
IsPoly2 f x, y, () aux f() v x_() f x_() coeffs x_,

v

v aux f()

1return v x() v y()=if

0

:=

IsDenomPoly f() v x_() denom f x_()() coeffs x_,

7

0

5

3-

0return R IsPoly2 v() on error

1

:= v

f1 x()
3 sin ln x() x

4
+() x

2
+ x

4
+

3x
2

tan x() 5+
:= f2 y()

3y
2

tan y() 5+

5y
2

3y
3

- 7+
:=

IsPoly2_ f() v x_() f x_() coeffs x_,

1return v x() v y()=if

0

:=

x

IsDenomPoly f1() 0 IsDenomPoly f2() 1

IsDenomPoly_ f() v x_() denom f x_()() coeffs x_,

7

0

5

3-

0return R IsPoly2_ v() on error

1

:= v

f x y, () x y
2

+:=

g f 3():=

g 10() 103= g 2() 7=
IsDenomPoly_ f1() 0 IsDenomPoly_ f2() 1

g a() a
2

3+ So here it looks that we don't need "aux", etc. in IsPoly2

 History:

g1 x() 3x
2

tan x() 5+:= g2 y() 5y
2

3y
3

- 7+:=

First approach was to compare the result of "coeffs" for different values of x
We have a polynom if coeffs returns a vector of constat scalars, otherwise the results
should be different depending on the arguments

test0 f() v x_() f x_() coeffs x_,

v x()

:=

xx

test0 g1()
5

0

3 tan x()

 test0 g2()

7

0

5

3-

IsPoly0 f() v x_() f x_() coeffs x_,

1return v 1() v 2()=if

0

:=

IsPoly0 g1() 0 IsPoly0 g2() 0

Obviously this approach does not work as the second call should return a 1.

Next try:

test1 f() v x_() f x_() coeffs x_,

v

:=

v test1 g1():= g1 v 1()

5

0

3 tan 1()

 v 2()

5

0

3 tan 2()

I dont understand the error
message which says

v test1 g2():= g2 v 1()

7

0

5

3-

 v 2()

7

0

5

3-

 but the function seems to work
as expected nonetheless

IsPoly1 f() aux f() v x_() f x_() coeffs x_,

v

v aux f()

1return v 1() v 2()=if

0

:= IsPoly1_ f() v x_() f x_() coeffs x_,

1return v 1() v 2()=if

0

:=

IsPoly1_ g1() 0 IsPoly1_ g2() 0 WRONG!

???? For some reason we need aux here - no idea, why!

IsPoly1 g1() 0 IsPoly1 g2() 1

So this approach seems to work, but it may happen that we run into functions not
defined for arguments 1 and 2 or which by chance return the very same result for both
and so we would get a 1 while a 0 would be correct.

So the next idea was to use two different variables instead of the constants 1 and 2.
After all we evaluate symbolically and expressions which include those variables should
return a zero if compared, but, alas, we get an error:

IsPoly2 f() aux f() v x_() f x_() coeffs x_,

v

v aux f()

1return v x() v y()=if

0

:=

x

IsPoly2_ f() v x_() f x_() coeffs x_,

1return v x() v y()=if

0

:=

x

IsPoly2_ g1() IsPoly2_ g1() IsPoly2_ g2() 1

IsPoly2 g1()IsPoly2 g1()IsPoly2 g1() IsPoly2 g2() 1 Here omitting "aux" still yields the same correct result!!
Strange!

The error message is again

So this function alone is not capable to give us the result 0 in case of a non-polynomial.
We would need a second function which simply looks if an error occurs when calling IsPoly2 and the yields 0.
We can use either IsPoly2 or IsPoly2_ (without aux) here.

IsPolyfinal f() 0return IsPoly2 f()on error

1

:= IsPoly2 IsPolyfinal g1() 0 IsPolyfinal g2() 1

The error message is "This variable is undefinded". It can be avoided by using local symbolic evaluation:

IsPolyfinal2 f() 0return IsPoly2 f()on error

1

:=
IsPolyfinal2 g1() 0 IsPolyfinal2 g2() 1

My attempts to make IsPoly2 a local function to IsPoly.final to make an all-in-one solution unfortunately failed.

