
Let's demonstrate this via a simple example

For convenience, we will refer to a nested array of three matrices or vectors as a mesh and the higher level nested
array as a mesh collection or mesh set.

As we shall shortly see, these descriptions are not quite accurate, in that both functions actually return a doubly
nested array, with the first level of nesting containing a single array that contains the 'actual' nested array.

The brackets indicate optional arguments; the Mathcad Help gives the default values.

CreateSpace(function, [t0, t1], [tgrid], [fmap]) Returns a nested array of three vectors representing the x, y,
and z-coordinates of a parametric space curve defined by the function of one variable in the first argument.

CreateMesh(function, [s0, s1, t0, t1], [sgrid, tgrid], [fmap]) Returns a nested array of three matrices
representing the x, y, and z-coordinates of a parametric surface defined by the function of two variables in the
first argument.

Mathcad has a number of functions that create data for use within the 3D Plot component. The 2 principle functions
are CreateMesh and CreateSpace:

Mathcad 3D Plot Data Structure

The Data Structure

The starting point for the worksheet is to determine the data structure that the Mathcad equivalent functions will use.

plottools emulation

What exactly is being plotted up there? Why are there three points? To what do those three points
correspond? How can I plot a single point in space?

p
0

p
1

 p
2

 p

Two attempts at plotting the point:

p

0.989

0.091

0.119

The x, y, and z coordinates of a point:

As can be seen from the shape of the meshes, does indeed nest the 'nested' array. In the top pair of plots, the
nested meshes and plain meshes give the same display when plotted individually. From this alone, it would seem
there is little benefit in having the extra layer of nesting. The advantage of this struture can be seen from the
behaviour of the composite arrays, where we've simply stacked the arrays together. The left hand plot of the bottom
pair gives the same display as the separate collections, but the right hand plot treats them as 6 separate z arrays.

ac0ac0ac

Composite meshes

aa0 ab0aa ab

Individual meshes

Plot the meshes

ac0
T

{4,4} {4,4} {4,4} {4,4} {4,4} {4,4} ac
T

{3,1} {3,1}

aa0
T

{4,4} {4,4} {4,4} aa {3,1}

Examine the shape (dimensions) of the meshes

ac0 stack aa0 ab0 ac stack aa ab

Stack the meshes to create composite meshes

ab0 ab
0

ab CreateMesh sincos 2 1 2 1 4 4

aa0 aa
0

aa CreateMesh sincos 1 1 1 1 4 4

Unnest the first level to get the meshesCreate 2 meshes at different parts of the x-y plane

sincos x y sin x cos y

Define a function

The first plot, shows all four meshes individually coloured. The yellow and blue meshes (aa and ac) are effectively

j3 adj2 ab adj2aa ab ac ad

plot all 4 meshesj3 stackmesh3 aa ac ab j2 stackmesh aa ac

ad CreateMesh sincos 2 1 1 2 4 4

create 2 additional meshesac CreateMesh sincos 1 3 1 1 4 4

Example:

augmentmesh4 a b c d augmentmesh a augmentmesh b augmentmesh c d

augmentmesh3 a b c augmentmesh a augmentmesh b c

augmentmesh a b

augment a
0

b
0

augment a

1
b
1

augment a

2
b
2

IsScalar a
0
0 0

if

augmentmesh a b

otherwise

stackmesh4 a b c d stackmesh a stackmesh b stackmesh c d

stackmesh3 a b c stackmesh a stackmesh b c

stackmesh a b

stack a
0

b
0

stack a

1
b
1

stack a

2
b
2

IsScalar a
0
0 0

if

stackmesh a b

otherwise

To do this, we create 2 functions, stackmesh and augmentmesh, that combine 2 meshes, a,b, into a single mesh in
a manner analogous to their array counterparts. Unfortunately, another limitation of Mathcad is that user functions
cannot have variable length argument lists, so that, unlike Mathcad's built-in function stack, we cannot simply write
stackmesh(a,b,c) to combine 3 meshes, but must write stackmesh(a,stackmesh(b,c)); as a slight aid, we define
specific functions, stackmesh3/augmentmesh3 and stackmesh4/augmentmesh4, that allow 3 or 4 meshes to be
combined in a single call. However, the use must exercise caution to ensure that it makes sense to join meshes in
such a fashion, as one of the examples below will indicate.

Some of the objects we will create below comprise many meshes, which makes manually setting the plots a
time-consuming and error-prone task. One way of simplying matters is to join meshes together to create single
mesh rather than simply stacking meshes as above.

Mathcad's 3D plot component has several disadvantages, some of which are based on the default settings it applies
to each subplot. The 3D plot component creates a separate subplot ('Plot') for each mesh or z-array. However, it
applies an unfilled simple line mesh appearance to each plot by default. If the user wants to change the
appearance of the Plots, then they have to manually change each plot.

Joining meshes

To retain compatibility with the existing Mathcad plot functions and 3D component, we will retain the mesh
collection as the data structure for the plottool emulation.

continuous and may be joined, as shown in the second and third plots, where the joined mesh only uses one Plot
tab in the 3D component.

However, the fourth plot shows that it is not reasonable to join every adjoining mesh due to the way the 3D plot
component interprets the data. In this instance, it draws a surface between the last edge of j2 and the first edge of
ab, which is not what is desired.

zmesh(zmat,xvec,yvec): generates a 3D plot's x and y matrices from a z matrix (zmat), given the x and y axis
vectors (xvec and yvec) as inputs and returns the result as a meshset.

zmesh zmat xvec yvec M
0

xvec fillint rows zmat IsScalar xvec if

repcol xvec cols zmat

M
1

yvec fillint cols zmat IsScalar yvec if

reprow yvec rows zmat

M
2

zmat

M

reprow

zmeshlim(xvec,yvec,zmat): generates a 3D plot's x and y matrices from a z matrix (zmat), given the min/max values
for the x and y axes and returns the result as a meshset.

zmeshlim zmat xmin xmax ymin ymax xvec 0 xmin xmax=if

linspace xmin xmax rows zmat otherwise

yvec 0 ymin ymax=if

linspace ymin ymax cols zmat otherwise

zmesh xvec yvec zmat

zmesh

mesh2xyz(M): converts the meshes within a meshset into an equivalent nested array of (x,y,z) vectors.

mesh2xyz M
mesh Mk

x y z mesh
0

mesh
1

mesh
2

vi j stack xi j yi j zi j

j 0 cols x 1for

i 0 rows x 1for

xyzk v

k 0 last M for

xyz

 mesh2vec M mesh2xyz M

xyz2mesh(N): converts a nested array of (x,y,z) vectors into an equivalent meshset.

xyz2mesh N
vecarray Nk

xi j yi j zi j v vecarrayi j

v
0

v
1

v
2

j 0 cols vecarray 1for

i 0 rows vecarray 1for

meshsetk x y z T

k 0 last N for

meshset

Limits(M): returns a 3x2 matrix with the first column containing the minimum values of
the meshset M's x,y,z values and the second column the maximum values.

Limits M maxd mind T T

mesh Mk

maxd
2

if max mesh
0 maxd

2
 max mesh

0 maxd
2

mind
2

if min mesh
0 mind

2
 min mesh

0 mind
2

rows mesh 1=if

maxdd if max meshd maxdd max meshd maxdd

mindd if min meshd mindd min meshd mindd

d 0 2for otherwise

k 0 last M for

augment mind maxd

Plottool Function Equivalents

line2vec lin lin lin
0

v stack lin
0
0

lin
1
0

 lin
2
0

w stack lin
0
1

lin
1
1

 lin
2
1

v w T

Rotation

The Maple function rotate operates on Maple's 2D and 3D data structures and accepts several forms of argument; of
particular interest to us are the 3D forms.

rotate(M,q,f,r)
rotate(M,q,p1,p2)

where M is a 3D data structure, q,f,r are angles and p1,p2 are 3D points. In the first form, the angles q,f,r represent
rotation around the x-axis (roll), y-axis (pitch) and z-axis (yaw) respectively, ie, a combined rotation of M around the
origin. In the second form, p1 and p2 define a vector around which M is rotated by q.

We shall implement rotate as three related functions that: iterate through a mesh collection, apply a rotation to a
mesh and generate a rotation matrix, respectively.

Function R3

R3 takes 3 arguments, f,q,y, and returns a 3D rotation matrix.

If q is an array, then if y is zero then R3 assumes q is a mesh representing a line, otherwise it assumes both q
and y are vectors and that they represent two points on the line about which it will generate a rotation through an
angle f.

Otherwise R3 assumes they are the axis rotation angles.

R3

line2vec 0=if

v

a b c v
T

c s cos sin

1 c
a
2

b a

c a

a b

b
2

c b

a c

b c

c
2

c

c s

b s

c s

c

a s

b s

a s

c

IsArray if

c c c cos cos cos

s s s sin sin sin

c c

c s

s

c s s c s

c c s s s

c s

s s c c s

c s s c s

c c

otherwise

Function rotatemesh

rotatemesh takes 4 arguments, mesh,q,f,r, and applies R3 to each element of mesh.

rotatemesh mesh R R3

x y z mesh
0

mesh
1

mesh
2

nrows rows x

ncols cols x

xi j yi j zi j v xi j yi j zi j T

R v
T

IsArray if

R v T otherwise

j 0 ncols 1for

i 0 nrows 1for

x y z T

Function rotate

rotate is the Maple plottool function equivalent. It takes 4 arguments, mesh,q,f,r, and rotates them as per R3.

rotate meshset rotatemesh meshset return cols meshset
0 1if

meshk rotatemesh meshsetk

k 0 last meshset for

mesh

rotatev meshset v rotate meshset v
0

 v
1

 v
2

Reflection

The Maple function reflect also operates on Maple's 2D and 3D data structures and accepts several forms of
argument; of particular interest to us are the 3D forms.

reflect(M,p1)

reflect(M,p1,p2)
reflect(M,p1,p2,p3)

where M is a 3D data structure and p1,p2,p3 are 3D points. In the first form, M is reflected about the point p1, in
the second form, p1 and p2 define a line around which M is reflected and, in the final form, p1,p2 and p3 define a
plane in which M is reflected (more accurately, p1&p2 and p1&p3 define 2 lines which in turn define the plane)..

We shall implement rotate as three related functions that: iterate through a mesh collection, apply a rotation to a
mesh and generate a rotation matrix, respectively.

Function reflect3

reflect3 takes 3 arguments,u,v,w, (all 3D points, u being common to the 2 plane-defining lines) and returns a
3D reflection matrix.
reflect3 u v w ureturn IsScalar v if

v u

v u
return IsScalar w if

p v u

q w u

p q

p q

Function reflectmesh

reflectmesh takes 4 arguments, mesh,u,v,w, and applies reflect3 to each element of mesh.

reflectmesh mesh u v w R reflect3 u v w

x y z mesh
0

mesh
1

mesh
2

xi j yi j zi j s xi j yi j zi j T

p R IsScalar v if

p s R R IsScalar w if

p s s R R otherwise

otherwise

2p s T

j 0 cols x 1for

i 0 rows x 1for

x y z T

Function reflect

reflect is the Maple plottool function equivalent. It takes 4 arguments, mesh,q,f,r, and reflects them as per
reflect3.

reflect mesh u v w reflectmesh mesh u v w return cols mesh
0 1if

meshk reflectmesh meshk u v w

k 0 last mesh for

mesh

Translation

The Maple function translate operates on Maple's 2D and 3D data structures and accepts several forms of
argument; of particular interest to us is the 3D form.

translate(M,Dx,Dy,Dz)

where M is a 3D data structure, and Dx,Dy,Dz are distances to move the M in each of the 3 axes.

norm x n x

As an aside, Maple's norm(x,2) applied to a vector returns the vector's magnitude.

Miscellaneous

scalev mesh v scale mesh v
0

 v
1

 v
2

scale mesh u v w scalemesh mesh u v w return cols mesh
0 1if

meshk scalemesh meshk u v w

k 0 last mesh for

mesh

scale is the Maple plottool function equivalent. It takes 4 arguments, mesh,x,y,z and reflects them as per
scalemesh.

Function scale

scalemesh mesh x y z mesh stack x y z

scalemesh takes 4 arguments, mesh,x,y,z, and multiplies the first element (array) of mesh by x, second by y
and the third by z.

Function scalemesh

We shall only implement the first form of scale and do that as two related functions that: iterate through a mesh
collection, and scale a mesh, respectively.

where M is a 3D data structure, and sx,sy,sz are scaling factors to apply to M in each of the 3 axes, and [x,y,z] are
the co-ordinates that specify a point to re-scale about. Note that the first form scales about the origin.

scale(M,sx,sy,sz)
scale(M,sx,sy,sz,[x,y,z])

The Maple function scale operates on Maple's 2D and 3D data structures and accepts several forms of argument; of
particular interest to us are the 3D forms.

Scaling

translatev mesh v translate mesh v
0

 v
1

 v
2

translate mesh x y z translatemesh mesh x y z return cols mesh
0 1if

meshk translatemesh meshk x y z

k 0 last mesh for

mesh

translate is the Maple plottool function equivalent. It takes 4 arguments, mesh,x,y,z and reflects them as per
translatemesh. translatev is a variant that takes a 3-vector as an argument instead of individual co-ordinates.

Function translate

translatemesh mesh x y z mesh
0

x mesh
1

y mesh
2

z T

translatemesh takes 4 arguments, mesh,x,y,z, and adds x to the first element (array) of mesh, y to the
second and z to the third.

Function translatemesh

We shall implement translate as two related functions that: iterate through a mesh collection, and translate a mesh,
respectively.

Function line
point is the Maple plottool function equivalent. It takes 3 arguments, x,y,z , the 3D co-ordinates of point, and
creates a mesh representing that point. pointv is a variant that takes a 3-vector (representation of a point);
vec2pt is an alias for pointv. The inverse function of pointv is pt2vec

point a b c x
0

y
0

z
0 a b c

p
0

x y z T

p

 pointv v x
0

y
0

z
0 v

0
v
1

v
2

p
0

x y z T

p

 vec2pt v pointv v

pt2vec pt pt pt
0

stack pt
0

pt
1

 pt
2

line is the Maple plottool function equivalent. It takes 2 arguments, a,b , a pair of 3D vectors, and creates
mesh representing a line segment between a and b.

line a b ab augment a b T

ln
0

ab
0

ab
1

ab
2 T

ln

polygon(p,n,s) returns a polygon of order n lying in the xy plane, centred at p and of radius (scale) s

polygon p n s p stack p p p IsScalar p if

2

n

xk cos k

yk sin k

zk 0

k 0 nfor

poly
0

s x p
0

 y p
1

 z p
2

 T

poly

rectange(p1,p2,s) returns a rectangle lying between points p1 and p2, scaled by s

rectangle p1 p2 s s

p1
0

p2
0

p1
0

p2
0

p1
1

p1
1

p2
1

p2
1

p1
2

p1
2

p2
2

p2
2

T

square(p,s) returns a square lying in the xy plane, centred at p and of radius (scale) s

square p s p stack p p p IsScalar p if

rectangle p stack 1 1 0 p stack 1 1 0 s

cuboid(p1,p2,s) returns a cuboid lying between points p1 and p2, scaled by s

cuboid p1 p2 s s stack s s s rows s 0=if

pa stack 0 0 0

pb p2 p1

sqa

pa
0

pb
0

pb
0

pa
0

pa
0

pa
1

pa
1

pb
1

pb
1

pa
1

pa
2

pa
2

pa
2

pa
2

pa
2

T

sq1 augmentmesh sqa translatev sqa stack 0 0 pb
2

sq

pa
0

pb
0

pb
0

pa
0

pa
0

pa
1

pa
1

pa
1

pa
1

pa
1

pa
2

pa
2

pb
2

pb
2

pa
2

T

sq2 augmentmesh sq translatev sq stack 0 pb
1

 0

translatev scalev augmentmesh sq1 sq2 s p1

 Because of the way the
plot component draws, a
cuboid is made up of 2
hollow cuboids, with the
second rotated to cover the
hole in the first. The order
of sides is important to
avoid cross-over diagonals.

cube(p,s) returns a cube aligned with the xyz axes, centred at p and of radius (scale) s

cube p s translatev cuboid stack 1 1 1 stack 1 1 1 s p

BoundingBox(M,s) returns a cuboid lying between the limits of M, scaled by s

BoundingBox M s lim Limits M

cuboid lim
0

1.1 lim
1 s

 a cleverer version might shear or rotate the
bounding box to lie closer to the true bounds

BoundingCube(M,s) returns a cube lying, completely bounding M and scaled by s

BoundingCube M s ones stack 1 1 1

lim Limits M

maxd mind max lim min lim

maxd mind maxd ones mind ones

cuboid lim
0

lim
1 s

cylinder(p,r,h) returns a cylinder of radius and height h, aligned along the z-axis with a base at the origin.

cylinder p r h p stack p p p IsScalar p if

N 32

xk r cos k
2

N

yk r sin k
2

N

zk 0

k 0 Nfor

v
0

x y z T

v augmentmesh v translatev v stack 0 0 h

translatev v p

plottools emulation

pt vec2pt p plot below shows a line passing through point p

scl 1.6

ln line scl p scl p

pt ln

pt

0.989
0.091
0.119

 ln

1.582

1.582

0.146

0.146

0.19

0.19

aa {3,1}

j3

identity 1 1

testmesh zmesh fillmat 2 2 0 0 fillmat

testmesh testmesh

id identity 2

a
0

a
1

a
2 id id id

a

{3,1}

mesh2xyz testmesh testmesh

xyz2mesh mesh2xyz testmesh testmesh

testing

Limits testmesh testmesh

translate testmesh 1 2 3 testmesh

translatev testmesh stack 1 1 1 testmesh

scale testmesh 1 2 3 testmesh

identity 1 1

point 1 2 3 {3,1} pointv stack 1 2 3 {3,1}

pt2vec point 1 2 3 T 1 2 3

line stack 1 2 3 stack 3 2 1 0
0

1

3

identity 1 1

p1 stack 1 1 1 p2 stack 2 2 2

s 1

line2vec line stack 1 2 3 stack 3 2 1 {3,1}

{3,1}

rectangle p1 p2 s {3,1}

cuboid p1 p2 s s stack s s s rows s 0=if

sqa

p1
0

p2
0

p2
0

p1
0

p1
0

p1
1

p1
1

p2
1

p2
1

p1
1

p1
2

p1
2

p1
2

p1
2

p1
2

T

sq1 augmentmesh sqa translatev sqa stack 0 0 p2
2

p1
2

sq

p1
0

p2
0

p2
0

p1
0

p1
0

p1
1

p1
1

p1
1

p1
1

p1
1

p1
2

p1
2

p2
2

p2
2

p1
2

T

sq2 augmentmesh sq translatev sq stack 0 p2
1

p1
1

 0

scalev augmentmesh sq1 sq2 s

cuboid zero stack 0 0 0 one stack 1 1 1 1 cuboid zero one 0.5 cuboid one two stack 2 2 2 1

identity 1 1

cuboid one two 0.5

