Hello,
I'm having a problem to fit a curve for my data points.

| A | CT |
| :---: | :---: |
| 45 | 0 |
| 27.8 | 15 |
| 22.6 | 30 |
| 22.4 | 45 |
| 20.8 | 60 |
| 21.2 | 75 |



I must work with this equation to fit the data.

$$
\begin{equation*}
\frac{1}{A}=\frac{1-r / r_{\max }}{A_{0}}+\frac{r / r_{\max }}{A_{1}} \tag{1}
\end{equation*}
$$

I know the value of $A_{0}$, in this case is 45 , the first value of A in the table. The variable $r$ is related to $C T$ according this equation

$$
\frac{r}{C T-r C B P}=K(1-N r)\left[\frac{1-N r}{1-(N-1) r}\right]^{N-1} \text { (2). }
$$

where CBP $=48500$ and $r_{\max }=\frac{1}{N}$. I can solve this equation numerically if $I$ know the values of $N$ and $K$.

I have to do the routine:

1) First, I guess the values of $N, K$ and $A_{1}$.
2) With this values I can generate a table for $x$ in function of CT.
3) I compare the points of the table with my inicial data of $A$ and $C T$ using least squares fitting.
4) If the values is not good, the program guess others values of $N, K$ and $A_{1}$ to find the best fit.
5) In the final of the fit process I need to obtain the value of $N, K$ and $A_{1}$ with the related erros, for exemplo, $K=(1.1 \pm 0.1) \times 10^{5}$.

Is it possible to do? I'm using Mathcad 15.

Other people to this in Matlab and obtained the following values:
$K=(1.1 \pm 0.1) \times 10^{5}$
$N=(0.9 \pm 0.2)$
$A_{1}=(20 \pm 2)$

