| D:         | ning System Solutions Using Motheod                                                                                                                                                                                                                                        | 11/18/2020                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| -          | ping-System Solutions Using Mathcad                                                                                                                                                                                                                                        |                                                       |
| <b>NON</b> | MENCLATURE                                                                                                                                                                                                                                                                 |                                                       |
| 2          | equivalent lengths for minor loss coefficient                                                                                                                                                                                                                              |                                                       |
| D          | pipe diameter                                                                                                                                                                                                                                                              |                                                       |
|            | Darcy friction factor                                                                                                                                                                                                                                                      |                                                       |
| τ          | fully-rough friction factor                                                                                                                                                                                                                                                |                                                       |
| q = 3      | 2.174 $\frac{ft}{s^2}$ acceleration of gravity                                                                                                                                                                                                                             |                                                       |
|            | •                                                                                                                                                                                                                                                                          |                                                       |
| Jc         | conversion factor (English Engineering units), $g_c = 32.174$                                                                                                                                                                                                              | $\frac{ft \cdot lbm}{m} = 1$ (32.174 ft-lbm/lbf-sec2) |
|            |                                                                                                                                                                                                                                                                            |                                                       |
| Nd         | head change due to a pump, turbine, or other active dev                                                                                                                                                                                                                    | rice                                                  |
| K          | minor loss coefficient expressed as a number                                                                                                                                                                                                                               |                                                       |
| _          | pipe length                                                                                                                                                                                                                                                                |                                                       |
| N          | number of pipes, connection matrix                                                                                                                                                                                                                                         |                                                       |
| P          | pressure<br>flow rate                                                                                                                                                                                                                                                      |                                                       |
| Q<br>Re    | flow rate<br>Pownolds number VD/n                                                                                                                                                                                                                                          |                                                       |
| ke<br>V    | Reynolds number, VD/n<br>velocity                                                                                                                                                                                                                                          |                                                       |
| v<br>Ws    | pump increase in head                                                                                                                                                                                                                                                      |                                                       |
| vvs<br>D   | elevation                                                                                                                                                                                                                                                                  |                                                       |
| $\gamma$   | specific weight, $\gamma \coloneqq \rho \cdot g$                                                                                                                                                                                                                           |                                                       |
| ε          | absolute roughness of pipe, $\varepsilon \coloneqq 0.045 \text{ mm}$ , steel pipe                                                                                                                                                                                          |                                                       |
| ν<br>ρ     | viscosity, $\mu_w \coloneqq 0.01 \text{ poise} = 0.000672 \frac{lbm}{ft \cdot sec}$ , water at 20 o<br>kinematic viscosity, $\frac{\mu}{\rho}$ , $\nu \coloneqq \frac{\mu_w}{\rho} = (1.077 \cdot 10^{-5}) \frac{ft^2}{s}$<br>density, $\rho \equiv 62.4 \frac{lbm}{ft^3}$ |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            | scripts                                                                                                                                                                                                                                                                    |                                                       |
| a          | upstream location                                                                                                                                                                                                                                                          |                                                       |
|            | downstream location<br>w elbow                                                                                                                                                                                                                                             |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
| ent<br>exp | entrance<br>expansion                                                                                                                                                                                                                                                      |                                                       |
| gv         | gate valve                                                                                                                                                                                                                                                                 |                                                       |
|            | arbitrary pipe in a pipe network                                                                                                                                                                                                                                           |                                                       |
|            | counter                                                                                                                                                                                                                                                                    |                                                       |
| 1          | pipe 1                                                                                                                                                                                                                                                                     |                                                       |
| 2          | pipe 2                                                                                                                                                                                                                                                                     |                                                       |
| 3          | pipe 3                                                                                                                                                                                                                                                                     |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |
|            |                                                                                                                                                                                                                                                                            |                                                       |

Created with PTC Mathcad Express. See www.mathcad.com for more information.

no matter how complex the piping system, the basis of all analysis and design calculations for piping systems is the energy-equation applied over a segment of a pipe. Consider, for example, a portion of a series-piping segment as illustrated schematically in Figure 1. If the flow is from "a" to "b," then the energy equation becomes

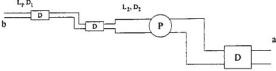
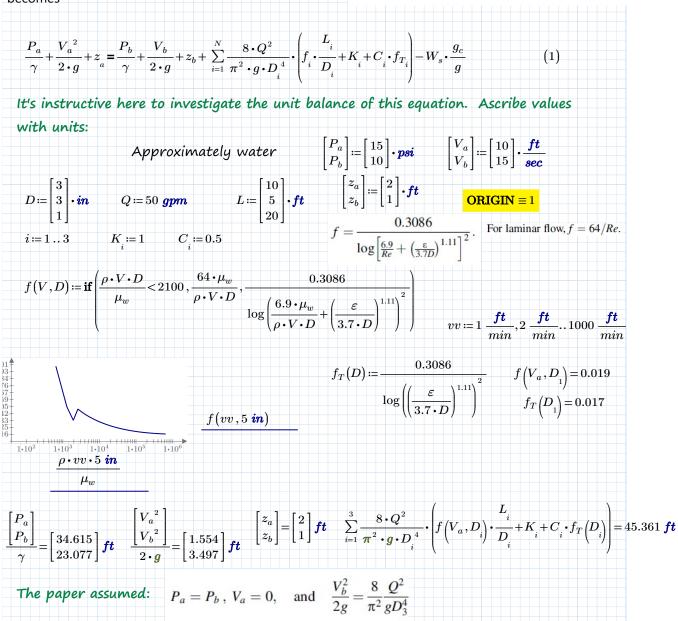
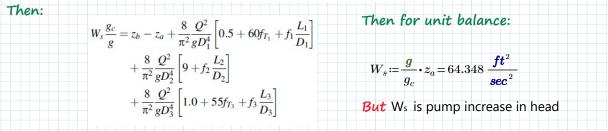





Figure 1 General piping system schematic.





Created with PTC Mathcad Express. See www.mathcad.com for more information.



Created with PTC Mathcad Express. See www.mathcad.com for more information.