Piping-System Solutions Using Mathcad NOMENCLATURE

C equivalent lengths for minor loss coefficient
D pipe diameter
f Darcy friction factor
ft fully-rough friction factor
$g=32.174 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$ acceleration of gravity
gc conversion factor (English Engineering units), $g_{c}:=32.174 \frac{f t \cdot l b m}{l b f \cdot \sec ^{2}}=1 \quad(32.174 \mathrm{ft}-\mathrm{lbm} / \mathrm{lbf}-\mathrm{sec} 2)$
hd head change due to a pump, turbine, or other active device
K minor loss coefficient expressed as a number
L pipe length
N number of pipes, connection matrix
P pressure
Q flow rate
Re Reynolds number, VD/n
\checkmark velocity
Ws pump increase in head

- elevation
$\gamma \quad$ specific weight, $\gamma:=\rho \cdot g$
$\varepsilon \quad$ absolute roughness of pipe, $\varepsilon:=0.045 \mathrm{~mm}$, steel pipe
μ viscosity, $\mu_{w}:=0.01$ poise $=0.000672 \frac{\mathrm{lbm}}{f t \cdot \sec }$, water at 20 deg centigrade
$\nu \quad$ kinematic viscosity, $\frac{\mu}{\rho}, \nu:=\frac{\mu_{w}}{\rho}=\left(1.077 \cdot 10^{-5}\right) \frac{f t^{2}}{s}$
ρ density, $\rho \equiv 62.4 \frac{\mathrm{lbm}}{\mathrm{ft} t^{3}}$

Subscripts

a upstream location
b downstream location
elbow elbow
ent entrance
exp expansion
gv gate valve
1 arbitrary pipe in a pipe network
i counter
1 pipe 1
2 pipe 2
3 pipe 3
no matter how complex the piping system, the basis of all analysis and design calculations for piping systems is the energy-equation applied over a segment of a pipe. Consider, for example, a portion of a series-piping segment as illustrated schematically in Figure 1. If the flow is from " a " to " b," then the energy equation becomes

Figure 1 General piping system schematic.

$$
\begin{equation*}
\frac{P_{a}}{\gamma}+\frac{V_{a}^{2}}{2 \cdot g}+z_{a}=\frac{P_{b}}{\gamma}+\frac{V_{b}}{2 \cdot g}+z_{b}+\sum_{i=1}^{N} \frac{8 \cdot Q^{2}}{\pi^{2} \cdot g \cdot D_{i}^{4}} \cdot\left(f_{i} \cdot \frac{L_{i}}{D_{i}}+K_{i}+C_{i} \cdot f_{T_{i}}\right)-W_{s} \cdot \frac{g_{c}}{g} \tag{1}
\end{equation*}
$$

It's instructive here to investigate the unit balance of this equation. Ascribe values with units:

$$
\begin{array}{ll}
f_{T}(D):=\frac{0.3086}{\log \left(\left(\frac{\varepsilon}{3.7 \cdot D}\right)^{1.11}\right)^{2}} & f\left(V_{a}, D_{1}\right)=0.019 \\
& f_{T}\left(D_{1}\right)=0.017
\end{array}
$$

$\frac{\left[\begin{array}{l}P_{a} \\ P_{b}\end{array}\right]}{\gamma}=\left[\begin{array}{l}34.615 \\ 23.077\end{array}\right] f t \quad \frac{\left[\begin{array}{l}V_{a}{ }^{2} \\ V_{b}{ }^{2}\end{array}\right]}{2 \cdot g}=\left[\begin{array}{l}1.554 \\ 3.497\end{array}\right] f t \quad\left[\begin{array}{l}z_{a} \\ z_{b}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right] f t \quad \sum_{i=1}^{3} \frac{8 \cdot Q^{2}}{\pi^{2} \cdot g \cdot D_{i}^{4}} \cdot\left(f\left(V_{a}, D_{i}\right) \cdot \frac{L_{i}}{D_{i}}+K_{i}+C_{i} \cdot f_{T}\left(D_{i}\right)\right)=45.361 f t$
The paper assumed: $\quad P_{a}=P_{b}, V_{a}=0, \quad$ and $\quad \frac{V_{b}^{2}}{2 g}=\frac{8}{\pi^{2}} \frac{Q^{2}}{g D_{3}^{4}}$
Then:

$$
\begin{array}{rlr}
W_{s} \frac{g_{c}}{g}= & z_{b}-z_{a}+\frac{8}{\pi^{2}} \frac{Q^{2}}{g D_{1}^{4}}\left[0.5+60 f_{T_{1}}+f_{1} \frac{L_{1}}{D_{1}}\right] & \text { Then for unit balance: } \\
& +\frac{8}{\pi^{2}} \frac{Q^{2}}{g D_{2}^{4}}\left[9+f_{2} \frac{L_{2}}{D_{2}}\right] & W_{s}:=\frac{g}{g_{c}} \cdot z_{a}=64.348 \frac{\mathrm{ft}^{2}}{\mathrm{sec}^{2}}
\end{array}
$$

$$
+\frac{8}{\pi^{2}} \frac{Q^{2}}{g D_{3}^{4}}\left[1.0+55 f_{T_{3}}+f_{3} \frac{L_{3}}{D_{3}}\right]
$$

But W_{s} is pump increase in head

$$
\begin{aligned}
& \text { Approximately water } \quad\left[\begin{array}{c}
P_{a} \\
P_{b}
\end{array}\right]:=\left[\begin{array}{l}
15 \\
10
\end{array}\right] \cdot p s i \quad\left[\begin{array}{l}
V_{a} \\
V_{b}
\end{array}\right]:=\left[\begin{array}{l}
10 \\
15
\end{array}\right] \cdot \frac{f t}{s e c} \\
& D:=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right] \cdot \text { in } \quad Q:=50 \mathrm{gpm} \quad L:=\left[\begin{array}{c}
10 \\
5 \\
20
\end{array}\right] \cdot f t \quad\left[\begin{array}{l}
z_{a} \\
z_{b}
\end{array}\right]:=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \cdot f t \quad 0.3086 \quad \text { ORIGIN } \equiv 1 \\
& i:=1 . .3 \quad K_{i}:=1 \quad C_{i}:=0.5 \\
& f(V, D):=\text { if }\left(\frac{\rho \cdot V \cdot D}{\mu_{w}}<2100, \frac{64 \cdot \mu_{w}}{\rho \cdot V \cdot D}, \frac{0.3086}{\log \left(\frac{6.9 \cdot \mu_{w}}{\rho \cdot V \cdot D}+\left(\frac{\varepsilon}{3.7 \cdot D}\right)^{1.11}\right)^{2}}\right) \\
& v v:=1 \frac{f t}{\min }, 2 \frac{f t}{m i n} . .1000 \frac{f t}{m i n}
\end{aligned}
$$

Start again

$$
\begin{aligned}
& \frac{P_{a}}{\gamma}+\frac{V_{a}{ }^{2}}{2 \cdot g}+z_{a}=\frac{P_{b}}{\gamma}+\frac{V_{b}{ }^{2}}{2 \cdot g}+z_{b}+\sum_{i=1}^{N} \frac{8 \cdot Q^{2}}{\pi^{2} \cdot g \cdot D_{i}{ }^{4}} \cdot\left(f_{i} \cdot \frac{L_{i}}{D_{i}}+K_{i}+C_{i} \cdot f_{T_{i}}\right)-W_{s} \cdot \frac{g_{c}}{g} \\
& \gamma=\rho \cdot g \quad \text { multiply through by } \gamma
\end{aligned} \begin{aligned}
& P_{a}+\frac{\rho \cdot V_{a}{ }^{2}}{2}+z_{a} \cdot \rho \cdot g=P_{b}+\frac{\rho \cdot V_{b}{ }^{2}}{2}+z_{b} \cdot \rho \cdot g+\sum_{i=1}^{N} \frac{8 \cdot \rho \cdot Q^{2}}{\pi^{2} \cdot D_{i}^{4}} \cdot\left(f_{i} \cdot \frac{L_{i}}{D_{i}}+K_{i}+C_{i} \cdot f_{T_{i}}\right)-W_{s} \cdot \rho \\
& P_{a}=15 p s i \quad \frac{\rho \cdot V_{a}^{2}}{2}=0.673 p s i \quad z_{a} \cdot \rho \cdot g=0.867 p s i \quad \sum_{i=1}^{3} \frac{8 \cdot \rho \cdot Q^{2}}{\pi^{2} \cdot D_{i}^{4}} \cdot\left(f\left(V_{a}, D_{i}\right) \cdot \frac{L_{i}}{D_{i}}+K_{i}+C_{i} \cdot f_{T}\left(D_{i}\right)\right)=19.657 p s i
\end{aligned}
$$

To balance units, equation (1) should be:

$$
\begin{equation*}
\frac{P_{a}}{\gamma}+\frac{V_{a}^{2}}{2 \cdot g}+z_{a}=\frac{P_{b}}{\gamma}+\frac{V_{b}^{2}}{2 \cdot g}+z_{b}+\sum_{i=1}^{N} \frac{8 \cdot Q^{2}}{\pi^{2} \cdot g \cdot D_{i}^{4}} \cdot\left(f_{i} \cdot \frac{L_{i}}{D_{i}}+K_{i}+C_{i} \cdot f_{T_{i}}\right)-W_{s} \tag{1}
\end{equation*}
$$

Then the first effort,

$$
W_{s}:=z_{a}=2 \mathrm{ft}
$$

And the second effort, $\quad W_{s} \cdot \gamma=0.867$ psi

Conclusions:

1. We really don't need the "gravitational constant," $g_{c}=1$ since it doesn't supply anything.
2. The useable form (for Mathcad) of equation (1) is the red form above, which has balanced units.
