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A Mathcad SIR Model of the Spread of the Corona Virus (SARS-CoV-2)
By Jeff Henning

Mathematical models can be useful for predicting the spread of a disease.  This model can help us to 
understand the behavior of the epidemic and what can be done to control it.  A basic epidemic model, called 
the SIR, model was proposed by Kermack and McKendrick in 1927 [1][2][3] and has been successfully used 
to predict the behavior of previous historical epidemics.  The SIR model examines a total population, , and N
divides it into three sub-populations:

�
�

�

S (Susceptible) - Those who are susceptible to being infected by SARS-CoV-2.
I (Infected) - Those who have contracted COVID-19; may or may not be showing symptoms;

are infectious; and have not yet recovered.
R (Removed) - Those who were previously infected and have now either recovered or expired.

The concept here is that initially, some portion of the total population is susceptible to infection.  As 
susceptible people get infected, they are removed from the population and added to the population.  S I
Without an external cure, the infected population, , will after some period of time, either develop an I
immunity to the disease and recover (being no longer infectious or susceptible) or succumb to complications 
from the disease and expire.  Either way, they are no longer infectious and are removed from the I
population and placed in the population.  Hence, the S-I-R model. R

To simplify the model, we have to make a few underlying assumptions:

1.

2.

3.

4.

Assume that for the time period under consideration is short enough that the total population under
consideration, , is constant; ignoring any underlying births and deaths that would normally occur N
for other reasons.   This means then that the sum of the three model populations is equal to a 
constant total population.

＝++S I R N

The rate that the disease is transmitted, rate of infection, is proportional to the number of 
interactions between the and populations and the proportionality constant, the rate of contact I S
( ), is a constant.β

The removal rate, , is constant.γ

Lastly, and this is a big one because, for the novel corona virus, this is largely unknown, we assume 
that once an infected person recovers, the are immune to the SARS-CoV-2 virus and cannot be re-
introduced into the the susceptible population, .S

If we write rate equations for each population:

＝――
d

dt
S ―――

⋅⋅-β I S
N

(1)

＝――
d

dt
I -―――

⋅⋅β I S
N

⋅γ I (2)

＝――
d

dt
R ⋅γ I (3)
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This is a set of differential equations.  It is a non-linear set of differential equations because it contains a 
multiplication of two of the dependent variables, .  While these types of equations can be difficult to ⋅I S
solve, they are solvable.  However, we first need some initial conditions.

Initially, at time , the populations are as follows:＝t 0

＝＝＝S ((0)) S0 -N I0 ∼N Very nearly when is small.N I0

＝I ((0)) I0 Usually a very small number, even just 1.

＝R ((0)) 0 Assumes no one has immunity at beginning of outbreak.

Additionally, since the total population is constant at all times,

＝++S I R +S0 I0 and ＝++――
d

dt
S ――

d

dt
I ――

d

dt
R 0

Units

It is very important to understand the units on these values and equations as we are dealing with people and 
time.  PTC Mathcad does not have a base unit to represent people, but we can hijack Mathcad's monetary 
unit and call it .  This is the unit that will be applied to each of the model populations.  We now ≔persons ¤
have units for each of the constants in the model.  Each of our rate equations above has to have units of 

per time (say or ).  Mathcad already has these time units.persons day week

Since , the interaction parameter is multiplied by and must result in our rate, it must have units of  β ⋅I S

≔β ⋅0.3 day-1

We'll worry about determining the actual value of from known data later.  Let's say, that at the beginning β
of our model, at time , we have an initial population of (1 million people) and ≔t0 ⋅0 day ≔N 106 persons
one infected person, , then .   We see that our rate of susceptible population ≔I0 1 persons ≔S0 -N I0
decrease at time zero, using equation (1) is,

≔dS/dt =⋅-β ――
⋅I0 S0

N
-0.3 ―――

persons
day

The removal parameter, , has to have units of inverse time.   For now, lets assume that this removal γ

parameter is ; we'll discuss setting this parameter later.  For an infected population, of say ≔γ ((14 day))
-1

early in the epidemic ( ), the removal rate according to equation (3) would be≔I 100 persons ≔S -N I

≔dR/dt =⋅γ I 7.143 ―――
persons
day

,

the infection rate is

≔dI/dt =-―――
⋅⋅β I S

N
⋅γ I 22.854 ―――

persons
day

,

and the susceptible decrease rate has increased from time zero to

≔dS/dt =―――
⋅⋅-β I S

N
-29.997 ―――

persons
day

.

So our Mathcad units work out!
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Epidemic or Not?

One very important question to be asked is, will the disease spread?  A disease is endemic if it maintains a 
presence in a fixed, closed population (no additions to the population that might be infected).  For a disease 
to be endemic, each infected person has to infect exactly one other person to perpetuate the disease; any 
more than that and the disease spreads exponentially (an epidemic), any less and the disease will die out.  
So what are the conditions in our SIR model that would tell us if we have an epidemic or not?

Firstly, since our populations are always positive and the rate of infection, , is a positive constant (infected β
members cannot move back to the susceptible population), the right hand side of equation (1) is always 
negative.  This means that is always decreasing and less than or equal to .S S0

≤S S0 (4)

If we plug this relation into equation (2), we get an inequality

≤――
d

dt
I ⋅I

⎛
⎜
⎝

-⋅β ―
S0

N
γ
⎞
⎟
⎠

(5)

This tells us that the rate of change in the infected population, , is always less than or equal to the right-I
hand-side (RHS) of equation (5).  Since is always positive or zero, the rate of infections is dependent on I
the sign of the parenthetical .  If zero, then the disease is endemic and the infected population ⎛⎝ -⋅β S0 γ⎞⎠
won't change.  If negative, the disease will die out.  If positive,  

>⋅β ―
S0

N
γ (6)

then the infection rate is greater than the removal (recovery/death) rate and the disease will grow
exponentially; we have an epidemic!   Dividing each side by the removal rate, , gives a dimensionless γ
measure of the mobility of the disease called the Basic Reproduction Number, .R0

Note that at time zero, the 
susceptible population, S, is 
very nearly N, or ≈ .S0 N

>＝＝R0 ⋅―
β
γ

⎛
⎜
⎝
―
S0

N

⎞
⎟
⎠

―
β
γ

1 (7)

This Reproduction Number (sometimes called the reproduction ratio or, incorrectly, the reproduction rate) 
has been in the news concerning the news lately concerning the novel corona virus outbreak.  Early 
estimates from the outbreak in Wuhan China were between 2.2 and 2.7.  As more data has been collected 
and analyzed, the estimate has been updated to between 4.7 and 6.6 [4][5][6][7].  This number is R0

critical to modeling the spread of the disease, but can be very hard to measure early on in a rapidly 
spreading epidemic because the actual number of infected population is not well known.

In an excerpt from a recent CDC Article [8]:

The basic reproduction number (R0), also called the basic reproduction ratio or rate or the basic reproductive rate, 
is an epidemiologic metric used to describe the contagiousness or transmissibility of infectious agents. R0 is 
affected by numerous biological, socio-behavioral, and environmental factors that govern pathogen transmission 
and, therefore, is usually estimated with various types of complex mathematical models, which make R0 easily 
misrepresented, misinterpreted, and misapplied. R0 is not a biological constant for a pathogen, a rate over time, or 
a measure of disease severity, and R0 cannot be modified through vaccination campaigns. R0 is rarely measured 
directly, and modeled R0 values are dependent on model structures and assumptions. Some R0 values reported in 
the scientific literature are likely obsolete. R0 must be estimated, reported, and applied with great caution because 
this basic metric is far from simple.
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Setting the SIR Model Parameters

For the purposes of this exercise, we'll set the SIR model parameters based on the currently published 
values.   The removal rate can be estimated based on data currently in the news.  Given an arbitrary infected 
population, each individual will have been infected on a different day and will be at a different point in the 
disease progression.  Given this continuum of infected subjects and an estimate of the mean recovery period 
of , we can assume that one fourteenth of a closed, infected population would recover each day.≔d 14 day
Similarly, the if a person's condition worsens and they do not recover in that 14 days, they would end up in 
the hospital and still be effectively removed from the population.   This is a simplification, but we can now set 
the recovery rate to,

≔γ =→―
1
d

―――
1
⋅14 day

0.071 day-1

From current estimates, and for the sake of at least some marginal optimism, we'll set the reproductive 
number based on the data presented above.

≔R0 4.7

≔β =⋅R0 γ 0.336 day-1

Now we can make some calculations with our model.

Solving the Equations

We can use PTC Mathcad's numeric solver to get a time varying solution for this system of differential 
equations. 
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≔N ++s0 i0 r0 ≔β ⋅R0 γ

＝――
d

dt
S ((t)) ―――――

⋅⋅-β I ((t)) S ((t))
N

＝――
d

dt
I ((t)) -――――

⋅⋅β I ((t)) S ((t))
N

⋅γ I ((t))

＝――
d

dt
R ((t)) ⋅γ I ((t))

Initial Conditions: ＝S ((0)) s0 ＝I ((0)) i0 ＝R ((0)) r0

≔SIR ⎛⎝ ,,,,,s0 i0 r0 R0 γ T⎞⎠ odesolve
⎛
⎜
⎜
⎝

,
S ((t))
I ((t))
R ((t))

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
T
⎞
⎟
⎟
⎠
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US Population Model

For a total population of the US ( ) and ( ) infected, assuming no initial ≔NUS ⋅330 M persons ≔I0 1 persons
immunity (no vaccine) so , over a time period of and the model parameters ≔S0 -NUS I0 ≔T 240 day
described above, : 

≔
S
I
R

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

SIR ⎛⎝ ,,,,,NUS I0 0 persons R0 γ 960 day⎞⎠

≔t , ‥0 day 1 day 240 day

100⋅10⁶

150⋅10⁶

200⋅10⁶

250⋅10⁶

300⋅10⁶

0

50⋅10⁶

350⋅10⁶

60 90 120 150 180 2100 30 240

S ((t)) ((¤))

I ((t)) ((¤))

R ((t)) ((¤))

+I ((t)) R ((t)) ((¤))

t ((day))

SIR Model, US Population, 1 Infected, No Intervention 

Note that represents the instantaneous number of infected at any one time.  The total infected is:I

≔Itotal ((t)) +I ((t)) R ((t))

At some point, the number of susceptible people has dropped below a threshold such that the epidemic dies 
out, with most of the population removed.  The total infected at the end of the epidemic would be:

=Itotal ((240 day)) 327 ⋅Million persons

=―――――
Itotal ((240 day))

NUS

99.0 % of all US citizens.

Flattening the Curve

So basically, everyone is going to get the virus if we do nothing.   With a mortality rate estimated at even 1% 
(it's probably higher), you do the math!  This explains why it is so important to "flatten the curve" with social 
distancing.  This means that we limit the number of infectious interactions and reduce the value, ideally R0

to something less than 1.0, causing the epidemic to cease.  An NIH article [9] showed that in the 2003 SARS 
outbreak, the was reduced from between 2.4 and 3.6 to between 0.3 and 1.0 in the four regions where R0

the infection was introduced in February 2003.  Reducing the is the only factor that we can affect at this R0

point, however, we're starting at a higher than the 2003 SARS outbreak to begin with; maybe double!R0
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So, what happens to our curve if we can reduce the reproductive number to something like ≔R'0 1.5
through social distancing?  On March 22, there are 35,000 confirmed cases in the US [10] (it's probably a lot 
higher than that because we're not testing everyone).   This corresponds to about day 38 on the previous 
model.

=Itotal ((39 day)) 38034 persons

≔
S'
I'
R'

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

SIR ⎛⎝ ,,,,,S ((39 day)) I ((39 day)) R ((39 day)) R'0 γ -960 day 39 day⎞⎠

≔t' , ‥0 day 1 day 960 day

Adjusting the curve past day 39 for social distancing:

≔SSD ((t)) +S ((min (( ,t 39 day)))) ⋅Φ(( -t 39 day)) (( -S' ((max(( ,0 -t 39 day)))) S ((39 day))))

≔ISD ((t)) +I ((min (( ,t 39 day)))) ⋅Φ(( -t 39 day)) (( -I' ((max(( ,0 -t 39 day)))) I ((39 day))))

≔RSD ((t)) +R ((min (( ,t 39 day)))) ⋅Φ(( -t 39 day)) (( -R' ((max(( ,0 -t 39 day)))) R ((39 day))))

100⋅10⁶

150⋅10⁶

200⋅10⁶

250⋅10⁶

300⋅10⁶

0

50⋅10⁶

350⋅10⁶

60 90 120 150 180 210 240 270 300 330 360 390 420 4500 30 480

SSD ((t')) ((¤))

I ((t')) ((¤))

ISD ((t')) ((¤))

RSD ((t')) ((¤))

+ISD ((t')) RSD ((t')) ((¤))

t' ((day))

SIR Model, US Population, 1 Infected
Moderate Social Distancing, =R'0 1.5

Do nothing

Moderate Social 
Distancing

This effort definitely flattens the curve; however, millions of lives are still lost with over half the population 
still infected and we are living with this thing for years.   It is not enough as the value is still greater than R0

1 and there is still an epidemic, if even a smaller one.  Efforts like were implemented in China are needed to 
enforce strict distancing and isolation, dropping the value to something less than 1.0.  Let's see what R0

happens with aggressive social distancing at .≔R''0 0.5
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≔
S''
I''
R''

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

SIR ⎛⎝ ,,,,,S ((39 day)) I ((39 day)) R ((39 day)) R''0 γ -365 day 39 day⎞⎠

Adjusting the curve past day 39 for aggressive social distancing:

≔SASD ((t)) +S ((min (( ,t 39 day)))) ⋅Φ(( -t 39 day)) (( -S'' ((max(( ,0 -t 39 day)))) S ((39 day))))

≔IASD ((t)) +I ((min (( ,t 39 day)))) ⋅Φ(( -t 39 day)) (( -I'' ((max(( ,0 -t 39 day)))) I ((39 day))))

≔RASD ((t)) +R ((min (( ,t 39 day)))) ⋅Φ(( -t 39 day)) (( -R'' ((max(( ,0 -t 39 day)))) R ((39 day))))
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+IASD ((t)) RASD ((t)) ((¤))

t ((day))

SIR Model, US Population, 1 Infected
Aggressive Social Distancing, =R''0 0.5

Do nothing

Aggressive Social 
Distancing

Now, we have made a HUGE difference!  The epidemic is squelched and total infected is limited to:

≔IASD_total ((t)) +IASD ((t)) RASD ((t))

=IASD_total ((365 day)) 67966 persons

=IASD ((365 day)) 0.262 persons Has to get to less than one!

=SASD ((365 day)) 329.9 ⋅M persons Remaining susceptible population.

This curve resembles results that China is already seeing under strict isolation measures.  Drastic measures 
to stem the spread of the virus are needed to make this kind of difference.  As of March 20, only "23% of the 
US Population is ordered to "stay at home" after governors in California (40 million residents), New York 
State (20 million), Illinois (13 million), and Connecticut (3.5 million) ordered nonessential workers to remain 
at home to slow the spread of coronavirus." [10]
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Immunization

It is too late for immunization to stem the tide as most of the population will be infected before a vaccine can 
be developed and administered.  Vaccination does not, in fact, change the value of , but reduces the size R0

of the susceptible population, .   The model above demonstrates what happens when just one single S0

infected person is introduced in to the susceptible population.  Even if the world is successful through 
distancing measures, wiping this out completely will still surely require a vaccine against SARS-CoV-2 to 
ensure that the outbreak does not occur again with so many people remaining susceptible to another 
outbreak.

Conclusion

This is a simple model of the current Novel Corona Virus outbreak.  More complex models (SEIR, etc.) can 
and are being used around the globe to figure out how to respond to the novel coronavirus outbreak. 
However, it clearly demonstrates how dire the situation is and how long it will take to get through it, even 
with aggressive isolation measures, which are not even in full swing yet around the globe.  Unfortunately, 
because of the incubation/infectious period, all numbers in this analysis are at least two weeks behind the 
curve.  Social distancing measures may not even be noticed in the reported numbers for two weeks after the 
measures have gone in to place.  

China has made great strides to clamp down on the outbreak, many countries are following suit.  However, it 
is fairly clear that new outbreaks could occur if distancing/isolation measures are not kept up.  Without a 
vaccine/treatment, social distancing will need to be maintained; it will be the new "normal".

While US data was used in this analysis, the model can be applied to any population and any outbreak.  The 
current crisis is a global one and its eradication will require global cooperation on a level never seen before.  
Our planet has suddenly gotten very small.
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Some additional units:
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