2_ (without aux) here.

$$
\operatorname{IsPoly}_{\text {final }}(\mathrm{f}):=\left\lvert\, \begin{aligned}
& \text { return } 0 \quad \text { on error IsPoly2(f) } \\
& 1
\end{aligned} \quad\right. \text { IsPoly }_{\text {final }}\left(\mathrm{g}_{1}\right) \rightarrow 0 \quad \text { IsPoly }_{\text {final }}\left(\mathrm{g}_{2}\right) \rightarrow 1
$$

The error message is "This variable is undefinded". It can be avoided by using local symbolic evaluation:

$$
\operatorname{IsPoly}_{\text {final2 }}(\mathrm{f}):=\left\lvert\, \begin{aligned}
& \text { return } 0 \quad \text { on error IsPoly } 2(\mathrm{f}) \rightarrow \quad \operatorname{IsPoly}_{\text {final2 }}\left(\mathrm{g}_{1}\right) \rightarrow 0 \quad \operatorname{IsPoly}_{\text {final2 }}\left(\mathrm{g}_{2}\right) \rightarrow 1
\end{aligned}\right.
$$

My attempts to make IsPoly2 a local function to IsPoly.final to make an all-in-one solution unfortunately failed.

