
Statics by vectors ≔ORIGIN 1

Let's define a 3D coordinate system, the origin is at x1 in the sketch.  

Three unit vectors (for x, y, and z) are , , and .  x ≔i
1
0
0

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔j
0
1
0

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔k
0
0
1

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

is positive to the right, y is positive up, and z is positive out of the page.  
(The sketch is looking at the XY plane.)
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3D coordinates for the three 
T forces and the weight W≔Crd
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We'll define direction unit vectors for the three tensions, and another for the weight W.  The direction of the 
tension vectors is such that a positive value is positive in the coordinate system.
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The force vectors (for the tensions and the weight) are now going to be the magnitude of the force times the 

direction vector:  .  We can "normalize" the problem by dividing all of the =
T
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force vectors by the magnitude of the weight.  Assume (for discussion) that the magnitudes of the tensions are 
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Using vector notation allows us to calculate moments by vector cross-product:  The ＝Mom ⨯arm force
moment vector reflects the "right-hand rule" for torque--point your right thumb along the vector, and your 
fingers will curl in the direction of the torque.
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Moment about origin due to weight

Note that the first cable (anchored 
at the origin) produces no moment.≔MT

ii
⨯Crd

ii
⎛
⎝

⋅Tm
ii

dr
ii
⎞
⎠ =TMT

0
0
0

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

0
0

1510.171

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

0
0

3523.733

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

The "sum of moments" equation now becomes =+∑
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If we "normalize" these equations:
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Now we build the solution matrix:
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As Werner said, "Three linear 
equations in three variables only 
have one single unique solution if 
the determinant A of the matrix of 
coefficients is different from zero."
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Okay, with three cables the problem is statically indeterminate.
Let's eliminate one cable:
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Remove cable 2: ≔M2 =augment ⎛⎝ ,M⟨⟨1⟩⟩ M⟨⟨3⟩⟩⎞⎠
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Remove cable 3: ≔M3 =augment ⎛⎝ ,M⟨⟨1⟩⟩ M⟨⟨2⟩⟩⎞⎠
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Summary:

The case of three supporting cables is statically indeterminate.  We can get a closed solution for any 
combination of two supports. 
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Note that support 1 is in 
compression.  If these were cables, 
this would not be feasible.
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