
Approximation of Curves by Line Segments

By Henry Stone

1. Introduction. Most methods of linear and nonlinear programming developed

up to this time were designed to find the maximum or minimum value of a linear

or nonlinear function inside a region bounded by hyperplanes. In applications of

these methods it is often found that the formulation leads to constraints which are

nonlinear. For example, in gasoline blending problems the relationship between

lead concentration and octane number of a blend (the lead-susceptibility curve)

has been found to be exponential in form. One method of dealing with such prob-

lems has been to approximate the given curves by a series of broken line segments

[1]. The usual method of finding such an approximation has been, by visual examina-

tion of the graph, first to decide on the number of line segments, second, to select

the intervals over which each line segment is to apply, and third, to draw in what

appears to be good linear approximations to the curves over the selected intervals.

Since the problem of obtaining a best fit of broken line segments to a curve does not

seem to have been previously investigated, it is the purpose of this paper to formu-

late the problem, give a closed form solution when the given function is quadratic,

show a general numerical method of solution, and apply this numerical procedure

to the lead susceptibility curve.

In the case when the function is quadratic, an interesting and simple result was

obtained. It was found that in fitting N lines over some interval (a, b), that the

points at which one line segment was discontinued and the next line segment started

were equally spaced over the interval. This result allowed the equations for the

lines to be expressed in a very simple form.

2. Formulation of the Problem. Given a known nonlinear relationship

(1) y = f(x), Wo ̂  X S Us .

It is desired to obtain an approximation of the form

ax + bxx, «o á x ^ Mi

Jo2 + b2x, «i S i á «2

[a„ + b.vX, Wy_i á X g Wat

which is best in the least squares sense. If the points Wi, W2, • • • , Uy are specified

in advance, the problem reduces to the simple case where the best fit over each

interval is obtained separately by the usual least squares procedure. The results

developed below will give the solution to this problem as a special case of the

general solution. The more general case, treated in this paper, occurs when the end

points of the line segments ux ,u2, ■ ■ ■ , ít.V—i are not specified in advance, and when

only the number of line segments, N, is specified in addition to the relationship

given by Equation ( 1 ).
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Following the least squares formulation, we wish to obtain the values of the

variables which minimize

F(ax, 02, • • •, aK, bx, b2, ■ • •, bit, Ux, u2, ■ ■ • , uN-x)

(2)
= Z f '    (/(*) - aj-b,x)2dx.

3-1  JU,_1

The method to be used is the usual normal equation technique of finding the point

at which the partial derivatives of the function (2) are zero. This procedure leads

to the following system of 3iV — 1 equations to be solved for the 3iV — 1 variables

ax, • ■ • , Un-x •

dF
(3a)    ddp

V = 1,2, •■•,.V

dF
(3b)    dbp

P = 1,2,---,N

= 0 = -2 /      f(x) dx + 2aP(uP - u^x) + bp(u\ - u2^)

P- 1,5

= 0 = -2 /       xf(x) dx 4- ap(wp2 - w2P_i) + %bp(up  — up-i)

= 0 = 2f(up)(ap+l — ap) + 2upf(uJ))(bp+x — bp)
dUp

(3c) _ 2up(ap+xbp+l — apbp) — uP2(b2p+x — bp) — oP+l + ap

p = 1,2,---,N -1.

For the moment let us assume that the values of ux, • • • , wy_i are fixed. In

this case the set of Equations (3a) and (3b) are seen to be nonhomogeneous and

linear in terms of the a's and b's, and, further, each a„ and bp pair may be obtained

from the solutions of N pairs of linear simultaneous equations. Carrying out this

computation we obtain

(4a)
(w„ — Wp-03 (3

4, 2
(up   + UpUp-x + uP-x)I(uP , ¡<p_i)

— 2(up + u„_i) J(up , Wp_i) > ,

(4b) bp =-v \2J(up , up_t) - (u, + up-i)I(up , up_x) :
(Up — Wp-i)"

where

(4c)

I(up , uv-x) =  /      f(x) dx,
j"p-i

r up

J(up , Up-x) =  /       xf(x) dx.
J U „_ l'"p-1

Equations (4a) and (4b) represent the general solution to the problem when the

points Ux, ■ ■ ■ , w.v-i have been selected in advance. When this is not the case then

to proceed further we substitute the ap and bp from Equations (4) into Equations

(3c), giving a system of N — 1 nonlinear equations in ux, ■ ■ • , w.V-i to be solved.

In general no closed form solution for this set of equations can be found. In a later
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section of this report a numerical method of solution will be described which is prac-

tical for large-scale computer application. In the case when f(x) is quadratic, some

simplification of the problem occurs which allows a simple closed form solution to

be obtained. This result is derived in the next section.

3. Solution for f(x) Quadratic. In the case that f(x) is quadratic, that is,

(5) f(x) = rx2 + sx + t,

the function to be minimized is

(0) F = ¿ í   '   (rx2 + sx + t - a¡ - bjx)2 dx.
3-1   ^,-1

The integrand of this function can be simplified by consolidating the linear portion

of f(x) with the a, and bj. So that, if we let .

cLj = (a¡ - I)/r

(7)
ßi = (bj - s)/r,

Equation (0) becomes

(8) F = r2¿ I''   (x2 - a¡ - ßjx)2 dx,
3 = 1  Juj_i

and it is only necessary to find the minimum of Equation (8) with respect to the

aj, ßj and Uj. The constant multiplier, r", in (8) drops out in the derivation of the

normal equations.

Following the procedure described in the last section with now/(a;) = x2, the

ap and ßp arc obtained from Equations (4) and have the following simple form:

«p =  -M(Hp + wP-i)2 + 2upup-x]

(9)
ßP = up + ?i„_i, p = 1, 2, • • • , N-

Before proceeding to the solution of the general problem, let us first examine the

case of N = 2. In this case Equations (3c) reduce to a single equation in w. Sub-

stituting the results of Equations (9) into (3c) we obtain after some straightforward

but tedious algebra the following equation in Mi.

(10) 4(w2 — tiohh* — G(!/22 — «o2)"iJ + 4(«23 — Uo)ux — (u2  — wo4) = 0

which has for its only real root

(11) M,   =   }(tl, + "o).

With Ux given by (11) and ax, ßx, a2, ß» by (9), it is easy to verify that

(12) ax + ßxlti = a, + ß2ux

and in terms of the original variables

(13) ax + bxux = o2 + 6s«i ;

that is, the lines of best fit intersect at their common end point.

To proceed now with the case of fitting .V lines to the quadratic, we now make
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the additional continuity assumption, verified in the case N = 2, that each pair of

adjacent lines intersect at their end points, ux , w2, • • • uN-X, so that instead'of the

system of nonlinear equations (3c) to solve, we have instead the system

(14) ap + ßpUp = ap+i + ßp+xup , p = 1, 2, • • • ,'N - 1,

and substituting for ap and ßp from (9) we have

(15) 2upUp-x — wP_i = 2wpwp+i — wp+1, p = 1, 2, • • • , JV — 1

which further simplifies to

(16) Wp_! - 2up + up+x = 0, p = 1, 2, ■ ■ ■ , iV - 1.

Equation (16) may be regarded as a system of linear homogeneous difference

equations, with two known boundary points, Wo and w.v . The general solution is of

the form

(17) uP = kx + k2p,

and evaluating the constants, kx and k2, from the conditions at p = 0 and p = N,

we have finally

(18) wp = w0 + jz (wjv - Mo), p = 1,2, • • •, N — 1

as the values for the common end points. This equation gives the interesting result

that for the continuous case, the end points are spaced out at equal intervals over

the whole interval (wo, uN). In applications of the method it has been found most

convenient first to determine the w's from (18), next calculate the a's and ß's from

(9) and finally the a's and 6's from

Op = rctp + t

(19)
bP = r/3p + s, p = 1, 2, • • • , xV

where r, s, t are the coefficients of the original quadratic (5).

4. A Numerical Method of Solution. The basic problem is to find a solution of

the normal equations (3) ; that is, to find the a's, b's and w's satisfying

(3a) - = 0, P = 1,2,-..,.Y

(3b) Wp = °' p = l,2,---,.V

(3c) ^£ = 0, p = l,2,-..,.V-l.

It has been shown that these equations are usually so complicated that the solution

cannot be obtained directly. A general method in such cases is to assume a trial

solution and derive linear equations for small additive corrections. The solution of

this set of linear equations leads to a new set of trial values and the process can be

repeated until the corrections become negligible.
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Description of the method becomes much simpler if we adopt a new notation.

To this end let

Bx  =  ax, 02 =  02 , • • • , 0y = O/y ,

0JV+1 = bx , By+2 — i>2 , * ' ' i B2y = by ,

B2y+x  =  Wi , 02y+2 =  U2 , ■ ■ •  , 83y-x  =  Wy_i .

The system of equations to be solved is then

í)F
(3') WP = 0> p = l,2,---,3N-l

Let the trial values be denoted by Bx, • • • , B\y-X ; expanding (3') in Taylor's series

about the point 6°, and dropping higher-order terms, we have

where the notation (dF/d8p), etc. means that the indicated derivative is to be

evaluated at the point 6o. Let A0 = 0 — 0° be the vector with components,

Bx — Ox", ••• , B3y-X — Ö3/V-1, let G be the vector with components, (dF/dBx),

•■- , (BF/dBls-x), and let // be the (2>N - 1) by (3A7 - 1) matrix whose (i, j)
component is (d2F/d$l°d81°). Then in matrix notation the right-hand side of Equa-

tion (20) becomes

(21) G + AB-fl = 0

and if H is non-singular, then 0l, the second approximation to the solution of (20),

is given by
(22) 01 = 0° - H~lG.

A FORTRAN computer program for the IBM 704 has been written and tested

which will solve this problem for any function, f(x), which is differentiable. A

FORTRAN subroutine must be supplied for each/(x), which will compute f(k),

I(kx, k2), J(kx, k->) and (df(k)/dk). Further details can be supplied by the author.

5. Application to Lead Susceptibility Curves. As described in the Introduction,

part of the purpose of the research described in this paper was to find the best

method of linearizing the lead susceptibility curve. It has been found experimentally

that for every blend examined, the relationship between octane number of the blend

and quantity of tetraethyl lead added is adequately given by

(23) ON- = kx + ¡vT" = f(x), 0áiá3.0

where ON- is the octane number of the blend, x is the quantity of lead in c.c,

and kx ,k2,c are known constants representative of the blend. It has been indicated

above that this problem may be treated as a single-parameter problem in c alone,

since fci and k2 may be absorbed into the fitted lines. Thus, instead of having the

integrand of Equation (2) represented by terms of the form

(kx + kvfT" — a¡ — bjx)"'
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let us set

(24)
aj = iaj ~ kx)/k2

ßi = bj/k2,

and the integrand becomes proportional to

(25) (e-" - a, - ßjx)2.

The method and computer program described in the last section were used to

obtain values of the line and end point parameters for fitting two, three and four

line segments to the exponential function, exp( — ex). The accompanying Tables, 1

through 3, give the normalized line slopes, ß, the normalized intercepts, a, and the

values of the end points, w, for the number of lines, N, equal to 2, 3, 4, as a function

Table 1

Line Parameters, N = 2

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.5

Intercepts

0.998
0.994
0.988
0.981
0.973
0.966
0.958
0.950
0.943
0.935
0.923
0.906

0.980
0.931
0.867
0.798
0.728
0.661
0.598
0.540
0.488
0.442
0.363
0.275

Slopes

A B:

-0.093
-0.174
-0.246
-0.309
-0.367
-0.420
-0.469
-0.515
-0.558
-0.600
-0.680
-0.793

-0.080
-0.129
-0.157
-0.170
-0.175
-0.173
-0.168
-0.160
-0.152
-0.142
-0.124
-0.101

Common end point, u\

1.385
1.400
1.360
1.316
1.276
1.235
1.196
1.155
1.116
1.080
1.008
0.912

Table 2

Line Parameters, N = 3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.5

0.999
0.998
0.995
0.992
0.988
0.985
0.981
0.978
0.974
0.971
0.966
0.959

Intercepts

0.993
0.975
0.943
0.907
0.870
0.835
0.798
0.767
0.737
0.711
0.664
0.608

0.976
0.919
0.840
0.756
0.673
0.595
0.523
0.460
0.404
0.355
0.275
0.192

Slopes

A

-0.096
-0.186
-0.266
-0.340
-0.411
-0.478
-0.541
-0.604
-0.665
-0.725
-0.841
-1.012

-0.088
-0.156
-0.202
-0.237
-0.265
-0.285
-0.299
-0.312
-0.323
-0.333
-0.349
-0.371

ßi

-0.079
-0.125
-0.146
-0.154
-0.153
-0.147
-0.137
-0.127
-0.117
-0.107
-0.088
-0.066

End Points

0.785
0.782
0.835
0.830
0.801
0.774
0.756
0.724
0.694
0.666
0.615
0.548

1.783
1.775
1.820
1.810
1.773
1.738
1.708
1.663
1.618
1.573
1.487
1.365
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Table 3

Line Parameters, N — 4

0.1
0.2
0.3
0.4
0.5
0.0
0.7
0.8
0.9
1.0
1.2
1.5

Intercepts Slopes End Points

ai at ai      I      a« »r «3

1.0000
0.9990
iO.997 0.
0.990 0,
0.994 0.
0.992 0.
0.989 0.
0.987 0,
0.985 0,

,0.984 0,
:0.981¡0.
;0.977i0,

9900
9850
908 0
9480
9270
904 0
8800
859 0
841 0
824'0
7950
7()00

988 0.973-
955 0.908:-
9100.824 -
859 0.734L
805 0.040-
7520.5621-

.7000.486

.054 0.420

.614:0.303

.577 0.313

.5100.234

.44510.154

-0.097
-0.188
-0.274
-0.356
-0.434
•0.508
•0.580
-0.050
-0.720
•0.789
•0.925
•1.120

-0.091Î
-0.1061
-0.226Í
-0.276
-0.318
-0.352
-0.381
-0.409
-0.435
-0.460
-0.508
-0.574

-0.085
-0.143
-0.181
-0.206
-0.221
-0.228
-0.231
-0.232
-0.233
-0.232
-0.230
-0.227

-0.078.0,
-0.1200,
-0.1400.
-0.146
-0.143
-0.134
-0.124
-0.112
-0.101
-0.091
-0.072
-0.051

571
607
607
595
577
563
549
530
507
485
445
393

268
296
293
275
246
222
199
165
124
084
008
907

2.077
2.096
2.087
2.068
2.040
2.016
1.991
1.953
1.910
1.866
1.778
1.649

Table 4

Maximum Fitting Errors

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.5

0.0010
0.0059
0.0119
0.0189
0.0265
0.0344
0.0423
0.0500
0.0574
0.0645
0.0774
0.0936

max(f cx — aj  — ßjx)

0.0010
0.0032
0.0050
0.0080
0.0114
0.0150
0.0190
0.0223
0.0255
0.0286
0.0341
0.0410

0.00055
0.0016
0.0028
0.0043
0.0062
0.0083
0.0106
0.0127
0.0145
0.0162
0.0193
0.0231

(26)

of the exponential parameter, c. The actual intercepts and slopes, a and b, for any

particular problem are obtained from

a¡ = Ai + k'Otj

bj = k-ßj.

It has been found preferable in practice, for reasons of accuracy, to determine

the common end points of the lines from the relation

aj 4- bjiij = Oy+i + bj+xiij

giving

(27) „,._£^L5£>.
bj+x - bj

In order to provide the user of this method with a guide to the number of line

segments that should be used for any particular application, an error analysis was
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carried out. The maximum difference between the exponential function, e~cx, and

the lines a¡ — b¡x were computed for the two, three, and four line cases. The results

are shown in Table 4 where

max(e~" - a, - ßjx), 0 g x g 3.0

is given as a function of c for these cases. To transform the error given in the nor-

malized form to error in terms of octane number for any particular case, the trans-

formation

Error (0-N-) = k2-Error (Table)

is used where k2 is the constant shown in Equation (23) ; that is, in the equation

ON- = kx + k*r°*.

The tables given for the lead susceptibility curves can be used for curves of a

more general character, namely those of the form

(28) g(z) = rx 4- r2z 4- r^e"^, w„ g z ^ ws .

In this case the least squares function is

(29) F = ¿ f   '   (rx + r2z + r3e~'iZ - a¡ - bjz)* dz.
3-1 •'»,-_i

Let a new variable x be defined by

t = 3 •   z~w° dx -       Mz
W>*   —  Wo Wy   —  Wo

The range of x is 0 g x á 3.0, and F becomes

(30) F oc ¿ [ "'   (e'cx - a¡ - ßiX) dx
3-1   Jtij-i

which is identical in form, except for a proportionality constant, to the previous

case. The transformation equations are

«3 = - [o,j — rx+ (bj — r2)w0]
n

(3D ßj - fc-=^ïW - r2)

Uj = 3 ft*-M .
\Wy  —  Wo/

The inverse transformation equations to the original units are

63 = r2+      3*
Wy   — Wo

(32) aj = rx + r3ccj — (bj — r2)w0

Wj = Wo +
(wy — Wo\
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