Part 2 - B (Intermediate). Chapter 5 Part B

Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition.

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	<u>s - Part B.</u>
	chaum's Outline (Series) where the initial
	C come to play in the circuit.
	tion in chapter 7 in 6th edition of Schaums, and not as in
•	engineering circuit textbook. Chapter 7 has at least 1 ction. Purpose here is to attempt the examples in the study
	ditional solved problems. You need your textbook in hand.
Chapter 7 First Order C	Circuits - Schaums Outline Electric Circuits 6th Edition:
Continued	
	order circuits to a <u>pulse</u> .
7.11 Impulse response	of RL and RC circuits.
	and impulse responses in RL and RC circuits.
	nd RC circuits to sudden exponential excitations
	nd RC circuits to sudden <u>sinusoidal</u> excitations
	d response in first order circuits circuits.< NOT doing this because the component is Op-amp.
	Up-amps are oreal out pere we locus on the
	Op-amps are great, but here we focus on the components which Schaum focus on in Laplace
	components which Schaum focus on in Laplace
	components which Schaum focus on in Laplace Transforms in Chapther 16. Does NOT impact the studies for Laplace Transforms. Would require a refresher topic on Op-amps, that may be
	components which Schaum focus on in Laplace Transforms in Chapther 16. Does NOT impact the studies for Laplace Transforms. Would require a
Sections 7.1 - 7.9 in Pa	components which Schaum focus on in Laplace Transforms in Chapther 16. Does NOT impact the studies for Laplace Transforms. Would require a refresher topic on Op-amps, that may be excessive. Not difficult to solve the Op-amp circuits
Sections 7.1 - 7.9 in Pa Placed here again the cor	art A of First Order Circuits file.
Placed here <u>again</u> the cor Too much subject materi	art A of First Order Circuits file.
Placed here <u>again</u> the cor Too much subject materi Primarily to get more solv	art A of First Order Circuits file. mments from Part A. ial. Just the examples after each section should do it here. ving techniques. From my observation on the exercise problems
Placed here <u>again</u> the con Too much subject materin Primarily to get more solv with no solutions, most a	Art A of First Order Circuits file. mments from Part A. al. Just the examples after each section should do it here. ving techniques. From my observation on the exercise problems or similar to the solved ones with need of some changes or
Placed here <u>again</u> the con Too much subject materin Primarily to get more solv with no solutions, most a	art A of First Order Circuits file. mments from Part A. al. Just the examples after each section should do it here. ving techniques. From my observation on the exercise problems are similar to the solved problems simplify solving exercise
Placed here <u>again</u> the cor Too much subject materia Primarily to get more solv with no solutions, most a tricks in the solution. Sch problems in other electric This book is the 6th editio	art A of First Order Circuits file. <i>Transforms in chapter studies for Laplace Transforms. Would require a refresher topic on Op-amps, that may be excessive. Not difficult to solve the Op-amp circuits problems in comparison.</i>
Placed here <u>again</u> the cor Too much subject materi Primarily to get more solv with no solutions, most a tricks in the solution. Sch problems in other electric	art A of First Order Circuits file. <i>Transforms in chapter studies for Laplace Transforms. Would require a refresher topic on Op-amps, that may be excessive. Not difficult to solve the Op-amp circuits problems in comparison.</i>
Placed here <u>again</u> the cor Too much subject materia Primarily to get more solv with no solutions, most a tricks in the solution. Sch problems in other electric This book is the 6th editio	art A of First Order Circuits file. <i>Transforms in chapter studies for Laplace Transforms. Would require a refresher topic on Op-amps, that may be excessive. Not difficult to solve the Op-amp circuits problems in comparison.</i>
Placed here <u>again</u> the cor Too much subject materia Primarily to get more solv with no solutions, most a tricks in the solution. Sch problems in other electric This book is the 6th editio	art A of First Order Circuits file. <i>Transforms in chapter studies for Laplace Transforms. Would require a refresher topic on Op-amps, that may be excessive. Not difficult to solve the Op-amp circuits problems in comparison.</i>
Placed here <u>again</u> the cor Too much subject materia Primarily to get more solv with no solutions, most a tricks in the solution. Sch problems in other electric This book is the 6th editio	art A of First Order Circuits file. <i>Transforms in chapter studies for Laplace Transforms. Would require a refresher topic on Op-amps, that may be excessive. Not difficult to solve the Op-amp circuits problems in comparison.</i>

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Usually we are gi	C and RL circuits. Th ven voltage find the	order circuit to a 'rectangular pulse'. The input to this circuit can be a current or voltage. E current response. Can be both either.
		s RC circuit. Hopefully the other circuits series RL c rly achieved with some modifications/adjustments/
	Rectangular Pulse (one example)	Some forms of
	Vmax	rectangular pulse.
		You may say it looks
		like some u(t)
		function been
		upgraded maybe
	·	Not wrong.
	Rectgangular pulse	Maybe one way to
	(another example)	look at it is a
		upgraded unit step
		function, u(t). It
		comes on
_	0	periodically.
	T and height Vo. He	with the voltage source delivering a eight would be the amplitude.
	T and height Vo. He Rectangular Pulse Period: T	eight would be the amplitude.
	T and height Vo. He Rectangular Pulse	eight would be the amplitude.
pulse of duration	T and height Vo. He Rectangular Pulse Period: T	eight would be the amplitude. <now be="" it="" may="" pulse.<br="" rectangular="" this="">Schaums does not provide a figure for it</now>
pulse of duration	T and height Vo. He Rectangular Pulse Period: T	eight would be the amplitude.
pulse of duration	T and height Vo. He Rectangular Pulse Period: T	eight would be the amplitude. <now be="" it="" may="" pulse.<br="" rectangular="" this="">Schaums does not provide a figure for it but <u>does provide its description in the</u></now>
pulse of duration	T and height Vo. He Rectangular Pulse Period: T Vmax: Vo	eight would be the amplitude. <now be="" it="" may="" pulse.<br="" rectangular="" this="">Schaums does not provide a figure for it but <u>does provide its description in the</u></now>
pulse of duration	T and height Vo. He Rectangular Pulse Period: T Vmax: Vo	eight would be the amplitude. <now be="" it="" may="" pulse.<br="" rectangular="" this="">Schaums does not provide a figure for it but <u>does provide its description in the</u> <u>circuit diagram. (<this is="" one).<="" the="" u=""></this></u></now>
pulse of duration	T and height Vo. He Rectangular Pulse Period: T Vmax: Vo t i(t) are zero. of the pulse, we use	eight would be the amplitude. <now be="" it="" may="" pulse.<br="" rectangular="" this="">Schaums does not provide a figure for it but <u>does provide its description in the</u> <u>circuit diagram. (<this is="" one).<="" the="" u=""></this></u></now>
pulse of duration	T and height Vo. He Rectangular Pulse Period: T Vmax: Vo t i(t) are zero.	eight would be the amplitude. <now be="" it="" may="" pulse.<br="" rectangular="" this="">Schaums does not provide a figure for it but <u>does provide its description in the</u> <u>circuit diagram. (<this is="" one).<="" the="" u=""></this></u></now>

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

The circui	s drops to		verorm a	idove so v	vnen its t>i	(t=1=T) the	e vollage	
						nitial voltage where v_s e		
V _T =	V ₀ .(1-	$-T = e^{R \cdot C}$	which ir	n the plot la	ter is set to 2	n the exponen ather t equal 2s. We know f re set to 1 for	or the pulse of	is the cond, luratio
period T i also charge maximum for plot. (turned off voltage to	s where t jing up, th voltage v <i>Calculatior</i> Now t> the com	he <u>voltag</u> ne capaci vas found s <i>provide</i> T, capaci ponents i	e source tor volta d to be 0 ed later. tor is dis n the cir	<u>v s is pro</u> ge increasi .865 at en After the charging ir cuit, this ca	viding a vol ng from 0 t d of t=T, in period T, th ato the circu	the capacit age. The cap some value our example voltage sou it and provid age will be c	pacitor is e. Capacitor e calculation urce is ling the	
For time (For time t This time) <t<t we<br="">>T we id shift (t-T)</t<t>	identify entify to >0 is the e v and i	to t in th the time e time wl expressio	e function shift funct nen the ca	u(t)> v_		age source.	
here for t	he time sl	nift (t-1).						
here for t		$T_{T} \cdot (1 - e)$	$\frac{-(t-T)}{RC}$	For t>T				
here for t		$T_{T} \cdot (1 - e)$			is flowing opposite c	urrent sign b out of capac i <u>rection t</u> o th y the voltage	itor in the ne current	
here for t v _T (t) i(t)	= V	$\left(\frac{V_{T}}{R}\right) \cdot e^{\frac{1}{R}}$	$\frac{-(t-T)}{RC}$	For t>T.	is flowing opposite c	out of capac <u>irection to th</u> y the voltage	itor in the ne current	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

In the circuit shown below. Let $R = 1k$ ohm, and $C = 1 uF$. Let the voltage source be a puls	se of height Vo for a du	ration T.	
Find i and v for: a). Vo = 1V and T=1 ms. b). Vo = 10V and T=0.1ms c). Vo = 100V and T=0.01 ms. Hint:	v _s = Vo[u(t) - u(t - T)] (For a voltage of unit area as the pulse duration is decreased to zero.	C v voltage ac capacitor	ross
Use the expressions provided be With the time constant $RC = 1$ r		Т.	
For convenience express time in Also use the approximation $e^{(1)}$	n ms, voltage in V, and		
	Shown here:		
		.001 $e^{-0.001} = 0.999$	
gets k	aproximately good for 1 better for smaller than 1 r	ns.	
$v(t) = V_0 \cdot \left(1 - e^{\frac{-t}{RC}}\right)$ For 0< t	$t < T$ $i(t) = \frac{V}{F}$	$e^{\frac{1}{RC}}$ For 0 < t < T	
$v_{T}(t) = V_{T} \cdot \begin{pmatrix} \frac{-(t-T)}{RC} \\ 1-e \end{pmatrix} F c$	or t>T i (t) = -	$\left(\frac{V_{T}}{R}\right) \cdot e^{\frac{-(t-T)}{RC}}$ For t>T	
Remember: V_T is the capacitor initial			
Solution:			
R := 1000 Ohm C := $1 \cdot 10^{-6}$	F.		
$\mathbf{R} \cdot \mathbf{C} = 0.001 \qquad \tau_{\mathrm{RC}} \coloneqq \mathbf{R} \cdot \mathbf{C} = \mathbf{C}$	$0.001 \qquad \frac{1}{\tau_{\rm RC}} = 1 \cdot 10^3$		
a).			
$V_0 := 1$ V $T := 1 \cdot 10^{-3}$	s or 1 ms.		
For 0 <t<t=1 ms:<="" td=""><td></td><td></td><td></td></t<t=1>			

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

						_					
	5							ns, we try to u		ne	
								t = 1ms = 0.0			
	`	1	1	$\tau_{\rm RC}$	0	.001	1	earrange: $\frac{1}{\tau_{\rm RC}}$	1 10 ³	$1 1 10^{3}$	
V (L) =		(I-e)		= Трс	• I _ ſ	earrange: — : τ_{PC}	= 1•10	$= 1 \cdot 10$	
v (†	\	1	$\begin{pmatrix} 1 & 0 \end{pmatrix}$	-t•1•1	0 ³)	1	-1000	t That fami	iar 1000 from	another eversion	J
v (t) =		(1-6) =		-6	That Tahin			;!
Now le	ats sav	tho	unit f	or t is	s ms i	which y		w is trying to	'fiv' things in	here to	
								e (1 - e^-t)? I			
					-			f the unit of t		-	
								s) than what e			
								path/direction			
5, 11,.		1113	. 100	may	nave e		r angic/	patrix di cettor		10331011.	
			(.	-t•1•1	0^{3}		-1000•t (s	place the, s			
v (t) =	1	(1−e) =	1-e		place the, s	s, second firs	st in the expo	nen
							_1000.t (n	(an			
					=	1-e	1000 * 1 (1	^{ns)} place the, i		nd for s, next	
								multiply ou	t the ms.		
								3)			
					=	1-e	_1000•t (1	•10 /			
					=	1-e	-t <	-There.			
Comm	ent: W	'hen	I saw	that e	quatio	n the fi	rst time,	I was a little ta	aken aback, n	neaning	
								I was a little ta lacking is close			
someth same.	ning like We see	e intii n the	midate e equa	ed/low ations	ered/la given p	acking prior an	really d now w	lacking is close e see somethir	er, you may ha ng so simple (ad felt the 1-e^-t) it	
someth same.	ning like We see	e intii n the	midate e equa	ed/low ations	ered/la given p	acking prior an	really d now w	lacking is close	er, you may ha ng so simple (ad felt the 1-e^-t) it	
someth same. raises o	ning like We see questio	e intii n the ns! S	midate e equa o, hop	ed/low ations pefully	ered/la given p thats i	acking prior an how to	really d now w get ther	lacking is close e see somethir e. Check with y	er, you may ha ng so simple (ad felt the 1-e^-t) it	
someth same. raises o	ning like We see questio	e intil n the ns! S ress	midate e equa o, hop ion fo	ed/low ations pefully or curr	ered/la given p thats i	acking prior an how to	really d now w	lacking is close e see somethir e. Check with y	er, you may ha ng so simple (ad felt the 1-e^-t) it	
someth same. raises o	ning like We see questio	e intil n the ns! S ress	midate e equa o, hop ion fo	ed/low ations pefully or curr	ered/la given p thats i	acking prior an how to	really d now w get ther	lacking is close e see somethir e. Check with y	er, you may ha ng so simple (ad felt the 1-e^-t) it	
someth same. raises o Next tl	ning like We see question ne exp	e intil n the ns! S ress	midate e equa o, hop ion fo	ed/low ations pefully or curr	ered/la given p thats i	acking prior an how to n be s	really d now w get ther implified	lacking is close e see somethir e. Check with y d:	er, you may ha Ig so simple (our local? Eng	ad felt the 1-e^-t) it gineer.	
someth same. raises o	ning like We see questio	e intil n the ns! S ress	midate e equa o, hop ion fo	ed/low ations pefully or curr	ered/la given p thats i	acking prior an how to n be s We h	really d now w get ther implified nave sor	lacking is close e see somethir e. Check with y d: ted the expor	er, you may ha Ig so simple (our local? Eng	ad felt the 1-e^-t) it gineer.	
someth same. raises o Next th	ning like We see question ne exp	e intil n the ns! S ress	midate e equa o, hop	ed/low ations pefully or curr	ered/la given p thats i	acking prior an how to n be s We h	really d now w get ther implified nave sor	lacking is close e see somethir e. Check with y d:	er, you may ha Ig so simple (our local? Eng	ad felt the 1-e^-t) it gineer.	
someth same. raises o Next tl	ning like We see question ne exp	e intii n the ns! S ress V R	midate e equa to, hop ion fo $\frac{-}{2} \cdot e^{-}$	ed/low ations pefully r curr t c	ered/la given p thats i	ncking prior an how to n be s We h could	really d now w get there implified have sor d be place	lacking is close e see somethir e. Check with y d: ted the expor ced in here.	er, you may ha ng so simple (our local? Eng nential term a	ad felt the 1-e^-t) it gineer. and it	
someth same. raises o Next tl	ning like We see question ne exp	e intii n the ns! S ress V R	midate e equa to, hop ion fo $\frac{-}{2} \cdot e^{-}$	ed/low ations pefully r curr t c	ered/la given p thats i	ncking prior an how to n be s We h could Prob	really d now w get then implified nave sor d be plac lem? Bu	lacking is close e see somethir e. Check with y d: ted the expor ced in here. t if we do wh	er, you may ha ng so simple (our local? Eng nential term a at the autho	ad felt the 1-e^-t) it gineer. and it r-engineer	
someth same. raises o Next tl	ing like We see question ne exp =	e intii n the ns! S ress V R	midate e equa to, hop ion fo $\frac{-}{2} \cdot e^{-}$	ed/low ations pefully r curr t c	ered/la given p thats i	ncking prior an how to n be s We h could Prob said	really d now w get there implified have sor d be plac lem? Bu use mill	lacking is close e see somethir e. Check with y d: ted the expor ced in here. t if we do wh iamp for curre	er, you may ha ng so simple (our local? Eng nential term a at the autho	ad felt the 1-e^-t) it gineer. and it r-engineer	
someth same. raises o Next tl	ing like We see question ne exp =	e intii n the ns! S ress V R	midate e equa o, hop ion fo	ed/low ations pefully r curr t c	ered/la given p thats i	ncking prior an how to n be s We h could Prob said	really d now w get there implified have sor d be plac lem? Bu use mill	lacking is close e see somethir e. Check with y d: ted the expor ced in here. t if we do wh	er, you may ha ng so simple (our local? Eng nential term a at the autho	ad felt the 1-e^-t) it gineer. and it r-engineer	
someth same. raises o Next tl	ing like We see question ne exp =	e intii n the ns! S ress V R R	$\frac{1}{10^{3}}$	ed/low ations pefully or curr $\frac{t}{c}$ • e^{-t}	ered/la given p thats rent ca	ncking prior an how to n be s We h could Prob said	really d now w get there implified have sor d be plac lem? Bu use mill	lacking is close e see somethir e. Check with y d: ted the expor ced in here. t if we do wh iamp for curre	er, you may ha ng so simple (our local? Eng nential term a at the autho	ad felt the 1-e^-t) it gineer. and it r-engineer	
someth same. raises o Next tl	ing like We see question ne exp =	e intii n the ns! S ress V R R	$\frac{1}{10^{3}}$	ed/low ations pefully r curr t c	ered/la given p thats rent ca	ncking prior an how to n be s We h could Prob said	really d now w get there implified have sor d be plac lem? Bu use mill	lacking is close e see somethir e. Check with y d: ted the expor ced in here. t if we do wh iamp for curre	er, you may ha ng so simple (our local? Eng nential term a at the autho	ad felt the 1-e^-t) it gineer. and it r-engineer	
someth same. raises o Next tl	ing like We see question ne exp = =	e intii n the ns! S ress V R R	$\frac{1}{10^{3}}$	ed/low ations pefully or curr $\frac{t}{c}$ • e^{-t}	ered/la given p thats rent ca	ncking prior an how to n be s We h could Prob said	really d now w get there implified have sor d be plac lem? Bu use mill	lacking is close e see somethir e. Check with y d: ted the expor ced in here. t if we do wh iamp for curre	er, you may ha ng so simple (our local? Eng nential term a at the autho	ad felt the 1-e^-t) it gineer. and it r-engineer	
someth same. raises o Next tl	ing like We see question ne exp = =	e intii n the ns! S ress V R R	$\frac{1}{2} \cdot e^{R^{2}}$	ed/low ations pefully or curr $\frac{t}{c}$ • e^{-t}	ered/la given p thats rent ca	ncking prior an how to n be s We h could Prob said	really d now w get them implified nave sor d be plac lem? Bu use mill ny sort t	lacking is close e see somethir e. Check with y d: ted the expor ced in here. t if we do wh iamp for curre	er, you may ha ng so simple (our local? Eng nential term a at the autho	ad felt the 1-e^-t) it gineer. and it r-engineer	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

∨(t):=	(1 – e ^{-t})	and	i (t)	= e ^{-t}								
some n	umeric	al valu	e for t	ne ansv	0.001s ver for t s, and li	his time	e range	e. Plug	in 1 l				
V _⊤ :=(1	−e ^{−1})	= 0.63	2	V. Ansv	ver. <	-voltage	at en	d of 1	ms.				
and													
i₁ms ≔e	$^{-1} = 0.3$	368	A. Ans	wer? <	curre	nt at er	d of 1	ms.					
11115					he answ				just le	eaving	g it		
				а	s the ex	pressio	n with	out plu	ging	in t=1	1ms.		
					V, capac	itor bec							
	curre clear	nt in tl	ne seri	es circu	ed' for a lit comin nple, this	ng from	v_s. If	f the th	neory		U U		
For t>1	curre clear ms:	nt in tl on it,	ne seri i.e. pri	es circu pr exar	ed' for a lit comin	ng from	v_s. If	f the th	neory		U U		
	curre clear ms:	nt in tl on it,	ne seri i.e. pri	es circu pr exar	ed' for a nit comin nple, this We ne	ng from	v_s. If I make	f the the the it clea	neory arer.	exam	nple w	as no	
<u>For t>1</u> (t > T)	curre clear ms:	nt in tl on it,	ne seri i.e. pri	es circu pr exar	We ne Now it Next, s leave t not ha evalua for t>	eed to active any the the equation of the the expected to active any the the expected to the expected to active any the the expected to active a	y_s. If I make all in te in V expon specifi express But pl	or T in ms. '_T cal ent the sion its	the e culate in tir a ge	exam expon ed in t e bec me pa neral	ent po the 0 ause ast t= expre	ower. <t<t we do T to ession</t<t 	t
	curre clear ms:	nt in thon it, $\nabla_{T} \cdot \left(\epsilon \right)$	ne seri i.e. pri	es circu pr exar	We ne Now it Next, s leave t not ha evalua for t>	eed to an eed to an s fixed, substitu t in the tive any tite the e	y_s. If I make all in te in V expon specifi express But pl	or T in ms. '_T cal ent the sion its	the e culate in tir a ge	exam expon ed in t e bec me pa neral	ent po the 0 ause ast t= expre	ower. <t<t we do T to ession</t<t 	t
	curre clear ms: = =	nt in thon it, $\nabla_{T} \cdot \left(\epsilon \right)$ $\nabla_{T} \cdot \left(\epsilon \right)$ 0.632	$\frac{-(t-T)}{RC}$	es circu pr exar <u>p</u>))	We ne Now it Next, s leave t not ha evalua for t>	eed to active any the the equation of the the expected to active any the the expected to the expected to active any the the expected to active a	y_s. If I make all in te in V expon specifi express But pl	or T in ms. '_T cal ent the sion its	the e culate in tir a ge	exam expon ed in t e bec me pa neral	ent po the 0 ause ast t= expre	ower. <t<t we do T to ession</t<t 	t
	curre clear ms: = =	nt in th on it, $V_{T} \cdot (\epsilon$ $V_{T} \cdot (\epsilon$ 0.632 0.632	$\frac{-(t-T)}{RC}$	es circu pr exar)) -1)	We ne Now it Next, s leave t not ha evalua for t>	eed to active any the the equation of the the expected to active any the the expected to the expected to active any the the expected to active a	y_s. If I make all in te in V expon specifi express But pl	or T in ms. '_T cal ent the sion its	the e culate in tir a ge	exam expon ed in t e bec me pa neral	ent po the 0 ause ast t= expre	ower. <t<t we do T to ession</t<t 	t

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$i := e^{-t}$ $i := e^{-1} = 0.368$	
Voltage at end of 1 ms: v _{1m}	_{is} :=0.632
Current at end of 1 ms in the circ	cuit i_1ms = V_T/R:
$i_{1ms} := \frac{v_{1ms}}{R} = 6.32 \cdot 10^{-4}$	A.
$i(t > T) = -\left(\frac{V_T}{R}\right) \cdot e^{\frac{-(t - T)}{RC}}$	REMEMBER: current will be in the opposite direction coming out of the capacitor into the circuit for t>T.
$= -(i_{1ms}) \cdot e^{-(t-1)}$	Bring in the progress we made in prior steps.
$(i_{1ms}) \cdot e^1 = 0.0017$	718 This is mA next
$\frac{(i_{1ms}) \cdot e^{1}}{1 \cdot 10^{-3}} = 1.717$	954 mA, next we pull in the remaining term like we did in the voltage expression.
$= -1.72 \cdot e^{-t}$ Answer.	
'Engineering' is not easy, here what seemed often, STOP, and not follow thru the procedu learning experience for me. You may have yo level courses. So, this may do it. Karl Bogha degrees, quality may be subjective, dependir however you know you must do the work to	me simplifications required - deeper insight. They say so simple had twists and turns. Maybe if I question more re outlined, UNTIL things are clearer, then its a better our ideas on this. These techniques are applied in higher - "they say the high quality students pass the engineering g on who holds the standard at any any one given time, get thru". Jokes aside, in Asian nations due to limited seat ive. And I was not one of them admitted there, I graduated

Continued on next page.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

D).	V ₀ ≔ 10 V	T≔0.1•10 ⁻³	s or 0.1 ms.	We increased the voltage by 10 and reduced T by 10.
<u>For 0<</u>	t <t=0.1 ms:<="" td=""><td></td><td></td><td></td></t=0.1>			
v (t)	$:=(1-e^{-t})$	We solved th	is with V=1, nov	v V = 10V.
v (t)	$:= 10 \cdot (1 - e^{-t})$	Answer.		
Similar	ly for current e	xpression:	$\frac{V_0}{R} = 0.01$	
i (t)	= (0.01) • e ⁻	t A		
	$= 10 \cdot e^{-t}$ n	nA. Answer.		
	e next time rang e existing at tim		ed to calculate th	e initial
V _{0.1ms}	= 10•(1-	$-e^{-0.1}$ = 10-	$-10 \cdot e^{-0.1} = 10$	- 9.04837 = 0.9516
V _{0.1ms}	= 0.95 V	n		
<u>For t>(</u>	<u>0.1 ms:</u>			
v _T (t >	T) = $V_T \cdot \left(e^{-\frac{1}{2}}\right)$	-(t-T)		
	$= V_T \cdot (e^{-1})$	(t – T)		
v(t	>T) = 0.95 (e	- ⟨ t - ⊤ ⟩)		
	= 0.95 e	- (t – 0.1)	e ^{0.1} = 1.105	
	= 0.95 • (1.105)•e ^{-(t)}	0.95•(1.105	5) = 1.05
	= 1.05 e ⁻	Answer.		
	coefficient will math expression		n the current cas	e because its
	ms≔0.95 V			

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	$= -\left(\frac{V_{T}}{R}\right) \cdot e^{-\frac{T}{R}}$						
$\left(\frac{V_{T}}{R}\right) =$	i _{0.1ms} := <u>V_{0.}. F</u>	$\frac{1ms}{R} = 9.5 \cdot 10^{\circ}$	⁻⁴ A				
	$\frac{i_{0.1ms}}{1 \cdot 10^{-3}} = 0$).95 mA					
i (t > T)	$= -0.95 \cdot e^{-(1)}$	n mA	-		ress we mac onent term.	le in prior	
	$= -0.95 \cdot e^{-(1)}$	^{t – 0.1}) mA	e ^{0.}	¹ = 1.105			
	= -0.95 • 1.10	05∙e ^{-t}	0.9	95•(1.10	5) = 1.05		
	$= -1.05 \cdot e^{-t}$	Answer.					
0							
can see son	Standarisation in ne checks need b	be in place to o	catch 'careles	s' mistake	es.	the voltage	
can see son		be in place to o	catch 'careles	s' mistake s. W by	e increased 10 on part	b, and	
can see son	ne checks need b ₀ := 100 V T	be in place to o	catch 'careles	s' mistake s. W by	e increased	b, and	
can see son c). V For 0 <t<t< td=""><td>ne checks need b ₀:= 100 V T</td><td>e in place to o ≔0.01•10⁻³</td><td>catch 'careles</td><td>s' mistake s. W by</td><td>e increased 10 on part</td><td>b, and</td><td></td></t<t<>	ne checks need b ₀ := 100 V T	e in place to o ≔0.01•10 ⁻³	catch 'careles	s' mistake s. W by	e increased 10 on part	b, and	
can see son c). V_{t} For 0 <t<t $v(t) \coloneqq ($</t<t 	ne checks need b ₀ := 100 V T =0.01 ms:	$= 0.01 \cdot 10^{-3}$ = 100V.	catch 'careles	s' mistake s. W by	e increased 10 on part	b, and	
can see son c). V_{t} For $0 < t < T$ v(t) := (v(t) := 1	$me \ checks \ need \ b$	$= 0.01 \cdot 10^{-3}$ $= 100V.$ Answer.	catch 'careles	s' mistake s. W by	e increased 10 on part	b, and	
can see son c). V_{t} For $0 < t < T$ v(t) := (v(t) := 1 Similarly for	$me \ checks \ need \ b$	$c = in place to c$ $= 0.01 \cdot 10^{-3}$ $c = 100V.$ Answer.	s or 0.01 m	s' mistake s. W by	e increased 10 on part	b, and	
can see son c). V_{t} For 0 <t<t v(t) := (v(t) := 1 Similarly fo i(t) =</t<t 	$me \ checks \ need \ b$ $_{0} := 100 \ V \qquad T$ $= 0.01 \ ms:$ $(1 - e^{-t}) \qquad Vc$ $100 \cdot (1 - e^{-t})$ or current expression	$ce in place to c= 0.01 \cdot 10^{-3}$ c = 100V. Answer. ession: A Answer. Ref	$\frac{V_0}{R} = 0.1$ member we h	s. Wi by rea	e increased 10 on part	b, and 10 on part b ve can do tha	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

0.995 $V_{0.01ms} =$ V For t>0.01 ms: $v_{T}(t > T) = V_{T} \cdot \left(e^{\frac{-(t-T)}{RC}}\right)$ $= V_{\mathsf{T}} \cdot \left(e^{-(t-\mathsf{T})} \right)$ $v_{T}(t > T) = 0.995 (e^{-(t - T)})$ $= 0.995 e^{-(t-0.01)}$ $e^{0.01} = 1.0101$ $= 0.995 \cdot (1.0101) \cdot e^{-t}$ $0.995 \cdot (1.0101) = 1.01$ 2 decimal places. $= 1.01 e^{-t}$ Answer. The coefficient will be the same in the current case because its the same math expression. $V_{0.01ms} = 0.995 V$ $i(t > T) = -\left(\frac{V_T}{R}\right) \cdot e^{\frac{-\langle t - T \rangle}{RC}}$ $\left(\frac{V_{T}}{R}\right) = i_{0.01ms} = \frac{V_{0.01ms}}{R} = 9.95 \cdot 10^{-4} \text{ A}$ $\frac{i_{0.01ms}}{1.10^{-3}} = 0.995$ mA $i(t > T) = -0.995 \cdot e^{-(t-T)}$ mA. Bring in the progress we made in prior steps on the exponent term. $= -0.995 \cdot e^{-(t-0.01)}$ $e^{0.01} = 1.01005$ mΑ $= -0.995 \cdot 1.105 \cdot e^{-t}$ $0.995 \cdot (1.01005) = 1.005 = 1.01$ 2 decimal places $= -1.01 \cdot e^{-t}$ Answer. Schaums: As the input pulse approaches an impulse, when Vo got bigger and T got smaller the rectangular pulse was becoming more like an impulse - from part a to part b then to c, the capacitor voltage approach $v = e^{-t}$ u(t), and the current approach $i = d(t) - e^{(-t)} u(t)$.

Next we visit the Impulse Response, but first we plot the voltages and currents.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

verify using your software/ Excel. The	es and currents, all v(t) same and all i(t) same. You may ese plots maybe helpful visualisations.
•	else a u(t) be implicated to a d(t) impulse/delta fors wrote 'capacitor voltage v = $e^{(-t)} u(t)$, and (-t) u(t).' $v_{C}(t) = e^{-t} \cdot u(t)$ $i_{C}(t) = \delta(t) \cdot (-e^{-t} \cdot u(t))$
	e by reviewing the plot <u>straight line</u> s cause us to relates to u(t) at
	y how the delta/impulse function may multiplied to it. You study All straight lines! Almost straight lines. Correct errors as required.
clear (t , t1 , t2 , t3 , t4 , t5 , t6)	
$t1 := 0, 0.25 \cdot 10^{-3} 1 \cdot 10^{-3}$	
$t2 := 1 \cdot 10^{-3}, 1.125 \cdot 10^{-3} 2 \cdot 10^{-3}$	-3
$t3 := 0, 0.025 \cdot 10^{-3} 0.1 \cdot 10^{-3}$	
$t4 := 0.1 \cdot 10^{-3}, 0.125 \cdot 10^{-3}0.2$.10 ⁻³
$t5 := 0, 0.0025 \cdot 10^{-3} \dots 0.01 \cdot 10^{-3}$	
$t6 := 0.01 \cdot 10^{-3}, 0.0125 \cdot 10^{-3}0$).02 • 10 ⁻³
a). <u>For 0<t<t (t="1" ms):<="" u=""></t<t></u>	For t> 1ms
$v(t1) := (1 - e^{-t1})$	$v(t2) := 1.72 e^{-t2}$
i (t1) ≔ e ^{-t1} mA	$i(t2) := -1.72 \cdot e^{-t2}$
b). <u>For 0<t<t (t="0.1" ms):<="" u=""></t<t></u>	<u>For t> 0.1ms</u>
$v(t3) := 10 \cdot (1 - e^{-t3})$	$v(t4) := 1.05 \cdot e^{-(t4)}$
$i(t3) := 10 \cdot e^{-t3}$	$i(t4) := -1.05 \cdot e^{-t4}$
c). <u>For 0<t<t (t="0.01" ms):<="" u=""></t<t></u>	<u>For t> 0.01ms</u>
$v(t5) := 100 \cdot (1 - e^{-t5})$	$v(t6) := 1.01 e^{-t6}$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

u(t) u(t) - u(t-T)	From section 7.10 Repeated: As the input voltage pulse approaches an impulse, the capacitor voltage and current approach $v=e^{(-t)} u(t) V$ and $i = d(t)-e^{(-t)}u(t)$. Schaums page 156.
5 (t)	<a an="" as="" be="" can="" impulse<br="" modeled="" narrow="" pulse="">with the area under the pulse indicating its strength. Impulse response is a <u>useful tool in the analysis and</u> <u>synthesis of circuits</u>.
	It may be derived in several ways: <u>take the limit of</u> <u>the response to a narrow pulse</u> , to be called the limit approach, as illustrated in example 7-11 and 7-12; <u>take the derivative of the step response</u> ; or <u>solve the</u> <u>differential equation directly</u> . The <u>impulse response is</u> <u>often designated by h(t)</u> - page 156 Schaums.
You may go to 7.12 and 7.13 Find the limits of i and v of th	onse of RC & RL circuit). TROUBLING EXAMPLE. 3 first, then return. All interconnected. 13 pages for 7.12. ne circuit in figure provided below (series RC circuit) as the <u>pulse duration is decreased to zero</u> .
v _s = Vo[u(t) - u(t - T)] (+)	R i c v voltage across capacitor Same circuit of previous 2 examples.
Solution:	
Vo = 1/T and find their limits	
	<equation 7.10.="" ceases<="" from="" pulse="" section="" td="" the="" when=""></equation>

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

V_{-}	_	1	\ F	rc / j	Made	it so fa	r so c	hoor	. <u>looks tl</u>	hat way	/ hut ne	xt what
v		I	U	/	maac	11 30 14	150 ų	J000	. <u>100K5 ti</u>			
Lets w	vork ea	ch te	erm ie	R and	d C, ar	nd RC. V	Vhat is	their	impact:			
(MO M	vant (1	/DC)	///	1 ovn	lain lat	or)						
R≔10	000		C:=1	•10 ⁻⁶	⁶ t_0	constan	nt1:=_	1	= 1 • 10	3		
							(R•C)				
(t_co	nstant1)	0	1		b o b o		1	- +- 0				
е		= 0	Lai	iger i	ne t_c	onstant	T CIOSE	riou	the valu		xponent	•
R≔1(00.10) ⁶	C:=1	•10 ⁻⁶	⁶ t_0	constan	nt2:=_	1	-= 0.001	Mad	e R larg	er.
							(R•C)			J	,
_(t.co	nstant?)						_					
e (= 0.9							egins to			
					•				This by		-	-
					nential	functio	n to th	e nega	ative po	wer; cl	oser to	0 and 1
Again	NO GO	Ji VVI	nat ne	Xl?								
W/hat	if wo s	av (1		_ † D		RED ova	amplo ⁻	7 11 ir	n the be	ainina (of the s	olution
	11 11 2 3									un ni u v		
hint w												
	ve got t	o wł	nere th	ie <u>ap</u> p	oroxim	ation e/	`-t app	roxim	<u>atley eq</u>	<u>ual (1</u> -	- t) whe	en t<<1
When	ve got t the cir	o wł cuit	nere th compo	ie <u>ap</u> p nent	oroxim resisto	<u>ation e</u> ⁄ or was 1	<u>`-t app</u> 000M	o <mark>roxim</mark> ohm),	<u>atley eq</u> lower t	ual (1 · he t_cc	- t) whe onstant2	en t<<1 2 got
When (0.001	ve got t the cir 1), ther	o wł cuit n its	nere th compo expone	ie <u>ap</u> p onent ential	oroxim resisto term e	<u>ation e/</u> or was 1 e^-(t_co	<u>`-t app</u> 000M onstan	roxim ohm), t2) go	<u>atley eq</u> lower t t closer	ual (1 he t_cc to 1 (0	<u>- t) whe</u> onstant2 .999). V	en t<<1 2 got Ve kept
When (0.001 the ca	ve got t the cir 1), ther ipacitor	cowh cuit n its the	nere th compo expone same	ie <u>app</u> onent ential size f	oroxim resisto term e for t_co	ation e/ or was 1 e^-(t_co onstant	<u>·-t app</u> 000M onstan 1 and	o <mark>roxim</mark> ohm), t2) go 2. Cap	<u>atley eq</u> lower t t closer pacitor c	ual (<u>1</u> he t_cc to 1 (0 lecreas	<u>- t) whe</u> onstant2 .999). V ing in si	<u>en t<<1</u> 2 got Ve kept ize help
When (0.001 the ca t_cons	ve got t the cir 1), ther pacitor stant2	cowh cuit n its the get e	nere th compo expone same even cl	e <u>ap</u> r onent ential size f oser	proxim resisto term e for t_co to 1. <u>F</u>	ation e/ or was 1 e^-(t_co onstant or now	<u>-t app</u> 0000M onstan 1 and we got	roxim ohm), t2) go 2. Cap t = 0	atley eq lower t t closer bacitor c 0.001. So	ual (1 he t_cc to 1 (0 lecreas o this is	<u>t) whe</u> onstant2 .999). V ing in si the cou	<u>en t<<1</u> 2 got Ve kept ize help
When (0.001 the ca t_cons	ve got t the cir 1), ther pacitor stant2	cowh cuit n its the get e	nere th compo expone same even cl	e <u>ap</u> r onent ential size f oser	proxim resisto term e for t_co to 1. <u>F</u>	ation e/ or was 1 e^-(t_co onstant or now	<u>-t app</u> 0000M onstan 1 and we got	roxim ohm), t2) go 2. Cap t = 0	<u>atley eq</u> lower t t closer pacitor c	ual (1 he t_cc to 1 (0 lecreas o this is	<u>t) whe</u> onstant2 .999). V ing in si the cou	<u>en t<<1</u> 2 got Ve kept ize help
When (0.001 the ca t_cons (1/RC)	ve got t the cir 1), ther pacitor stant2	co wh cuit n its r the get e . And	nere th compo expone same even cl d we g	ne <u>app</u> onent ential size f oser ot (1,	resisto term o for t_co to 1. <u>F</u> /RC) =	ation e ⁷ or was 1 e [^] -(t_co onstant or now 0.001.	<u>-t app</u> 0000M onstan 1 and we got	roxim ohm), t2) go 2. Cap t = 0	atley eq lower t t closer bacitor c 0.001. So	ual (1 he t_cc to 1 (0 lecreas o this is	<u>t) whe</u> onstant2 .999). V ing in si the cou	<u>en t<<1</u> 2 got Ve kept ize help
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	nere th compo expone same even cl d we g	e <u>app</u> onent ential size f oser ot (1, ampl	resisto term e for t_co to 1. <u>F</u> /RC) = e 7.11	ation e ⁷ or was 1 e [^] -(t_co onstant or now 0.001.	<u>-t app</u> 000M onstan 1 and we got Ok for	roxim ohm), t2) go 2. Cap t = 0 0.001	atley eq lower t t closer pacitor c <u>0.001</u> . So , lets pr	ual (1 he t_cc to 1 (0 lecreas this is oceed.	<u>t) whe</u> onstant2 .999). V ing in si the co	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	nere th compo expone same even cl d we g	e <u>app</u> onent ential size f oser ot (1, ampl	resisto term e for t_co to 1. <u>F</u> /RC) = e 7.11	ation e ⁷ or was 1 e [^] -(t_co onstant or now 0.001.	<u>-t app</u> 000M onstan 1 and we got Ok for	roxim ohm), t2) go 2. Cap t = 0 0.001	atley eq lower t t closer bacitor c 0.001. So	ual (1 he t_cc to 1 (0 lecreas this is oceed.	<u>t) whe</u> onstant2 .999). V ing in si the co	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	nere th compo expone same even cl d we g	e <u>app</u> onent ential size f oser ot (1, ampl	$\frac{\text{proxim}}{\text{resist}}$ $\frac{\text{term e}}{\text{for t_cc}}$ $\frac{\text{for t_cc}}{\text{to 1. F}}$ $\frac{\text{(RC)}}{\text{(RC)}} = 1 - \frac{1}{2}$	ation e^{7} or was 1 $e^{-}(t_c constant)$ onstant 0.001. : e^{-1000}	<u>-t app</u> 0000M onstan 1 and <u>we got</u> Ok for	roxim ohm), t2) go 2. Cap : t = 0 0.001 ace th	atley eq lower t t closer bacitor c <u>0.001</u> . So , lets pr he, s, se	ual (1 he t_cc to 1 (0 lecreas this is roceed.	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	nere th compo expone same even cl d we g	e <u>app</u> onent ential size f oser ot (1, ampl	$\frac{\text{proxim}}{\text{resist}}$ $\frac{\text{term e}}{\text{for t_cc}}$ $\frac{\text{for t_cc}}{\text{to 1. F}}$ $\frac{\text{(RC)}}{\text{(RC)}} = 1 - \frac{1}{2}$	ation e^{7} or was 1 $e^{-}(t_c constant)$ onstant 0.001. : e^{-1000}	<u>-t app</u> 0000M onstan 1 and We got Ok for t (s) pl	roxim ohm), t2) go 2. Cap : t = 0 0.001 ace th ace th	atley eq lower t t closer pacitor c <u>0.001</u> . So , lets pr	ual (1 he t_cc to 1 (0 lecreas o this is oceed. cond fin	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	nere th compo expone same even cl d we g	e <u>app</u> onent ential size f oser ot (1, ampl	proxim resistor term of for t_co to 1. F /RC) = e 7.11 = 1- = 1-	$\frac{\text{ation } e^{7}}{\text{or was } 1}$ $e^{-}(t_{co})$ $\frac{\text{or now}}{0.001}$ \vdots $-e^{-1000}$ $-e^{-1000}$	<u>v-t app</u> 0000M onstan 1 and <u>we got</u> 0k for t (s) pl t (ms) pl m	$\frac{roxim}{ohm},$ $t2) go$ $2. Cap$ 0.001 $ace th$ $ace th$ $ace th$	atley eq lower t t closer pacitor c <u>0.001</u> . So , lets pr ne, s, se	ual (1 he t_cc to 1 (0 lecreas o this is oceed. cond fin	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	nere th compo expone same even cl d we g	e <u>app</u> onent ential size f oser ot (1, ampl	proxim resisto term (for t_co to 1. F /RC) = e 7.11 = 1- = 1-	ation e^{7} or was 1 $e^{-}(t_c constant)$ onstant 0.001. : e^{-1000}	<u>v-t app</u> 0000M onstan 1 and <u>we got</u> 0k for t (s) pl t (ms) pl m	$\frac{roxim}{ohm},$ $t2) go$ $2. Cap$ 0.001 $ace th$ $ace th$ $ace th$	atley eq lower t t closer pacitor c <u>0.001</u> . So , lets pr ne, s, se	ual (1 he t_cc to 1 (0 lecreas o this is oceed. cond fin	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	here th compo expone same even cl d we g rom ex - e ^{-t · 1}	the <u>app</u> prinent ential size f oser ot (1, ampl \cdot 10 ³)	$\frac{\text{proxim}}{\text{resist}}$ $\frac{\text{resist}}{\text{term e}}$ $\frac{\text{for t_cc}}{\text{to 1. F}}$ $\frac{\text{rec}}{\text{rec}} = 1 - \frac{1 - \frac{1}{2}}{2}$	$\frac{\text{ation } e^{7}}{\text{or was } 1}$ $e^{-}(t_{co})$ $\frac{\text{or now}}{0.001}$ \vdots $-e^{-1000}$ $-e^{-1000}$	<u>-t app</u> 000M onstan 1 and <u>we got</u> 0k for t (s) pl t (ms) pl r t (1.10 ⁻	$\frac{roxim}{cohm},$ $\frac{roxim}{c2}, go$ $2. Cap$ $\frac{r}{c1} = 0$ 0.001 ace that ace t	atley eq lower t t closer pacitor c <u>0.001</u> . So , lets pr ne, s, se	ual (1 he t_cc to 1 (0 lecreas o this is oceed. cond fin	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	nere th compo expone same even cl d we g	the <u>app</u> prinent ential size f oser ot (1, ampl \cdot 10 ³)	$\frac{\text{proxim}}{\text{resist}}$ $\frac{\text{resist}}{\text{term e}}$ $\frac{\text{for t_cc}}{\text{to 1. F}}$ $\frac{\text{rec}}{\text{rec}} = 1 - \frac{1 - \frac{1}{2}}{2}$	$\frac{\text{ation } e^{7}}{\text{or was } 1}$ $e^{-}(t_{co})$ $\frac{\text{or now}}{0.001}$ \vdots $-e^{-1000}$ $-e^{-1000}$	<u>-t app</u> 000M onstan 1 and <u>we got</u> 0k for t (s) pl t (ms) pl r t (1.10 ⁻	$\frac{roxim}{cohm},$ $\frac{roxim}{c2}, go$ $2. Cap$ $\frac{r}{c1} = 0$ 0.001 ace that ace t	atley eq lower t t closer pacitor c <u>0.001</u> . So , lets pr ne, s, se	ual (1 he t_cc to 1 (0 lecreas o this is oceed. cond fin	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	here th compo expone same even cl d we g rom ex - e ^{-t · 1}	the <u>app</u> prinent ential size f oser ot (1, ampl \cdot 10 ³)	$\frac{\text{proxim}}{\text{resist}}$ $\frac{\text{resist}}{\text{term e}}$ $\frac{\text{for } 1_{\text{c}}}{\text{for } 1_{\text{c}}} = 1 - \frac{1 - \frac{1}{2}}{2}$ $= 1 - \frac{1 - \frac{1}{2}}{2} = 1 - \frac{1 - \frac{1}{2}}{2}$	$\frac{\text{ation } e^{7}}{\text{or was } 1}$ $e^{-}(t_{co})$ $\frac{\text{or now}}{0.001}$ \vdots $-e^{-1000}$ $-e^{-1000}$	<u>-t app</u> 1000M onstan 1 and we got 0k for t (s) pl t (ms) pl t (1.10 ⁻¹ t (1.10 ⁻¹ < The	$\frac{roxim}{cohm},$ $\frac{roxim}{2}, go$ $2. Cap$ $2. Cap$ 0.001 0.001 $ace th$	atley eq lower t t closer bacitor c <u>0.001</u> . So , lets pr ne, ms, n y out the	ual (1 he t_cc to 1 (0 lecreas o this is roceed. cond fin milisecc e ms.	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser	ve got t the cir l), ther pacitor stant2) << 1 nted he	co wh rcuit n its r the get e . And ere fr	here th compo expone same even cl d we g rom ex - e ^{-t · 1}	the <u>app</u> prinent ential size f oser ot (1, ampl \cdot 10 ³)	$\frac{\text{proxim}}{\text{resist}}$ $\frac{\text{resist}}{\text{term e}}$ $\frac{\text{for } 1_{\text{c}}}{\text{for } 1_{\text{c}}} = 1 - \frac{1 - \frac{1}{2}}{2}$ $= 1 - \frac{1 - \frac{1}{2}}{2} = 1 - \frac{1 - \frac{1}{2}}{2}$	$\frac{\text{ation } e^{t}}{\text{or was } 1}$ $e^{-}(t_{cc})$ $\frac{\text{or now}}{0.001}$ e^{-1000} $-e^{-1000}$ $-e^{-1000}$ $-e^{-1000}$ e^{-1000}	<u>-t app</u> 1000M onstan 1 and we got 0k for t (s) pl t (ms) pl t (1.10 ⁻¹ t (1.10 ⁻¹ < The	$\frac{roxim}{cohm},$ $\frac{roxim}{2}, go$ $2. Cap$ $2. Cap$ 0.001 0.001 $ace th$	atley eq lower t t closer pacitor c <u>0.001</u> . So , lets pr ne, s, se	ual (1 he t_cc to 1 (0 lecreas o this is roceed. cond fin milisecc e ms.	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser v (t)	ve got t the cir (), ther () action () action	o wh cuit the get e And ere fr (1-	v (1	t)	$\frac{\text{proxim}}{\text{resist}}$ $\frac{\text{resist}}{\text{term e}}$ $\frac{\text{for } t_{c}}{\text{for } t_{c}}$ $\frac{\text{for } t_{c}}{\text{res}}$	ation e ^{$/$} or was 1 e ^{$/-$} (t_co onstant 0.001. : -e ^{-1000. -e^{-1000. -e^{-1000. -e^{-1000. -e^{-1000. -e^{-1000. -e^{-1000.} -e^{-1000. -e^{-1000.}}}}}}}}	<u>-t app</u> 1000M onstan 1 and we got 0k for t (s) pl t (ms) pl t (1.10 ⁻¹ t (1.10 ⁻¹ < The	$\frac{roxim}{roxim}$ ohm), t2) go 2. Cap 2. Cap 0.001 ace th ace th ace th ultiply ³) ere. $e^{-0.00}$	atley eq lower t t closer bacitor c <u>0.001</u> . So , lets pr ne, ms, n y out the	ual (1 he t_cc to 1 (0 lecreas o this is oceed. cond fin milisecc e ms.	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser v (t)	ve got t the cir l), ther pacitor stant2) << 1 nted he	o where the get end of the get end o	v (1 v (1 v (1 v (1 v (1) v (1) v (1) v (1)	t) for 1 /	$\frac{\text{broxim}}{\text{resist}}$ $\frac{\text{resist}}{\text{term e}}$ $\frac{\text{for } t_{c}}{\text{cor } t_{c}}$ $\frac{\text{for } t_{c}}{\text{res}} = 1 - \frac{1 - \frac{1}{2}}{2} = 1 - 1 - \frac$	ation e ^{$/$} or was 1 e ^{$/-$} (t_co onstant 0.001. : -e ^{-1000. -e^{-1000. -e^{-1000. -e^{-1000. -e^{-1000. -e^{-1000. -e^{-1000.} -e^{-1000. -e^{-1000.}}}}}}}}	<u>-t app</u> 1000M onstan 1 and we got 0k for t (s) pl t (ms) pl t (1.10 ⁻¹ t (1.10 ⁻¹ < The	$\frac{roxim}{roxim}$ ohm), t2) go 2. Cap 2. Cap 0.001 ace th ace th ace th ultiply ³) ere. $e^{-0.00}$	$\frac{\text{atley eq}}{\text{lower t}}$ $\frac{1}{\text{closer}}$	ual (1 he t_cc to 1 (0 lecreas o this is oceed. cond fin milisecc e ms.	<u>- t) whe</u> onstant2 .999). V ing in si s the cou	en t<<1 2 got We kept ize help ndition
When (0.001 the ca t_cons (1/RC) Preser v (t)	ve got t the cir 1), ther pacitor stant2) << 1 nted he = 1	n its r the get e . And ere fr (1 -	v (1 v good	t) for 1 n	$\frac{\text{broxim}}{\text{resist}}$ $\frac{\text{resist}}{\text{term of}}$ $\frac{\text{for t_cat}}{\text{for t_cat}}$ $\frac{\text{for t_cat}}{\text{resist}}$ $\frac{\text{for t_cat}}{\text{resist}}$ $\frac{\text{for t_cat}}{\text{res}}$ $\frac{\text{for t_cat}}{\text{res}}$ $\frac{\text{for t_cat}}{\text{res}}$	$\frac{\text{ation } e^{\prime}}{\text{or was 1}}$ $e^{-(t_{coc})}$ $e^{-(t_{coc})}$ e^{-1000} e^{-1000} e^{-1000} e^{-1000} e^{-1000} e^{-1000} e^{-1000}	<the< td=""><td>$\frac{roxim}{roxim}$ ohm), t2) go 2. Cap 2. Cap 0.001 ace th ace t</td><td>$\frac{\text{atley eq}}{\text{lower t}}$ $\frac{1}{\text{closer}}$ $\frac{1}{\text{closer}}$</td><td>$\frac{\text{ual (1)}}{\text{he t_cc}}$ $\frac{\text{he t_cc}}{\text{to 1 (0)}}$ $\frac{\text{lecreas}}{\text{roceed.}}$ $\frac{\text{cond fin}}{\text{milisecc}}$ $\frac{\text{milisecc}}{\text{roce}}$ $\frac{\text{roce}}{\text{t}} = 0.99$</td><td><u>- t) whe</u> onstant2 .999). V ing in si s the cou rst in th ond for</td><td>en t<<1 2 got We kept ize help ndition</td></the<>	$\frac{roxim}{roxim}$ ohm), t2) go 2. Cap 2. Cap 0.001 ace th ace t	$\frac{\text{atley eq}}{\text{lower t}}$ $\frac{1}{\text{closer}}$	$\frac{\text{ual (1)}}{\text{he t_cc}}$ $\frac{\text{he t_cc}}{\text{to 1 (0)}}$ $\frac{\text{lecreas}}{\text{roceed.}}$ $\frac{\text{cond fin}}{\text{milisecc}}$ $\frac{\text{milisecc}}{\text{roce}}$ $\frac{\text{roce}}{\text{t}} = 0.99$	<u>- t) whe</u> onstant2 .999). V ing in si s the cou rst in th ond for	en t<<1 2 got We kept ize help ndition

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	0		=0 and the unit step function turned ON. Therefore, voltage across the capacitor was
			ero at t <0. The h_v response 0V and 0A.
h _v :=	0	and	h _i :=0
For -0 < t <0 with t at t=0 an		sitive then d	(t) rises high since the duration is decreased to 0.
<u>-0 < t :</u>			
	e a rising slo	ope that co	egative side. Where t=-0 and T=0 <centre. omes to 1 on the y-axis at t=0=T. Here we have</centre.
			<the form="" in="" in<="" pictorial="" solution="" td=""></the>
	_		figure to the left.
0			Lets work it thru the expression/equation steps:
			Lets set $t^{-0} = -0 t^{0} = 0 $
0			$\frac{-(-0-0)}{\mathbb{R} \cdot \mathbb{C}}$
	t>0	→	$(0) = \mathbf{v}_{T} \cdot \mathbf{e}_{T} \cdot \mathbf{e}_{$
-0 T	o+		$= V_T \cdot e^{(\kappa \cdot C)}$
			$hv(0'-') = V_{T} \cdot e^{\frac{-(-0-0)}{R \cdot C}}$ $= V_{T} \cdot e^{\frac{(0+0)}{R \cdot C}}$ $= V_{T} \cdot e^{(0)}$
			= V _T <wrong. 0.<="" be="" must="" td=""></wrong.>
Remember:	V _T = 1	— (1 — t)	$= t = \frac{1}{RC} <(1/RC) >> 1 and a proximately 0?$ Ok. Can do.
	$V_T = t$	= 0	Set t=0 or at t=0.
So, for v(-0)	: 0		Making a fit in the solution process/method.
	for powrtill	proven oth	erwise. Will not surprise me/us.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Lets tackle -(t-T) we have t=-0, and T on 0:

$$-(t-T) = -((-0) - 0) = -(-0) = 0$$

$$hi(0^{-}) = -\left(\frac{V_{T}}{R}\right) \cdot e^{-\frac{(-t-T)}{R \cdot C}} = -\left(\frac{V_{T}}{R}\right) \cdot e^{\frac{(0)}{R \cdot C}} = -\left(\frac{V_{T}}{R}\right) \cdot e^{0} = -\left(\frac{V_{T}}{R}\right)$$

Apply the same done for hv(0-), set t=0:

$$V_T = 1 - (1 - t) = t = \left(\frac{1}{R \cdot C}\right) = 0$$
 Approximately equal 0

hi
$$(0^{-}) = -\left(\frac{V_T}{R}\right) = -\left(\frac{0}{R}\right) = 0$$
 Fits! It worked!

Other wise just make the case thru the pictorial provided before, off the centre to the left <u>everything is zero</u>. Simple. But since we attacked the problem in the '-0 0 0+ ', we tried to evaluate leading to 0. Realistically hv and hi for $e^{(-0)}$ is $e^{t}<0$ which are 0.

Next we move to the other half the right side (0+).

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Lets set
$$t^{0+'} = 0 < \dots t$$
 $t^{0+'} = T < \dots T$
Remember T=1 in our early discussion of the solution.
 $hv(0^{+'}) = V_T \cdot e^{\frac{-(0-T)}{R \cdot C}} = V_T \cdot e^{-\left(\frac{0}{R \cdot C}\right) + \left(\frac{T}{R \cdot C}\right)} = V_T \cdot e^{\left(\frac{T}{R \cdot C}\right)} = V_T \cdot e^{\left(\frac{1}{R \cdot C}\right) T}$
 $hv(0^{+'}) = V_T \cdot e^{\left(\frac{1}{R \cdot C}\right) 1} = V_T \cdot e^{\left(\frac{1}{R \cdot C}\right)}$ Next $t = (1/RC)$.
 $hv(0^{+'}) = V_T \cdot e^{(0)}$ Also showed $V_T T = (1/RC)$ substitute that in next.
 $hv(0^{+'}) = \left(\frac{1}{R \cdot C}\right) e^{(0)}$ Next the exponent power t set it equal to 0+, since our
time $t = 0+$ is saying $t=0$ in the positive side of $-0.00+$,
 $0 < \dots > 0+$ is the positive side.
 $hv(0^{+'}) = \left(\frac{1}{R \cdot C}\right) e^{(0+T)} = \left(\frac{1}{R \cdot C}\right) e^{(00)} = \left(\frac{1}{R \cdot C}\right) <\dots$ Thats the solution here.

Next for current i in the time t < 0+:

Current at t = 0+, as lim T-->0, exponent $e^{-}(t-T/RC) = e^{-}(0-0/RC) = e^{0} = 1$. Substitute 1/RC for V_T, results in 1/(RRC).

Similar to how the v(t=+0) was evaluated. No -VE sign for i(t) below because we do not know exactly when the capacitor is discharging. <u>Negative only when discharging</u>.

(0-0)	<u>)</u>	
$i(t) := (V_T) \cdot e^{R \cdot C}$	$=$ $\frac{(RC)}{Amps}$	t = (1/RC)
(R)	R	(1/RC) = d(t) the impulse $d(t)$.

Discussion:

At time t=0+ is at time t=0, this is when d(t) is maximum. We know time t wise on the x-axis the current(+ve/-ve) will be maximum at t=0 and then gradually decrease to 0. What is that maximum value of i represented here:

 $V_T = (1/RC)$ which RC is the time constant (tau) of the series RC circuit.

Now, $V_T = (1/kc)$ which ke is the time constant (tad) of the series ke circuit.

discussion, so V_T = (1/tau); (1/RC) = 1/tau; tau = RC, which is saying RC=RC. This is when the voltage is maximum so obviously the current will be maximum at this point because i = V/ R. PLUS we know hv(0+) = 1/RC we just calculated. Thats the maximum. So we may reason or

stand to logic, (1/RC) here in terms of peak is d(t). Dividing that by R gives the current hi(0+).

The d(t) represents the impulse voltage value, which when divided by R gives hi(0+). We are NOT saying that the d(t) itself is the current value at the peak nor is current d(t).

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

i (t)	$=\frac{1}{R \cdot (RC)}$	$\frac{1}{R} = \frac{\delta(t)}{R}$				
Resulting	g with the e	expressions f	or hv and	l hi below:		
0 < h _v	$r < \left(\frac{1}{\text{RC}}\right)$	and	h _i =	$\frac{\delta(t)}{R}$		
Next for t> direction, le			ause thin	gs are in the +	ve time	
<u>t>0:</u>						
	t condtion	t>0, we reali	se why tl	nese equations	are applicable,	
in this Serie	es RC Circui	t, because th	ey repre	sent that time p	ast t-T which i	S
past the pe	riod T, or p	ast t=0+. W	hich is al	so saying past t	he impulse.	
	- (t – T)	whore to T	samo a	s past the impu	co:	
$v(t) := V_{\tau}$	e R·C	here t-T is s	shown as	s past the impu t, its also as t>	se, •0+	
• (() = •						
$i(t) \coloneqq -\left(\frac{V}{R}\right)$	$\left(\frac{t-T}{R}\right) \cdot e^{\frac{t-T}{R} \cdot C}$	where t>T,	so t-T =	>T, here t rep	esents +t, t-T,	and >0+.
Differentiat	e hv(t) and	hi(t), replace	e t for (t	- T), and make	the substitutio	n for V_T:
		- (t - T)			(t – T)	No, vo sign for
		-(t-1) R·C • e		$h_i(t) \coloneqq \left(\frac{V_T}{R}\right)$	•e ^{R•C} Cui hi(-No -ve sign for rrent response t).
		$\frac{-(t)}{r}$			(t)	<u> </u>
Got it>	$h_v(t) \coloneqq \left(-\frac{1}{D} \right)$	$\left(\frac{1}{\cdot C}\right) \cdot e^{\frac{-(t)}{R \cdot C}}$		$h_i(t) \coloneqq \left(\frac{1}{D} \right)$	$\left(\frac{1}{(\mathbf{R} \cdot \mathbf{C})} \right) \cdot \mathbf{e}^{\mathbf{R} \cdot \mathbf{C}}$	
					(t)	
				$h_i(t) \coloneqq -i$	$\left(\frac{1}{2}\cdot C\right) \cdot e^{-\frac{\langle t \rangle}{R \cdot C}}$	<got it.<="" td=""></got>
				(R	- •C)	This was
						differentiated
				rcial		

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

their +ve and -ve values into consideration.

Row 1 is dead. <u>Comes down to row 2 and 3</u>. In row 2 we have the beginning for the voltage hv but the <u>hv in row 3 captures row 2</u> when the <u>exponent's power t =0</u>. Yes Yes! Agree that.

Next, hi current response, needs looking into thats the figure on the next page - its an attempt.

hi goes from a impulse at t=0 then declines with the step function in t>0, (T was set at 0, T=0, should not impact the solution), so we see a flow from impulse the dark blue column to the form of step function the negative slope settling to 0.

We add them both for the total area. Maybe Yes? Good for now! Continued next page.

First the figure then the completion of solution.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Example 7.12 was not easy for me. Some steps/process of the solution in Schaums are left out leaving us to work thru. Most these examples are NOT meant or intended Right The 1st Time. Discussion: Can an impulse function create a dv/dt? impulse function impulse function The figure on the left, my **S**(t) thoughts, is that the vertical rectangular shape on the left is more so that is clearly understood Steep Steep and help fit the theory closer in Enlarged decline incline terms of the area method. Going slope slope from rectangular to higher height column. Capacitor will see a rise, slope on 0 0+ the left rising, then the peak for a 0<t t=0 t<0 moment, then the declining slope. Slope is there. We discussed we don't go from 0 to 1 rather 0...0.1...0.50...0.75...0.95...0.99 to 1.00. So a slope is there, and we can say a capacitor experiences a steep rise in voltage, dv/dt - the impulse function. Similarly for current a di/dt. So, first lets not get it in our minds, its constant vertical rise, there is no slope. So far we have worked a RC circuit, where C has dv/dt applicable to it, and this circuit solution progressed from t<0, t=0, t>0. It was not clearly written in wording if such was the case that there was no slope. If there was none the capacitor would not had gotten charged. i = C (dv/dt) and i (current) is charge per time.....so there must be a current to create voltage (potential) across the capacitor plates/terminals. <---Check your textbook. Thats was the discussion. Next too, 7.13 and 7.14, are simpler in the group of three, 7.12, 7.13 and 7.14. Example problem 7.12 was difficult, lenghty, and may not be your suitable answer. You may yet have a better solution. Will not surprise me.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Because we are not given the amplitude of v and i, which is dependent on Vo here. The other parameters like R and C are circuit components, whilst the voltage wave form impacts the response magnitude. So we set Vo = 1, for a u(t) condition that merely says Vo u(t) = Vo (ON=1 when t0=0 or t=0).

Derivatives of v and i with Vo set to 1:

v٠

v(t) =	$1\left(1-e^{\frac{-t}{R \cdot C}}\right) \dots > \frac{dv}{dt}$	$= -\left(\frac{1}{\mathbf{R}\cdot\mathbf{C}}\right)\cdot-e^{-\left(\frac{t}{\mathbf{R}\cdot\mathbf{C}}\right)}$
$\frac{dv}{dt} =$	$\left(\frac{1}{\mathbf{R}\cdot\mathbf{C}}\right)\cdot\mathbf{e}^{-\left(\frac{\mathbf{t}}{\mathbf{R}\cdot\mathbf{C}}\right)}\cdot\mathbf{u}\left(\mathbf{t}\right)$	< the u(t) condition makes known circuit is energised/ON under unit step conditions.

What we just arrived at was the derivative, i.e. t or T approaching the limit of 0. We were told the derivative of the step function may lead to the impulse function, which is based on the limit of t approaching 0. Usually, the time t here is positive and t is moving toward 0. -t 0 +t. We are taking the limit of t approaching 0 from the positive side (+t). So obviously the derivative is going to manage the solution for the time t=0 to t>0 its on the right side of 0. This takes care of the condition t>0. Agreed? Maybe for now! Should.

Question: Why it does not apply at -0.

The original function evaluated at t=0 would provide for the condition (-0) = 0. This does not arise. u(t) is on at t=0. t=-0 or t<0 is not appearing as a unit step. The -0.00 + does not apply because -0.0 is out its zero, only 0.0+ for unit step when itpicks up at t=0. The function or any function f(t) at t=0 would give the function value at t=0. For t=-1 we plug-in t=-1 in the function f(t). So how do we say that (-t) = (t=0) here? The capacitor or inductor gains energy from time -t to t=0 this is the time span before the circuit switch was closed at t=0. What does it matter if it was time t=-20 seconds before the switch was closed compared to t=-1....-0.0001.....almost zero and finally 0? Not so much here because at near t=0 coming from the -ve t to t=0 what we want to evaluate is the maximum energy the capacitor or inductor had gained. And that happens just before the switch is closed at t=0. Agreed? Should. Try again? Yes. So why is that at t=0 considered an impulse function? Why would it be seen as so narrow in time and high in amplitude? The Mathematical property of the exponent. At $e^0 = 1$. So the function's other parameters will result in maximum. We get a maximum of the step function, that should mean something! Thats All. Sad but its true. Some functions may have a high spike/surge/maximum here so it should be given consideration in the sum of all things. Next we evaluate v(t) at t=0.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$$v(0) = 1 \left(\frac{1}{1-e^{\frac{-0}{R+C}}}\right) = 1 (1-e^{-0}) = 1 (1-1) = 1 (0) = 0$$
Here we got nothing, just had nothing to contribute to a impulse function.
so the answer is just the derivative term.

$$h_{v} = \frac{dv}{dt} = \left(\frac{1}{R+C}\right) \cdot e^{\frac{-(t)}{R+C}} \cdot u(t) \quad \text{Answer.}$$
Above hv same as hv of the previous example 7.12.

$$i_{z}^{I}$$

$$i(t) = \left(\frac{1}{R}\right) e^{\frac{-1}{R+C}} \quad \dots > \frac{di}{dt} = -\left(\frac{1}{R+R+C}\right) \cdot e^{-\left(\frac{1}{R+C}\right)}$$

$$e^{-\left(\frac{1}{R+C}\right)} \cdot e^{-\left(\frac{1}{R+C}\right)} \cdot u(t)$$
For t=0:

$$i(0) = \left(\frac{1}{R}\right) e^{\frac{-0}{R+C}} = \left(\frac{1}{R}\right) e^{0} = \left(\frac{1}{R}\right)$$
This need be shown as a impuse function d(t).
Because e^{0 is max for the current would be the equivalent of delta function.
Now we add the two terms for t= and t>0:

$$\frac{di}{dt} = \frac{\delta(t)}{R} - \left(\frac{1}{R^{2} \cdot C}\right) \cdot e^{-\left(\frac{O}{R+C} \cdot u(t)\right)} \cdot \frac{Answers.}{Comments: Example 7.13 needs looking deeper to get the core/crux/deep meaning of the impulse function is a derivative of the unit step PLUS don't forget to leave the f(t) at t=0 term! I don't know if that can be done by numerical evaluation without a discussion.$$

somewhere there was a break in the flow that required a discussion be presented. We know that when these types of situation like when the 'limit of t approches 0' there is a numerical gap created and to proceed with some reasoning/logical thought, that requires some insight be plugged into the solution. These are tough to solve because we have to go from automatic to manual drive. Usually do NOT happen at work you are better of making a guess, thats a joke.

Joke: If bankers or business men thought like this in their problem solving....<u>when t</u> <u>approaches 0</u>....who is going to belief them? Who is going to buy or make the sale? You smell elements of deceit....cheating...trickery....untrust worthy implications.... So maybe thats why they <u>stick to simple interest</u>. Do you speak the banking language?

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

		signal/waveform condition, but make the i response 1u(t) instead of 9u(t). Divide by 9.
i	=	$\left(\frac{1}{9}\right) \cdot 0.75 \cdot \left(1 - e^{-800 t}\right) \cdot u(t)$
di dt	=	$(-800) \cdot \left(\frac{1}{9}\right) \cdot (0.75) \ \left(-e^{-800 t}\right)$
		$(800) \cdot (0.75) = 600$
		$\frac{1}{9} \cdot 600 = \frac{200}{3}$
di dt	=	$\frac{200}{3} (e^{-800} t) \cdot u(t)$ Now place the u(t)so this derivative we know comes on when t>0 and its input amplitude is 1. This we got (di/dt) is the impulse response of that input 1u(t) into the circuit with resistors and capacitor.
		.hurdle. t goes from -0 (ie -t) to 0 we see a rise, steep slope this created an
impu What at t = here expo equa this, then differ	lse at t we g 0 its g from nentia tion a the in the w centia anatio	t=0 based on the original function. We had not gotten this yet. yot so far was the di/dt was for t>0 and starting at t=0, meaning starting going t>0 ie t positive, the downward slope. We got the impulse function di/dt of the unit step function - downward slope. This side, declining the al will decay with e^(-t). The inclining slope generates at =0 in the original n impulse function, here the definition is t approaches 0. Lets look at it like hpulse (d(t)) on the inclining slope is when t goes from negative into t=0, vay out of t=0 to t is positive is the declining slope we get from ting the original equation. This goes back to assisting further an n for the previous example. DIY? Do It Yourself. <i>Timing wise bad joke</i> . 0.75 $\cdot (1 - e^{-800 t}) \cdot u(t)$ Substitute for t=0
impu What at t = here expo equa this, then differ expla	lse at t we g 0 its g from nentia tion a the in the w centia anatio	t=0 based on the original function. We had not gotten this yet. to so far was the di/dt was for t>0 and starting at t=0, meaning starting going t>0 ie t positive, the downward slope. We got the impulse function di/dt of the unit step function - downward slope. This side, declining the al will decay with e^(-t). The inclining slope generates at =0 in the original n impulse function, here the definition is t approaches 0. Lets look at it like hpulse (d(t)) on the inclining slope is when t goes from negative into t=0, vay out of t=0 to t is positive is the declining slope we get from ting the original equation. This goes back to assisting further an n for the previous example. DIY? Do It Yourself. <i>Timing wise bad joke</i> .
impu Wha at t = here expo equa this, then differ expla	lse at t we g 0 its g from nentia tion a the in the w centia anatio	t=0 based on the original function. We had not gotten this yet. yot so far was the di/dt was for t>0 and starting at t=0, meaning starting going t>0 ie t positive, the downward slope. We got the impulse function di/dt of the unit step function - downward slope. This side, declining the al will decay with e^(-t). The inclining slope generates at =0 in the original n impulse function, here the definition is t approaches 0. Lets look at it like hpulse (d(t)) on the inclining slope is when t goes from negative into t=0, vay out of t=0 to t is positive is the declining slope we get from ting the original equation. This goes back to assisting further an n for the previous example. DIY? Do It Yourself. <i>Timing wise bad joke</i> . 0.75 $\cdot (1 - e^{-800 t}) \cdot u(t)$ Substitute for t=0
impu Wha at t = here expo equa this, then differ expla	Ise at t we g 0 its g from nentia tion a the in the w rentia anatio	t=0 based on the original function. We had not gotten this yet. tot so far was the di/dt was for t>0 and starting at t=0, meaning starting going t>0 ie t positive, the downward slope. We got the impulse function di/dt of the unit step function - downward slope. This side, declining the al will decay with e^(-t). The inclining slope generates at =0 in the original n impulse function, here the definition is t approaches 0. Lets look at it like hpulse (d(t)) on the inclining slope is when t goes from negative into t=0, vay out of t=0 to t is positive is the declining slope we get from ting the original equation. This goes back to assisting further an n for the previous example. DIY? Do It Yourself. <i>Timing wise bad joke</i> . $0.75 \cdot (1 - e^{-800 t}) \cdot u(t)$ Substitute for t=0 $0.75 \cdot (1 - e^{-800 t}) = 0.75 \cdot (1 - 1) = 0$ So no contribution here.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Next.																							
							0	al equ e by tl					d rer	nen	nbe	r it	ha	S					
								de by '					Ī										
V ₀	=	3.	•e ⁻⁸⁰	00 (0)	-		3•e	-0 =		3	Tł	nats r a	the	imp ster	uls in	e a nut	tt=	=0, ivid	it r e b		d b	е	
hv ₀	=	3 9	δ (t) =	=	1 3	$\delta(t)$,	put	/ u			<i>,</i>	• 		
V	=	3.	•e ⁻⁸⁰	00 t	u (t)		Divi	de by '	9, th	ien c	arry	on.											
V	=	3	•e ⁻⁸	300 t																			
dv dt	=	(-	-800	$) \cdot \frac{1}{3}$	_•e ⁻	-800	^t P	lace in	u(t)													
dv dt		(–	-800)• <u>1</u> 3	-•e ⁻	-800	^t •u(†	t)															
hv	=	(–	-800)• <u>1</u> 3	-•e ⁻	-800	$\frac{1}{4} + \frac{1}{3}$	δ(t)		<mark>swei</mark> at inj d ca	put		ot co u(t)	mpl into	ete the	im e ci	pul rcu	se it v	res vith	por i re:	ıse sist	of ors	;
Next.									un		puor												
i1	=	$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$	_)•(3—	e ⁻⁸⁰⁰	^{ot}).	u (t)																
Solve																							
	= ($\left(\frac{1}{4}\right)$.	(3 –	• e ⁻⁸	00 (0))	= ($\left(\frac{1}{4}\right) \cdot (3)$	— 1)		$\left(\frac{2}{4}\right)$	=	<u>1</u> 2	N	ext	div	ride	by	9				
hi _o	=	$\begin{pmatrix} 1\\ \overline{\varsigma} \end{pmatrix}$,).($\left(\frac{1}{2}\right)$	=		1 18	δt															
Conti	nued	l ne>	kt pa	ige.																			

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

		nue with the differentiation:
i1	=	$\left(\frac{1}{4}\right) \cdot \left(3 - e^{-800 t}\right) \cdot u(t)$
i1	=	$\left(\frac{1}{9}\right) \cdot \left(\frac{1}{4}\right) \cdot \left(3 - e^{-800 t}\right)$
i1	=	$\left(\frac{1}{9}\right) \cdot \left(\frac{1}{4}\right) \cdot \left(3 - e^{-800 t}\right)$
di1 dt	=	$(-800) \left(\frac{1}{9}\right) \cdot \left(\frac{1}{4}\right) \cdot -e^{-800 t}$
di1 dt	=	$(200) \left(\frac{1}{9}\right) \cdot \left(e^{-800 t}\right)$
di1 dt	=	$\left(\frac{200}{9}\right) \cdot \left(e^{-800 t}\right) \cdot u(t)$
Putti	ng the	e terms together:
hi ₁	=	$\left(\frac{200}{9}\right) \cdot \left(e^{-800 t}\right) \cdot u(t) + \left(\frac{1}{18}\right) \delta(t)$ Answer.
		s: First term does not need the impulse abbreviation d(t), only the second. ause the 2nd term was a function calculation at time t=0.
So s	pecific	ally here there is no ambiguity. Manner of speaking. The 1st term was
		ted for t>0, here the unit step function was carried to a higher level, in coefficient magnitude/value usually is, +ve or -ve. The derivative
expr	ession	carries with it the unit step spread for $t>0$ not at one specific point $t=0$
wher	e we	see a distinct impulse (column rise). You may have a better explanation.
Wha	t you	seen in 7.12, 13, and 14 were after several re-visits.
<u>7.12</u>	Sumr	mary of Step and Impulse Responses in RC and RL circuits.
		ind this in your textbook(s). It shows the circuit, next columns it shows the
	onse e	equations for unit step response and unit impulse response. Example 7.12 was
resp		RC impulse response. Schaums Outline page 157 has series and parallel

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Refer to 7.4 'Source Free RL circuit': Initial condition:
$$i(0) = A = I_0$$

 $i(t) = I_0 e^{-\left(\frac{Rt}{L}\right)}$

What was just presented (section 7.4) is stated below for the purpose of this section.

The natural response $i_h(t)$ is the solution of Ri + L(di/dt) = 0. The case with a 0 forcing function. Following an argument similar to section 7.4 we obtain:

$$i_{h}(t) = A \cdot e^{-\left(\frac{Rt}{L}\right)}$$

The solution for i_h(t) above satisfies the equation:

$$R \cdot i + L\left(\frac{di}{dt}\right) = 0$$

The forced response i_p(t) is a function which satisfies, the first equation provided in this section, for time t>0. The ONLY such function is:

$$i_p(t) = I_0 e^{st}$$

The solution for i_p(t) above satisfies the first equation:

First equation--->
$$\mathbf{R} \cdot \mathbf{i} + \mathbf{L} \cdot \left(\frac{d\mathbf{i}}{dt}\right) = V_0 e^{st} \mathbf{u}(t)$$

RHS NOT equal 0.

After substituting $i_p(t)$ in the equation above, Io = Vo / (R + Ls).

$$R(I_{0}e^{st}) + L(\frac{di}{dt}) = V_{0}e^{st}$$

$$\frac{di_{p}}{dt} = sI_{0e}^{st}$$

$$R(I_{0}e^{st}) + L(sI_{0e}^{st}) = V_{0}e^{st} \quad \text{divide by } e^{st}$$

$$R(I_{0}) + L(sI_{0}) = V_{0}$$

$$I_{0}(R + Ls) = V_{0}$$

$$I_{0} = \frac{V_{0}}{(R + Ls)}$$
So this result verifies the statement provided above.

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

This rosr	oonse works o	or is fullfilled	under the condit	ion the voltage
source is		iction, comes	on when t=0 ar	
Therefor	e expression	we seek: i(t) = $\left(\frac{V_0}{R + Ls}\right)$	$\cdot \left(e^{st} - e^{-\left(\frac{Rt}{L}\right)} \right) \cdot u(t)$
This is so	olved.			
Next we	have a 'what	if case', a sp	ecial case, for th	ne same process above.
R•i+L	$\left(\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\mathbf{t}}\right) = 0$	<	Forcing functi Force 0 result	ion here equal 0. is with <u>natural response i_h(t).</u>
R•i+L	$\left(\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\mathbf{t}}\right) = \mathbf{V}$	$v_0 e^{st} \cdot u(t) <$	Forcing functi Force exist, re	ion here on the RHS, NOT equal 0. esults with forced response i_p(t).
				xponent is the <u>same</u> as that of the environment is the same as that of the environment o
natari		() <u>(((((</u>)))))		o notos jourson nominero envaras.
			(_R)	
	$V_0 e^{st} \cdot u(t)$)>	$V_0 e^{\left(\frac{-R}{L}\right)t} \cdot u(t)$	<changed (-r="" from="" l).<br="" s="" to="">Forcing function RHS.</changed>
				<changed (-r="" from="" l).<br="" s="" to="">Forcing function RHS. <i_h(t) natural="" response<br="">unchanged</i_h(t)></changed>
	i _h (t)	>		Forcing function RHS. <i_h(t) natural="" response<br="">unchanged</i_h(t)>
On the r	i _h (t) This impac ight side of th	> cts? The forc	$A \cdot e^{\left(\frac{-R}{L}\right)t}$ ed response i_p(Forcing function RHS. <i_h(t) natural="" response<br="">unchanged (t). ht's power term is the same (-R/L).</i_h(t)>

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	$\left(\frac{-R}{L}\right)t$	(-R)	$\left(\frac{-R}{L}\right)t$	$\left(\frac{-R}{L}\right)$	t Forcing function	DUID	
		((- /	/				
R•(I ₀ •6	$\left(\frac{-R}{L}\right)^{t}$	$R \cdot \left(I_0 e^{\left(\frac{-R}{L} \right)} \right)$	$\left \right\rangle = V_0 e^{\left(-\frac{1}{2} \right)}$	$\frac{-R}{L}$ t	next divide by e∕	`(-R/L)t	
R•(I ₀)-	-R•(I ₀)	= V ₀					
0 =	V ₀	<0 is a pi Lets say	roblem. We / we found	cannot fo	orm an expression em!	n for Io.	
and we We see All we c Now for	do not hav original te lid was cha the soluti	ve a solution rm Io_e^(- ange s to -(F	n for lo on f R/L)t will no R/L) in the s a new form	the LHS. ot work. same forn n for i_p(t) = Io_t_e^(-R/L		
$i_p(t) =$	I ₀ ∙t∙e	$\left(\frac{-R}{L}\right)t$					
Differer	itiation by	multiplicatio	on:				
u =	t	$\frac{du}{dt} =$	1				
		$\frac{dv}{dt} =$	`				
d (uv) dt	= (t) • ($\left(\frac{-R}{L}\right) e^{\left(\frac{-R}{L}\right)t}$	$+ e^{\left(\frac{-R}{L}\right)t}$ (1)			
	$= e^{\left(\frac{-R}{L}\right)}$	$\cdot \left(1 - \frac{R \cdot t}{L}\right)$					
$\frac{i_p(t)}{dt}$	= 10	$e^{\left(\frac{-R}{L}\right)t} \cdot \left(1 - \frac{1}{L}\right)t}$	$-\frac{\mathbf{R}\cdot\mathbf{t}}{\mathbf{L}}\Big)\Big)$		mess in compari ubstitute this exp		
((=	R)t)	$\left(e^{\left(\frac{-R}{L}\right)t}\cdot\right)$	\mathbf{D} +) ;	(-	<u>R</u>) t		

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	ne indu	ctor is di	scharg	ing current into the RL circuit on right, in time t>0.
		D+		ession for current in the circuit on the right side for t>0.
i =	= I _C	•e L	<	Inductor current decaying since no source in circuit.
t < () I _c) =	2 A.	
R≔	100	L≔	4	$\frac{R}{L} = 25$ This is the current in the left side circuit.
i	=	2•e ⁻²⁵	A.	. This is the current in the left side circuit.
V _R	=	R∙i 100∙2•	e ⁻²⁵ •t	V. Answer.
	=	200•e ⁻	-25 • t	V. Answer.
exp this We vL i vL i	ression voltag have v s the o	above is e vR is g R, with r pposite p oltage so	s in rela oing to respect polarity	tor voltage. The resistor voltage in the ation to time t in the exponent term. Eventually o settle to 0 because of the inductor behaviour. to the polarity in the right side circuit. of vR in the right circuit.
vL			5•t V.	Answer.
	uing wi	ith <u>Solve</u>	d Probl	lem 7.5 for the same circuit and component values. 7.4 obtain pR and pL.
	= V	• i = (200•e ⁻	$(2 \cdot e^{-25 \cdot t}) \cdot (2 \cdot e^{-25 \cdot t}) = 400 \cdot e^{-50 \cdot t}$ W. Answer.
pR				

correct in that perspective. We do NOT find the power at a specific point of time, we have a general expression for t>0. These can be plotted, provided next page.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

5 0			by making t					
			re not given	2				
t=0. The inc	Juctor does i	not hold its	energy fore	ver its di	ssipated	somewhe	ere over tir	ne.
i (t < 0) =	0							
<u>0 < t < 4 m</u>	<u>s:</u>							
S1	50 ohm ●		Circ	cuit resis	stance:			
	<t<4 ms<="" td=""><td>By-passed ⊕</td><td>s2 R₀₄</td><td>₁:=50</td><td></td><td></td><td></td><td></td></t<4>	By-passed ⊕	s2 R ₀₄	₁:=50				
100V (+ 10	ductor is energised 10 ohm resistor is passed.			=0.1				
	0.1	mmm	$ au_{04}$	$\coloneqq \left(\frac{L}{R_{04}}\right)$	= 0.002	s time c	onstant.	
			$ au_{04}$	• 1000 =	2 <	in ms.		
where the in have voltag	nductor +ve e, it does ha	and -ve po ve voltage	rent. Voltage ints are shor that can be i	e exist ov ted, curi	rent passe	es thru, it	[•] does not	
where the in have voltage We may cale	nductor +ve e, it does ha culate the do	<i>and -ve po</i> ve voltage current in	rent. Voltage ints are shor that can be the circuit.	e exist ov ted, curr measure its for Io.	rent passe d. See no Not sayin	es thru, it te 1 on p g the shor	[•] does not revious pa ted inducto	ge. r is
where the in have voltag	nductor +ve e, it does ha culate the do	<i>and -ve po</i> ve voltage current in	rent. Voltage ints are shor that can be the circuit.	e exist ov ted, curr measure its for Io. ving like a	rent passe d. See no Not sayin in inductor	es thru, it te 1 on p g the shor , because	does not revious pa ted inducto at this sho	ge. r is rted
where the in have voltage We may cale	nductor +ve e, it does ha culate the do	and -ve po ve voltage	rent. Voltage ints are shor that can be i the circuit. This 2 A fi not behav point, we	e exist ov ted, curr measure its for Io. ving like a see the c	rent passe d. See no Not sayin in inductor current cha	es thru, it te 1 on p g the shor , because aracteristic	[•] does not revious pa ted inducto	ge. r is rted the
where the in have voltage We may call V _s := 100 Current i	nductor +ve e, it does ha culate the do i ₀₄ = starts from	and -ve po ve voltage current in = $\frac{V_s}{R_{04}} = 2$ 0 and rises	rent. Voltage ints are shor that can be i the circuit. This 2 A fi not behav point, we inductor c to 4 ms.	e exist ov ted, curr measure its for Io. ing like a see the c current ex	rent passe d. See no Not sayin in inductor current cha cpression u	es thru, it te 1 on p g the shor , because aracteristic	ted inducto ted inducto at this shout	ge. r is rted the
where the in have voltage We may cal V _s := 100 Current i i =	hductor +ve e, it does ha culate the do i_{04} starts from $\left(\frac{V}{R}\right) \cdot \left(1 - e^{\frac{1}{T}}\right)$	and -ve po ve voltage current in $= \frac{V_s}{R_{04}} = 2$ 0 and rises $\frac{t}{104}$	rent. Voltage pints are shor that can be i the circuit. This 2 A fi not behav point, we inductor c to 4 ms. tau_04 = 0.	e exist ov ted, curi measure its for Io. ving like a see the c current ex 002s or	rent passe d. See no Not sayin in inductor current cha pression u 2 ms	es thru, it te 1 on p g the shor , because aracteristic ising the e	ted inducto ted inducto at this shout	ge. r is rted the
where the in have voltage We may cal V _s := 100 Current i i =	hductor +ve e, it does ha culate the do i_{04} starts from $\left(\frac{V}{R}\right) \cdot \left(1 - e^{\frac{1}{T}}\right)$	and -ve po ve voltage current in $= \frac{V_s}{R_{04}} = 2$ 0 and rises $\frac{t}{104}$	rent. Voltage ints are shor that can be i the circuit. This 2 A fi not behav point, we inductor c to 4 ms.	e exist ov ted, curi measure its for Io. ving like a see the c current ex 002s or	rent passe d. See no Not sayin in inductor current cha pression u 2 ms	es thru, it te 1 on p g the shor , because aracteristic ising the e	ted inducto ted inducto at this shout	ge. r is rted the
where the in have voltage We may call V _s := 100 Current i i = i = Since we we need	nductor +ve e, it does ha culate the do i_{04} = starts from $\left(\frac{V}{R}\right) \cdot \left(1 - e^{\frac{T}{2}}\right)$ $2 \cdot \left(1 - e^{\frac{T}{2}}\right)$ continue witto know the	and -ve po ve voltage current in $= \frac{V_s}{R_{04}} = 2$ 0 and rises $\frac{t}{M_{04}}$ A. 2 is in th the circu current at	rent. Voltage ints are shor that can be i the circuit. This 2 A fi not behav point, we inductor c to 4 ms. tau_04 = 0. ms for tau, uit pass t=4 r 4 ms.	e exist ov ted, curi measure its for Io. ving like a see the c current ex 002s or (0<= t ms,	rent passe d. See no Not saying in inductor current cha pression u 2 ms <=4 ms)	es thru, it te 1 on p g the shor , because aracteristic ising the e	ted inducto ted inducto at this shout	ge. r is rted the
where the in have voltage We may call V _s := 100 Current i i = i = Since we we need	nductor +ve e, it does ha culate the do i_{04} = starts from $\left(\frac{V}{R}\right) \cdot \left(1 - e^{\frac{T}{2}}\right)$ $2 \cdot \left(1 - e^{\frac{T}{2}}\right)$ continue witto know the	and -ve po ve voltage current in $= \frac{V_s}{R_{04}} = 2$ 0 and rises $\frac{t}{M_{04}}$ A. 2 is in th the circu current at	rent. Voltage ints are shor that can be i the circuit. This 2 A fi not behav point, we inductor c to 4 ms. tau_04 = 0. ms for tau, uit pass t=4 r	e exist ov ted, curi measure its for Io. ving like a see the c current ex 002s or (0<= t ms,	rent passe d. See no Not saying in inductor current cha pression u 2 ms <=4 ms)	es thru, it te 1 on p g the shor , because aracteristic ising the e	ted inducto ted inducto at this shout	ge. r is rted the

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

. (\	$\frac{t}{R} \cdot \left(\frac{t}{1-e^{\tau_{04}}}\right) = \frac{t}{1-e^{\tau_{04}}}$ < (Initial - the decaying exponential form of current): This form 'initial - final'.
	$R^{-1} \cdot (1 - e^{-\alpha})$ Inis form 'initial - final'. Our circuit is past starting point, where this did not so
(.	much matter in terms of position in time, now we are
	looking at time t=4ms as the starting point.
	So our initial current would be from when S2 was open.
	Starts at 1.729 and decays to 0.667A.
	Our time expression for the exponent need to be
	adjusted for t0=4, so we use the form -(t-t0) which
	here it should be $-(t - 4)> e^{-(t - t0)}$.
	((t-4))
	$= (1.729 - 0.667) \cdot (e^{-\frac{(t-4)}{2}}) + 0.667$
i_eqI_grt_4	$= (1.729 - 0.667) \cdot (e) + 0.667$
	(1062) $(-(t-4)(\frac{3}{2}))$ 0667
	$= (1.062) \cdot \left(e^{-(t-4)\left(\frac{3}{2}\right)} \right) + 0.667$ = (1.062) \cdot (e^{-\left(\frac{3}{2}\right)} \cdot e^{6}) + 0.667 < splitting up the exponent term.
	= $(1.062) \cdot (e^{(27)} \cdot e^{\circ}) + 0.667 <$ splitting up the exponent term.
	$1.062 \cdot e^6 = 428.441$ numerical evaluation.
	= $428.441 \cdot e^{-\left(\frac{3 t}{2}\right)} + 0.667$ A. time t in ms, this is for t>=4ms. Answer.
	= $428.441 \cdot e^{-1} + 0.667$ A. time t in ms, this is for t>=4ms. Answer.
	Huge spike in the current.
	The time constant in the S2 open condition is much smaller in comparison to S2 closed.
That way	s how Schaums solved it.
	b a plot in the next page.
	e 2 time constants, the smaller of which may decide on the time t axis.
$\tau_{04} = 0.0$	02 $\tau_{eql_{grt_4}} = 0.000667$
clear (t)	
i ₀₄ (t) ≔:	$2 \cdot \left(1 - e^{-\left(\frac{t}{0.002}\right)}\right)$
i eal art 4	$(t) := 428.441 \cdot e^{-(1.333 \cdot t)} + 0.667$
_vqi_9i t_4	
	Commercial IIda Ant

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Lets insert i_p(t) and di_p(t)/dt in the KVL expression to solve for Io.

$$i_{p}(t) = I_{0} \cdot \cos(\omega t - \theta)$$

$$\frac{di_{p}}{dt} = ?$$

$$u = \omega t \qquad \frac{du}{dt} = \omega$$

$$y = \cos(u) \qquad \frac{dy}{du} = -\sin(u)$$

$$\left(\frac{du}{dt}\right) \left(\frac{dy}{du}\right) = \frac{dy}{dt} = \omega \cdot -\sin(u) = -\omega \cdot \sin(\omega \theta)$$

$$\frac{dI_{p}}{dt} = -\omega \cdot \sin(\omega \theta)$$

$$R(I_{0} \cdot \cos(\omega t - \theta)) + L(-\omega \cdot \sin(\omega \theta)) = V_{0}\cos(\omega \theta) = -\omega \cdot \sin(\omega \theta)$$

$$R(I_{0} \cdot \cos(\omega t - \theta)) + L(-\omega \cdot \sin(\omega \theta)) = V_{0}\cos(\omega \theta) = -\cdots \text{Here.}$$
STOP---> NOW go to Page 39 of 'Part 1B Input Output Waveform Circuiting
Prerequisites To Laplace Transforms Electric Circuits'.
? Almost There!...may need changes but should be same, results are same here.
The derivation for Io and Theta were provided there.

$$I_{0} = \frac{V_{0}}{\sqrt{R^{2} + L^{2} \cdot \omega^{2}}}$$

$$\theta = \tan^{-1}\left(\frac{L\omega}{R}\right)$$
Now the i_p(t) form of solution after substitution takes:

$$i_{p}(t) = I_{0} \cdot \cos(\omega t - \theta) = \left(\frac{V_{0}}{\sqrt{R^{2} + L^{2} \cdot \omega^{2}}}\right) \cos\left(\omega t - \tan^{-1}\left(\frac{L\omega}{R}\right)\right)$$

$$i(t) = i_{n} + i_{p}$$

$$i(t) = A \cdot e^{-\left(\frac{K}{t}\right)^{t}} + \left(\frac{V_{0}}{\sqrt{R^{2} + L^{2} \cdot \omega^{2}}}\right) \cos\left(\omega t - \tan^{-1}\left(\frac{L\omega}{R}\right)\right)$$
Next solve for A.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Next for the initial condition,
$$i(0+) = 0$$
.
 $0+$ is just past t=0, and here the response of $i(t)$ is near 0 or approximately 0.
 $i(0+) = A \cdot e^{-\left(\frac{R}{L}\right)^{1}} + l_{0} \cdot \cos(\omega t-\theta) = 0$
 $A \cdot e^{-\left(\frac{R}{L}\right)^{0}} + l_{0} \cdot \cos(\omega 0-\theta) = 0$
 $A + l_{0} \cdot \cos(-\theta) = 0$
Remember how cos(-theta) used to get fixed? See below.
 $\sin(-30) = 56.61 \text{ deg} \qquad \cos(-30) = 8.838 \text{ deg}$
Works for cosine on the right above not sine, cos(-theta) becomes cos(theta).
 $A + l_{0} \cdot \cos(\theta) = 0$
 $A = -l_{0} \cdot \cos(\theta)$
If that is what A equals in the form of the $l_{-}p(t)$ which is sinusoidal, then the final or complete solution changes to:
 $i(t) = -l_{0} \cdot \cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + l_{0} \cdot \cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - l_{0} \cdot \cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}}$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - l_{0} \cdot \cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}}$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta)$
 $i(t) = -l_{0} \cdot \cos(\omega t-\theta) - cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta) + cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\omega t-\theta) + cos(\theta) \cdot e^{-\left(\frac{R}{L}\right)^{1}} + cos(\theta) \cdot e^{-\left(\frac{R$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

A series RL circuit with $R = 50$ ohr has a sinusoidal voltage $v = 150$ s applied at t=0.						
Obtain the current for t>0.						
Solution:						
		:>0:	L (di/dt) =			
50 ohm	+			= v t + 0.785)	V.	
0.2 H			$.2\left(\frac{\mathrm{di}}{\mathrm{dt}}\right) =$			
		50 (i) + (-	$\left(\frac{1}{5}\right)\left(\frac{di}{dt}\right) =$	V		
250 (i) + $\left(\frac{di}{dt}\right)$ = 5 · v Multiply	by 5.					
250 (i) + $\left(\frac{di}{dt}\right)$ = 750 · sin (500)	•t + 0.785)	V.				
$\left(\frac{\mathrm{d}\mathbf{i}}{\mathrm{d}\mathbf{t}}\right) + 250 (\mathbf{i}) = 750 \cdot \sin(500 \cdot \mathbf{i})$	•t+0.785)	V. F	Re-arrange	ed.		
This expression or equation above	is a differ	ential equ	ation.			
It has 2 parts to its solution; natur	al and for	ed.				
Here the natural response, i_c(t) C usually they are in differential equ						
The other solution the forced resp	onse, RHS	equal the	e voltage e	xpression		
above. Its called the particular solu	ution or fo	ced solut	ion; i_p(t)	•		
$i(t) = i_{c}(t) + i_{p}(t)$						
Next, lets try to solve the different						
USING the notes we had in respon- $\left(\frac{R}{L}\right)^{t}$ = A • e	sce of RL	circuit to	sudden sir	iusoidal ex	citation.	
-(<u>··</u>)t		esponse				

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

i _h (t)	=	$A \cdot e^{-\left(\frac{50}{0.2}\right)}$).		
		$A \cdot e^{-250 t}$			
<u>d (i_h (t))</u> dt		-250 A•	e ^{-250 t}		
$\left(\frac{\mathrm{di}}{\mathrm{dt}}\right)$ + 25) (i)	= 0	RHS =	0; for ı	natural response function.
–250 A∙€	; ^{-250 t} +	250 (A•e	–250 t)	= 0	Proved it equal zero, but no solution for i_c(t) or i_h(t) till we solve for A.
Initial con	dition t	(0+) = 0			
-250 A•€	e ⁰ + 250) (A•e ⁰)	=	0	
So for the	preser	it time A i	s not de	etermir haums	en A=2, thats 500 = 500. So what is A? ined yet. s shows k instead of A, an unknown constant or real number.
Lets move	e on to	solve for f			sponse; RHS is the voltage function.
v = 150	•sin (50)0∙t + 0.7	S	olution	With this forcing function the form of n for the forced response needs to fit/ the forcing function.
		· · · · · · · · · · · · · · · · · · ·	•sin (5)	00 t)	<schaums for="" form="" i_p(t).<="" more="" suitable="" td=""></schaums>
$i_p(t) = A$	A∙cos (5	00 l) + B			This is the way of the DE coursework. I/We have to <u>apply our intuition, guess</u>
di (t)		s (500 t) + B			This is the way of the DE coursework. I/We have to <u>apply our intuition, guess</u> work, build skills, etc. Not easy.
$\frac{di_{p}(t)}{dt} =$	= A•co	s (500 t) -	+ B•sin	(500 t	This is the way of the DE coursework. I/We have to <u>apply our intuition, guess</u> work, build skills, etc. Not easy.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$\left(\frac{\mathrm{di}}{\mathrm{dt}}\right) + 250 (\mathrm{i}) = 750 \mathrm{\cdot}$	sin (500•t + 0.785) V. <expr solu</expr 	tion.
(-500 A•sin (500 t) + 50	D B∙cos (500 t)) + 250 (A∙cos (5	500 t) + B•sin(500 t))
	= 75	0∙sin (500∙t + 0.785)
RHS rework sum of sine t	erm:	
sin (500•t + 0.785)	$= \sin(500 t) \cos(0.785) + \cos(0.785)$	(500 t)•sin (0.785)
	$\cos(0.785) = 0.70$	07 sin (0.785) = 0.707
	= 0.707 • sin (500 t) + (0.707) •	cos (500 t)
750•sin (500•t + 0.785)	$= 750 \cdot (0.707 \cdot \sin(500 \text{ t}) + (0.707 \cdot \sin(500 \text{ t})) + (0.707 \cdot \sin(500 \text{ t}))) + (0.707 \cdot \sin($	707) • cos (500 t))
	= 530.3 sin (500 t) + 530.3 cos	(500 t)
	= 530.3 (sin (500 t) + cos (500	t))
Now back to our expressi	on with the updated RHS above.	
(-500 A•sin (500 t) + 50	D B∙cos (500 t)) + 250 A∙cos (50	00 t) + 250•B•sin (500 t)
	= 530.3 (sin (50	0 t) + cos (500 t))
Re-arranging for like-tern	s; RHS split for sine and cosine t	erm:
–500 A•sin (500 t) + 250 250•A•cos (500 t) + 500		in (500 t)) Equation 1 os (500 t)) Equation 2
Divide equation 1 by sin5	00t, and equation 2 by cos500t.	
	0.3 0.3 Next we solve using	matrix.
$LHS := \begin{bmatrix} -500 & 250 \\ 250 & 500 \end{bmatrix}$	$RHS := \begin{bmatrix} 530.3 \\ 530.3 \end{bmatrix} LHS^{-1} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -0.002 & 8 \cdot 10^{-4} \\ 8 \cdot 10^{-4} & 0.002 \end{bmatrix}$
$(LHS^{-1}) \cdot RHS = \begin{bmatrix} -0.424 \\ 1.272 \end{bmatrix}$	$\begin{bmatrix} 24 \\ 72 \end{bmatrix}$ A = -0.4242	B = 1.2727

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

•	A•cos (500	t) + B•sin (500	t)			
A =	-0.4242	B = 1.27	27			
$i_p(t) =$	-0.424 • cos	(500 t) + 1.273	sin (500 t)			
		e can now be fi g applications', u		ed, made useful, i ras theorem.	n terms of	
length-	vector. The m	agnitude of this	will provide the	e sine term the y- e vector length.	axis	
		$(-0.423)^2 = 1$	341			
	gle it makes w 'r and Cosine :	vith the x-axis:		1	sin theta = y/r	_
-	/ Cosine = (y		= tan	r y	cos theta = x/r tan theta = y/x	
0	. (-0.42	3) 0.001		X0		_
$\theta =$	$\operatorname{atan}\left(\frac{-0.42}{1.273}\right)$	$\frac{1}{3} = -0.321$		^ ta	n = sin / cos = (y/r) / (x/r)	_
					1 = y/x > 1/tan = x/y	
Phase a	ngle = -0.	321 in radia	n		-	
$i_p(t) \coloneqq$	1.341 • sin (50	0 t – 0.321) A		Ot in the sin term		
				e thats the fundar ncy, w = 2 Pi f, sa		
			voltage	which was given		
			or the p	problem.		
Returnii	ng to the com	plete solution:				
i (t) =	$i_h(t) + i_p$	(t)				
=	k•e ^{-250 t} -	+ 1.341 • sin (50) t-0.321)			
	e for k in the e	exponent term	ve may use the expression for it			

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	=	$i_{h}(t) + i_{p}(t)$
i (0)	=	$k \cdot e^{-250 \cdot 0} + 1.341 \cdot \sin(500 \ (0) - 0.321)$
0	=	$k \cdot e^{-0} + 1.341 \cdot \sin(-0.321)$
0	=	k + 1.341•sin (-0.321)
		$1.341 \cdot \sin(-0.321) = -0.423$
0	=	k-0.423
k	=	0.423
solu	tion, a	value for $k = 0.425$, thats because of the decimal values carried thru the all answers matched. So now we plug-in k in the expression, for the solution.
i (t)	=	$i_{h}(t) + i_{p}(t)$ OR $i_{c}(t) + i_{p}(t)$
i (t)	:=0.4	$23 \cdot e^{-250 t} + 1.341 \cdot sin(500 t - 0.321)$ A. Answer.
		the forcing function (voltage) and the response (current).
		the forcing function (voltage) and the response (current). $L := 0.2 \qquad \tau_{RL} := \frac{L}{R} = 0.004 \text{ s}$
F	R≔50	
F T	:=50 	L:=0.2 $\tau_{RL} := \frac{L}{R} = 0.004$ s
Γ τ τ	:=50 R:=50 RL2:= RL5:=	L:=0.2 $\tau_{\text{RL}} = \frac{L}{R} = 0.004 \text{ s}$ 2. $\tau_{\text{RL}} = 0.008$ $\tau_{\text{RL3}} = 3 \cdot \tau_{\text{RL}} = 0.012$ $\tau_{\text{RL4}} = 4 \cdot \tau_{\text{RL}} = 0.016$
	R := 50 RL2 := RL5 := Vhat t	L:=0.2 $\tau_{RL} := \frac{L}{R} = 0.004 \text{ s}$ 2 · $\tau_{RL} = 0.008$ $\tau_{RL3} := 3 \cdot \tau_{RL} = 0.012$ $\tau_{RL4} := 4 \cdot \tau_{RL} = 0.016$ 5 · $\tau_{RL} = 0.02$
	$R := 50$ $R_{L2} := 0$ $R_{L5} := 0$ $R_{L5} := 0$ $R_{L5} := 0$ $R_{L5} := 0$	L:=0.2 $\tau_{RL} := \frac{L}{R} = 0.004 \text{ s}$ 2. $\tau_{RL} = 0.008$ $\tau_{RL3} := 3 \cdot \tau_{RL} = 0.012$ $\tau_{RL4} := 4 \cdot \tau_{RL} = 0.016$ 5. $\tau_{RL} = 0.02$ he voltage and current is expected at time t=0.
τ τ ν ν	$R := 50$ $R_{L2} := 0$ $R_{L5} := 0$ $R_{L5} := 0$ $R_{L5} := 0$ $R_{L5} := 0$	L:= 0.2 $\tau_{RL} := \frac{L}{R} = 0.004$ s 2. $\tau_{RL} = 0.008$ $\tau_{RL3} := 3 \cdot \tau_{RL} = 0.012$ $\tau_{RL4} := 4 \cdot \tau_{RL} = 0.016$ 5. $\tau_{RL} = 0.02$ he voltage and current is expected at time t=0. = 150 \cdot sin (500 \cdot 0 + 0.785) = 106.024 = 0.423 \cdot e^{0} + 1.341 \cdot sin (500 (0) - 0.321) = -0.000106 Good as zero.
τ ν ν ί c	R := 50 $R_{L2} := 50$ $R_{L5} := 50$ $R_{L2} := 50$ $R_{L5} :=$	L:= 0.2 $\tau_{RL} := \frac{L}{R} = 0.004$ s 2. $\tau_{RL} = 0.008$ $\tau_{RL3} := 3 \cdot \tau_{RL} = 0.012$ $\tau_{RL4} := 4 \cdot \tau_{RL} = 0.016$ 5. $\tau_{RL} = 0.02$ he voltage and current is expected at time t=0. = 150 \cdot sin (500 \cdot 0 + 0.785) = 106.024 = 0.423 \cdot e^{0} + 1.341 \cdot sin (500 (0) - 0.321) = -0.000106 Good as zero.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Chapter 5 Part B. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Next we place both the current and voltage across RL, to <u>study the mathematical</u> <u>form</u> they are in. We just seen one sinusoidal forcing function and response in solved problem 7.19. Its steps may repeat for another problem, it may provide the direction on how to proceed with this solution in repsect to the x and y component.

 $i = I_0 \cdot e^{-a \cdot t} \cdot \cos(\omega \cdot t)$ <--- sinusoidal form for current

$$vRL = I_0 \cdot e^{-a \cdot t} \cdot (R - L \cdot a) \cdot \cos(\omega \cdot t) - L \cdot \omega \cdot \sin(\omega \cdot t)$$
 <---similar response form,
here a combination of
cosine and sine.

Coming from Part 1, it may be pre-mature to jump to conclusion that the solution was as it was readily available, in the same steps in the previous example. After example 6.24 in Part 1 (Waveform) we did some derivation work on the expressions, which revealed the triangle/
Pythores theorem was applicable. Now, having completed section 7.14's example, we may proceed to apply the similar steps here. It may not work hopefully it will for that damped sinusoid solution.

Applying the coefficients for the solution - as shown in figure above.

We use the coefficients of the cos and sin terms in the expression vRL, so solve for the voltage amplitude Vo and phase angle theta.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Loosely speaking not directly related to this solution, in example 7.19, Schaums used the phrase '*The method of undetermined coefficients for obtaining i_p(t)....*' So pull out your maths book and look further on the relevance of coefficients. Remember in example 7.6 we used coefficients, and that was a small complex circuit. The next step uses the information provided in the last figure.

$$V_0 = I_0 \cdot \sqrt{(R - L \cdot a)^2 + L^2 \cdot \omega^2}$$
$$\theta = \operatorname{atan}\left(\frac{L \cdot \omega}{(R - L \cdot a)}\right)$$

Satisfied so far? Some consolation does come from the previous example which had similar steps. Continuing with the remaining solution <u>as done in Part 1 B.</u>

 $I_0 := 3$ a:= 2 $\omega := 40$ R:= 5 L:= 0.1

clear (t)

Substitute in for vRL(t) and i(t):

$$vRL(t) \coloneqq I_0 \cdot e^{-a \cdot t} \cdot (R - L \cdot a) \cdot \cos(\omega \cdot t) - L \cdot \omega \cdot \sin(\omega \cdot t)$$

 $i(t) := I_0 \cdot e^{-a \cdot t} \cdot \cos(\omega \cdot t)$ <--- Expression for current we set earlier. Answer.

The general plots for voltage and current applying the values given, followed by a zoomed in plot.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

the state of the second of the second s		What we have is initial and final values under
		a voltage expression for this in exponential form.
	$\left(\begin{array}{c} -t \\ \hline \hline \end{array} \right)$	RC circuit, for t > OR t=0.
V	$= V_0 \cdot (1 - e^{RC})$	RC circuit, for t> OR t=0.
End conditio	n v_C is 25V, with the s	tart condition $v_C = 0V$.
But this exp	ression gives the decayin	ng voltage across the capacitor!
Correct.		
0	0	dition t> infinity, this will be Vo.
Initial condit	ion v(-0) = v(0+) = 0 =	• V_C(0+).
	(-t)	
Ve	$= 25 \cdot (1 - e^{10 \text{ us}})$	V, tau in microseconds so time t in the
۴C	20 (1 0)	expression is in microseconds. Answer.
The current	sought is the sum of cu	rrent in the capacitor and 10 ohm resistor:
	sought is the sum of cu	
Next on to t	he current in the Canaci	tor: i $- C_{1}(dv)$
		$r_c = C \left(\frac{dt}{dt}\right)$
		tor: $i_c = C \cdot \left(\frac{dv}{dt}\right)$
V =	23•(1-e)	
	t	
dv	$-\left(\frac{25}{10\cdot 10^{-6}}\right)e^{\frac{-t}{10 \text{ us}}}$	
=	-10.10^{-6}	
		$(25)_{2,10}^{-6}$
I _C =	(dt)	Fical calculation: $\left(\frac{25}{10\cdot 10^{-6}}\right)\cdot 2\cdot 10^{-6} = 5$
<u> </u>	$5 \cdot e^{10 \text{ us}}$ A.	
I _C =	5•e A.	
	ne 10 ohm resistor:	
Current in th		if capacitor
Current in th	stor is parallel to the 2 u	
Current in th 10 ohm resis	stor is parallel to the 2 u v _c	$\begin{pmatrix} -t \\ 10 \text{ us} \end{pmatrix}$
Current in th	stor is parallel to the 2 u $\frac{V_{C}}{10 \text{ obm}} = 25$	$\begin{pmatrix} -t \\ 1 - e^{10 \text{ us}} \end{pmatrix} = 2.5 \cdot (1 - e^{10 \text{ us}}) \text{ A.}$
Current in th 10 ohm resis	stor is parallel to the 2 u $\frac{v_c}{10 \text{ ohm}} = 25 \cdot \frac{25 \cdot c}{10}$	$\frac{-t}{1-e^{\frac{-t}{10 \text{ us}}}} = 2.5 \cdot (1-e^{\frac{-t}{10 \text{ us}}}) \text{ A.}$
Current in th 10 ohm resis i _{10ohm} =	$\frac{v_{\rm C}}{10 \text{ ohm}} = \frac{25}{25}$	$\frac{1-e^{\frac{-t}{10 \text{ us}}}}{10} = 2.5 \cdot \left(1-e^{\frac{-t}{10 \text{ us}}}\right) \text{ A.}$
Current in th 10 ohm resis i _{10ohm} =	$\frac{v_{\rm C}}{10 \text{ ohm}} = \frac{25}{25}$	$\frac{1-e^{\frac{-t}{10 \text{ us}}}}{10} = 2.5 \cdot \left(1-e^{\frac{-t}{10 \text{ us}}}\right) \text{ A.}$
Current in th 10 ohm resis i _{10ohm} =	$\frac{v_{\rm C}}{10 \text{ ohm}} = \frac{25}{25}$	$\frac{-t}{1-e^{10 \text{ us}}} = 2.5 \cdot \left(1-e^{10 \text{ us}}\right) = 5 \cdot e^{-\frac{-t}{10 \text{ us}}} + 2.5 - 2.5 e^{-\frac{-t}{10 \text{ us}}}$
Current in the formula of the formu	$\frac{v_{\rm C}}{10 \text{ ohm}} = \frac{25}{25}$	$\frac{1-e^{\frac{-t}{10 \text{ us}}}}{10} = 2.5 \cdot \left(1-e^{\frac{-t}{10 \text{ us}}}\right) \text{ A.}$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Coefficient of equation (exterv(t) not time b First order der of voltage equ Forcing function (RHS of equate this is NOT equate this is NOT equate Discussion & (We have the v solution is foc solving for the selected or im process. For in to conditions, Example, whe satisfy the equ variable it resp We have f(t), math and circe Table coming (t).	ternal to	a	>Gets to s	omething like	this> a.	v (†)	
of voltage equ Forcing function (RHS of equation this is NOT equation Discussion & (We have the vision of the vis						v (t)	
(RHS of equat this is NOT en Discussion & (We have the v solution is foc solving for the selected or im process. For in to conditions, Example, whe satisfy the equ variable it resp We have f(t), math and circl Table coming (t).		dv(t) dt					
We have the v solution is foc solving for the selected or im process. For ir to conditions, Example, whe satisfy the equ variable it resp We have f(t), math and circu Table coming (t).	ation, and	f(t)					
solution is foc solving for the selected or im process. For in to conditions, Example, whe satisfy the equ variable it resp We have f(t), math and circu Table coming (t).	Comments:						
math and circ Table coming (t).	s, and similar ien we solve quation and	requirement for a quadra	ts - seen in p tic equation	previous exam the roots nee	nples. ed to be		
(t).			v(t) so that	we get the v	_p(t) meeting		
	g up is on ho	w to manage	e f(t) by app	lying the app	ropriate v_p		
Schaums: The The table on r and what shou substitution in the entries in to a new func	next page s ould be gues in the differe	ummarises so sed for v_p(t ential equation nd the approp	ome useful t). The respo n. By a weig priate time o	onses are obta phted linear co delay, the forc	g function ained by ombination of ced response		
		be deduced	- Page 159,	table page 10	0.		

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

	> 0+.	ge over cent	red at t	=0.			
Initially a presence	25A. 0) = 1.25A. t t=0 when cc of dc voltage e continous dc	across it, for	one ins				
i(0+) = i Engineer Seem to (0), so w end point time rath (0+). Her It gave the maybe all instant is If you as	(0) which i(0) authors saying have t=0 miss e just drop the t t(0+). This b er the current nce, same saying in impression located for the devoted to co	= i(-0). g i(-0) = i(0- ing but its the ecomes t(-0) at these poi ing i(-0) = i($t=0$ dont mate eswitch mate ontact. Thats	+). te same te point t = t(0+) nts in tir 0+). tter. Ma ing cont how it is	t(0) and read but its NOT ne. Which is tter of speak act, and that	the the i(-0) = i ing it time	+10 ∨ A?	40 ohr
`	~ /						
	kt we move to	€20.					
<u>t>0:</u>	kt we move to		rcuit.				
<u>t>0:</u>	ctor has becor		rcuit.				
$t \ge 0$: The induce $i_2 (t \ge 0)$	ctor has becor = $\frac{V2}{2}$	ne a short ci 0.25 A.	rcuit.				
$t \ge 0$: The induce $i_2 (t > 0)$ Lets seque	ctor has becor = $\frac{V2}{R1}$ =	ne a short ci 0.25 A. es so far:		t > 0)			
$t \ge 0$: The induce $i_2 (t > 0)$ Lets seque	ctor has becor = $\frac{V2}{R1}$ = uence the valu	ne a short ci 0.25 A. es so far:					

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

- fraction of a second L(di/dt). See Short talk below.
- After which it turns to a short circuit. Other wise whats the role of the inductor in the circuit? Test our understanding of the subject matter? Maybe.

Let B	<u> </u>	<u>(t>0):</u>		Short talk: Voltage source being dc should not create a dv/ dt, its non varying. But when it sees the voltage the first time
В	=	i2(t>	0)	across it, it may have a knee jerk experience OR reaction OR
		2 \	ĺ.	inertial reaction OR energy disruption. Only when it realises
А	=	i (0 +	') B	its a constant dc then it turns to be a short circuit. Takes
A		•		time to get to realise its a constant dc.
	=	1.25-	-0.25	
А	=	1.00	<	-Can this be the inductor current that is a decaying
				current component in the circuit?
				Decaying because at t>0 the current has dropped from 1.25 to 0.25A.
				Yes.
				This decaying portion would have to be in exponential form,
				with the circuit time constant. See section 7.5.

Inductor circuit is in switch position 2.

$\tau_{\rm RC} = \frac{L}{R1} = 1$	5•10 ⁻⁴ Ir	fraction form	$=\frac{1}{2000}$	$-=5\cdot 10^{-4}$ $\frac{1}{\tau_{\rm RC}}$ = 2000
i _h (t) =	$Ae^{-\left(\frac{R}{L}\right)t}$	i _p (t) =	$\frac{V_0}{R}$	Review section 7.5.
i (t) =	$Ae^{-\left(\frac{R}{L}\right)t}$ +	1/		. Our $A = 1.0$ and $B = Vo/R = 0.25$.
i (t > 0) =	1.0 e ^{-2000 t}	+ 0.25 A. A	nswer.	Math been easy here, showing the reasoning may been the objective. Good example.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

-0> 0	nave the char > 0+.	nge over cent	red at t=0.			
Next just Here that	0) = 100V < very near pa voltage wou	st t=0, i.e. 0⊣ Id have to sta	itch closed on p -? rt dropping tow n we may say is	vard 50V but	J.	
v (0 + ') =	= v(0) = 10)0 V.				
		fore change c the voltage i	over from positions the same.	on 1 to 2		
v (0) =	= v(0+')	= 100 V.				
Next we n	nove to t>0.					
<u>t>0:</u>						
is opposite become a	e to 100V. Th n open circui	ion 2 is 50V. I ne Capacitor I t. We can as rom one end o	has before	- <u> </u>		vR
capacitor		end of the res re to right.	sistor.	+ Voltage opposit		vc
capacitor This equa	to the other	re to right.	sistor.	+ Voltage opposit	*	1 uF
capacitor This equa $v_2 (t > 0)$ Lets seque	to the other ls -50V. Figur = -50 ence the valu	re to right. V. ues so far:		+ Voltage opposit		t switch-over ne v-source changed in nagnitude, capacitor ma een energised for a raction of a second but
capacitor This equa $v_2 (t > 0)$ Lets seque	to the other ls -50V. Figur = -50 ence the valu	re to right. V. ues so far:	> v(t>0)	+ Voltage opposit		ne v-source changed in nagnitude, capacitor ma
capacitor This equa $v_2 (t > 0)$ Lets seque	to the other ls -50V. Figur = -50 ence the valu	re to right. V. ues so far:		+ Voltage opposit		ne v-source changed in hagnitude, capacitor ma een energised for a raction of a second but rimarily it turns to
capacitor This equal $v_2 (t > 0)$ Lets seque v (-0) = 100 We have $\frac{1}{100} = (-50)$	to the other ls -50V. Figur = -50 ence the valu > v(0) 100 150V drop fro) = 150V min	re to right. V. ues so far: -> v (0 + ') -50 om 100 to -50	> v (t > 0) 50) where did it gr	+ Voltage opposit polarity		ne v-source changed in hagnitude, capacitor ma een energised for a raction of a second but rimarily it turns to

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits oth Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

$$15 \text{ i} 1 + 5 \left(\frac{100 - 5 \cdot 11}{15}\right) + 2 \left(\frac{d11}{dt}\right) = 100$$

$$225 \text{ i} 1 + 500 - 25 \cdot 11 + 30 \left(\frac{d11}{dt}\right) = 1500$$

$$200 \text{ i} 1 + 30 \left(\frac{d11}{dt}\right) = 1000 \quad \text{divide by 30}$$

$$6.667 \cdot 11 = 33.333$$
Now the analysis is in time t>0. Here at t = infinity, dt = infinity, d1/dt approximately equal 0. The equation now at t(infinity):

$$6.667 \cdot 11 = 33.333$$

$$11 (t > 0) = \frac{33.333}{6.6667} = 5 \text{ A.}$$
Substitue 11(t>0) to solve for i2(t>0):

$$12 (t > 0) = \frac{100 - 5 \cdot (5)}{15} = \frac{75}{15} = 5 \text{ A.}$$
Alternate method to calculate the same above:
Next the circuit total resistance:

$$R_{T} := R1 + \left(\frac{R2 \cdot R3}{R2 + R3}\right)$$

$$R_{T} = 10$$
Circuit total current:

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

$$i_{T} := n + 10 \text{ Circuit total current:}$$

$$i_{T} := \frac{V_{0}}{R_{T}} = 10 \text{ A.}$$

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Engineering college year 2 course of 4 year program OR year 1 of 3 year program. Re-fresher OR Self Study. Graduate Study Review. May be used in New Zealand, US, Malaysia, India, Pakistan, UK, and other Common Wealth Country engineering colleges. Any errors and omissions apologies in advance.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

R _{eq} =	R123 =	= R13 +	- R2 = 13.3	33		
R _{eq_seen_L1} :	=13.333					
$ au_{RL} \coloneqq \frac{1}{\langle R_{eq} \rangle}$	L1 _seen_L1) = ().15 Cir	cuit time c	onstant.		
$\frac{1}{\tau_{\rm RL}} = 6.66$	7					
Next calcula	ate i1(t<0)) <u>:</u>				
<u>t<0:</u> Switch ope Inductor L1	l is short c	ircuited (Vo	o = 100V d	c).		5 ohm
i1 (t < 0) =	$\frac{V_0}{(R1 + R2)}$	_= 6.6667			-	10 ohm
i1 (t < 0) =					1000	t<0 (i1)
i1 (—0) =	i (0 + ')				-	UT THE
i1 (0 + ') =	6.6667				-	2 н З
Now solve	for comple	te current	response fo	or i1(t):		
i1 (—0)	>	i1 (0 + ')	>	i1 (t > 0)	
6.6667	>	6.6667	>	5.0 A		
decaying fr	om 6.667 1 ng current	to 5.0Å. W as A, and	e set out fi	nal current a	some curren as B=5.0A. -) = 6.6667A	
A = i1 ₀	$_{0} - B = 1.66$	67				
	(−R).		t		$e^{-6.67 t} + 5$	

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Next we tackle i2(t). It requires some re-thinking into the problem. Times like this look over or re-start from the beginning, pull out the similar steps, look for the places where there is missing values for current at specific nodes. To solve for i1(t), i1(0+) played a critical role, how do we find i2(0+)? Yes, so some back-tracking some re-thinking some review need be done. When the switch closed that was the only oppurtunity for current to enter the R3 branch. So lets look at that to get to i2(0+). The circuit just before closing the i1(0+) = 6.6667 switch. The current i1(0) appears at ~~~~ the node. OPEN R1 5 ohm Switch Ş When the switch closes, this current will run thru the R3 resistor. R2 10 ohm because there is resistance in this Voltage branch, the current has to reduce source no resistance. from 6.6667 to some value. R3 100V 10 ohm We mean the current splits at node, and portion of it flows thru R3. This current maybe lower or higher depending on resistor value. See next figure below. R12 := R1 + R2 = 15 ohm Circuit above total resistance = started at i1(0+) = 6.6667 BUT WHAT IS IT NOW AT THE So our next step is NEXT INSTANCE? closed to adjust 6.6667 as ~^^^^ it flows into the R3 R1 5 ohm circuit branch. Ş Solved! R2 10 ohm Voltage With 15 ohms at source no resistance. i1(0+) we see 100V R3 6.6667 A. 10 ohm (i2)

Chapter 5 Part B. Engineering Circuits Analysis Notes And Example Problems - Schaums Outline 6th Edition. My Homework. This is a pre-requisite study for <u>Laplace Transforms in circuit analysis</u>. Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

Seems simple enough we seek a percentage of i1(0+), this will be the current entering or seen at (0+), i.e. i2(0+). Lower than 6.6667 as the resistance is increasing by 10 ohm. Apply current division NOT simple percentage. Here R2 impacts the current in branch of R3.

i2 (0 + ') =	$\left(\frac{R2}{R12}\right) \cdot 6.6667 = 4.444$
We have the	final settling current for i2(t>0) = 5A.
Now solve for	complete current response for i2(t):
i1 (0 + 🛯)	> i2 (0 + ')> i2 (t > 0)
6.6667	> 4.4445> 5.0 A.
Final current For i2(t) the c	the current decaying from 4.4445 to 5.0A. is $B=5.0A$. decaying current A and the initial current $i2(0+) = 4.4445A$. time constant because its the same circuit when switch closed.
i2 ₀ ≔ 4.4445	B:=5.0
$A = i2_0 - $	B = -0.5555
i2(t) = A	$e^{\left(\frac{-R}{L}\right)^{t}} + \frac{V_{0}}{R} = A \cdot e^{\frac{t}{\tau_{RL}}} + B = -0.555 e^{-6.67 t} + 5A.$ Answer.
problems, no the study not	n the correct answers. This is one of the latter supplementary solution provided. Answers provided. It required going over es, examples, textbook, and circuit solving skills to get to the solution will help solve other similar problems.
	ed problem, which is the last solved problem in chapter 7. roblem will help in the signals and system course.
Most higher le circuit compo	evel electrical courses do NOT always have problems that have nent values.
One such class reflects that e	environment.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

e ² = 7.389 e	³ = 20.086				
$\left(\mathbf{e}^2 \cdot \mathbf{e}^3\right) = 148.4$	13 e ^(2 + 3)	^{>} = 148.413	<we th="" ι<=""><th>ise this property</th><th>next.</th></we>	ise this property	next.
o ^(2·3)	e ⁶ = 403.429 <-	Wrongt Not	multiplied		
c c	- 403.427 <-	wrong: Not	manplied.		
<u>t > = t' :</u>					
At t' and past t':	· · · · · · · · · · · · · · · · · · ·		×.		
When t=t' we h	ave v2 supplying	I	25	25 u (t - ť)	
25V to the capa	citor. capacitor voltage				7
dropped to som				v2	
time 0 <t<t', td="" the<=""><td>e voltage v2</td><td>-t</td><td>0</td><td>ť</td><td></td></t<t',>	e voltage v2	-t	0	ť	
supplies now ha capacitor voltag		-	۲	time of	
value, v_c_t', up				concern	-
We have t=t' w	hich <u>we just did</u>	this resulting	with vC(t'=	t) = 25 e ^-10t.	
			10 +		
		$V_{c_t'} = 25 \cdot$	e ⁻¹⁰¹¹ V. <	Covered.	
We have t>t' w	/hich can be repr	esented by (1	t - t') provide	ed t >t' but NOT	vet infinity
	pression will be:	_	-		you mining.
		V _{C_t_eq_grtr_t'}	$= 25 \cdot e^{-1}$	0 • ⟨ t – t' ⟩	
			ar (-		V
		V _{C_t_eq_grtr_t'}	$= 25 \cdot (e^{-1})$	$-e^{i\theta(t)}$	• • ·
We have t way j	past t' where t is				
adequately pass		reaching infi	nity, which r	merely is saying	time has
	past t' where t is sed far enough w	reaching infi /hereby the ca	nity, which r apacitor is fu	merely is saying Illy charged to 2	time has 5V.
adequately pass	past t' where t is	hereby the ca 25 V. No I	nity, which r apacitor is fu onger needi	merely is saying ully charged to 2 ng an exponenti	time has 5V.
adequately pass Here we have:	past t' where t is sed far enough w v _{C_t_infinity} =	reaching infi /hereby the ca 25 V. No I its a	nity, which r apacitor is fu onger needi a flat constar	merely is saying ully charged to 2 ng an exponenti	time has 5V.
adequately pass Here we have:	past t' where t is sed far enough w v _{C_t_infinity} = em up for t=t' ai	reaching infi /hereby the ca 25 V. No I its a nd t>t' and t-	nity, which r apacitor is fu onger needi a flat constar	merely is saying ully charged to 2 ng an exponenti	time has 5V.
adequately pass Here we have:	past t' where t is sed far enough w v _{C_t_infinity} =	reaching infi /hereby the ca 25 V. No I its a nd t>t' and t-	nity, which r apacitor is fu onger needi a flat constar	merely is saying ully charged to 2 ng an exponenti	time has 5V.
adequately pass Here we have: Now lets add th V _{c_t'}	past t' where t is sed far enough w $V_{C_t_infinity} =$ em up for t=t' an = 25 · e ⁻¹⁰	tereaching infi /hereby the ca 25 V. No I its a nd t>t' and t- t V.	nity, which r apacitor is fu onger needi a flat constar > infinity:	merely is saying ully charged to 2 ng an exponenti	time has 5V.
adequately pass Here we have: Now lets add th	past t' where t is sed far enough w $V_{C_t_infinity} =$ em up for t=t' an = $25 \cdot e^{-10}$	reaching infi /hereby the ca 25 V. No I its a nd t>t' and t-	nity, which r apacitor is fu onger needi a flat constar > infinity:	merely is saying ully charged to 2 ng an exponenti	time has 5V.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

(2)	= 0.5 • 10 ⁻⁶	W _C	=	$\left(\frac{1}{2}\right) \mathbf{C} \cdot \mathbf{v}_{\mathrm{C}}^{2}$	= C).5•10 ⁻⁶	• (3 e ^{200 t} -	-1) J
Expressic	n in uJ: v	√ _C (t):=0.5•((3 e ^{-200 · 1}	^t – 1) ² uJ	My Ans	swer.		
Schaums	Answer: v	v _C (t)≔1.25•	(3 e ⁻²⁰⁰	$(t-1)^2$ mJ	Schau	ms Answ	/er <	
	You should here provide I once got t the correct I leave the Condition as R and C see	tead of mJ. He be able to get ed Schaums A o Schaums an units mJ. I kne final decision v s in 7.22 at tin ems to have t< energy for t<0	the <u>corre</u> nswer is a swer <u>with</u> ew expon with you a ne t=0 sw o taken i	ect answer f correct. <u>nout</u> the <u>squ</u> ents were t and your loo vitch positio into accoun	having g <u>uare</u> on ricky I g cal engin n to 2. t for t=0	the last te gave it and neer/instru The v exp	hints erm and other go. uctor. ression for	need
Resistor:							×2	
	p =	= V•i	i =	<u>v</u> R	p =	= v• <u>v</u> R	$=\frac{v}{R}$	
	v _R (t) =	$= V \cdot i$ $= \int_{0}^{t} \left(\frac{V_{R}^{2}}{R}\right)^{0} + \frac{1}{R} \int_{0}^{t} \left(V_{F}^{2}\right)^{0} + \frac{1}{R} \int_{0}^{t} \left($	dt O	ver a perio	od of ti	me t.		
	v _R (t) =	$= \frac{1}{R} \int_{0}^{1} \left(v_{F} - 150 \cdot e^{-200} \right)^{1} dv_{F}$	²)dt	Do we n No we h	eed to ave t in	take the general	integral ov not t=3s s	ver time t? specific.
	V _R ² =	= (-150•e ⁻²	^{00•t}) (-1	50•e ⁻²⁰⁰ •	^t)			
	2	= 22.5 • 10 ³ (e ^{-400 • 2 t})				
	V _D =				-400•2 t	My An:	swer.	
W _R		$\frac{22.5 \cdot 10^3}{5000}$	e	= 4.5 e		iviy / (ii		
w _R				= 4.5 e				۲ <

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

				<u>n 7.</u>																							
Th	ne ta	abl	e fo	r ste	ep a	nd	inp	ut	resp	oor	ise	of	RL	an	d R	2C (circ	uits	s pi	°OV	ide	d o	n l	ast	ра	ge.	
It Sc	was hai	s Ie Ims	ii 0 ; na	ut fo ge 1	л у 57	טע in s	io (sect	jet tion	11 TI 7 1	on 12	n y SF	our F I	te NF)	מזx ד)		(, 11 3F	is p	0.0/	VIDE	ea l	ier	e ti	on	1			
00	inac		, pu	ge i	07			.101		12.	01				7.00	,											
Fr	nd o	f C	han	ter [·]	7 Fi	rst-	Orc	ler	Circ	- Luit	ts ((Scl	hai	Ims	3												
		10	nup		, , , ,	151			One	Jun	15 (<i>,</i> ,,.												
Ne	ext	to	Cha	oter	8 F	ligh	ner-	Ord	der	Cir	cui	its .	anc	1 Co	om	olez	x F	req	uei	псу							
Fo	or al	l ai	ny a	ny e	erro	rs a	and	on	niss	ion	is a	ро	log	ies	in	adv	/an	ce.									

My Homework. This is a pre-requisite study for Laplace Transforms in circuit analysis.

Source of study material: Electric Circuits 6th Ed., Nahvi & Edminister. Engineering Circuit Analysis, Hyatt & Kimmerly 4th Ed. McGrawHill. Karl S. Bogha.

