Statics by vectors ORIGIN :=1
Let's define a 3D coordinate system, the origin is at x1 in the sketch.
Three unit vectors (for x, y, and z) are $i:=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], j:=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $k:=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] . \mathrm{x}$ is positive to the right, y is positive up , and z is positive out of the page. (The sketch is looking at the XY plane.)

$i i:=1 . .3 \quad i j:=1 . .4$
$X Y:=\left[\begin{array}{ccc}0 & 0 & 0 \\ 3 & 0 & 0 \\ 7 & 0 & 0 \\ 5 & -3 & 0\end{array}\right]$

$$
\operatorname{Cr} d_{i j}:=\left(X Y^{\mathrm{T}}\right)^{\langle i j\rangle} \quad \text { 3D coordinates for the three }
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \operatorname{Crd}^{\mathrm{T}}=\left[\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
7 \\
0 \\
0
\end{array}\right]\left[\begin{array}{r}
5 \\
-3 \\
0
\end{array}\right]\right]
$$

We'll define direction unit vectors for the three tensions, and another for the weight W . The direction of the tension vectors is such that a positive value is positive in the coordinate system.

$$
d r_{i i}:=\frac{C r d_{i i}-C r d_{4}}{\left|C r d_{i i}-C r d_{4}\right|} \quad d r^{T}=\left[\left[\begin{array}{c}
-0.857 \\
0.514 \\
0
\end{array}\right]\left[\begin{array}{c}
-0.555 \\
0.832 \\
0
\end{array}\right]\left[\begin{array}{l}
0.555 \\
0.832 \\
0
\end{array}\right]\right] \quad d r_{w}:=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
$$

The force vectors (for the tensions and the weight) are now going to be the magnitude of the force times the direction vector: $\left(W m \cdot d r_{w}\right)^{\mathrm{T}}=\left[\begin{array}{lll}0 & -1000 & 0\end{array}\right]$. We can "normalize" the problem by dividing all of the force vectors by the magnitude of the weight. Assume (for discussion) that the magnitudes of the tensions are $T m:=\left[\begin{array}{lll}00 & 605 & 605\end{array}\right]^{\mathrm{T}}$.
Sum of forces: $\sum T+W=0 \quad \sum_{f=1}^{3} T m_{f} \cdot d r_{f}+W m \cdot d r_{w}=\left[\begin{array}{l}0 \\ 6.781 \\ 0\end{array}\right] \quad\left[\begin{array}{l}\text { "Force in X direction" } \\ \text { "Force in Y direction" } \\ \text { "Force in Z direction" }\end{array}\right]$

Using vector notation allows us to calculate moments by vector cross-product: $\operatorname{Mom}=a r m \times$ force The moment vector reflects the "right-hand rule" for torque--point your right thumb along the vector, and your fingers will curl in the direction of the torque.

$$
\operatorname{Crd}_{4} \times\left(W m \cdot d r_{w}\right)=\left[\begin{array}{r}
0 \\
0 \\
-5000
\end{array}\right] \quad \operatorname{Crd}_{4} \times d r_{w}=\left[\begin{array}{r}
0 \\
0 \\
-5
\end{array}\right] \quad \text { Moment about origin due to weight }
$$

Note that the first cable (anchored
$M T_{i i}:=\operatorname{Crd}_{i i} \times\left(\operatorname{Tm}_{i i} \cdot d r_{i i}\right) \quad M T^{\mathrm{T}}=\left[\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1510.171\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 3523.733\end{array}\right]\right]$ at the origin) produces no moment.

The "sum of moments" equation now becomes $\quad \sum_{f=1}^{3} \operatorname{Crd}_{f} \times\left(T m_{f} \cdot d r_{f}\right)+C r d_{4} \times\left(W m \cdot d r_{w}\right)=\left[\begin{array}{c}0 \\ 0 \\ 33.904\end{array}\right]$
If we "normalize" these equations:

$$
\sum_{f=1}^{3} d r_{f}+d r_{w}=0
$$

$$
\sum_{f=1}^{3} C r d_{f} \times d r_{f}+C r d_{4} \times d r_{w}=0
$$

Now we build the solution matrix:

$$
\begin{array}{lll}
\begin{array}{lrl}
\text { sum of forces (X and Y) } & M_{1, i i}:=\left(d r_{i i}\right)_{1} \quad M_{2, i i}:=\left(d r_{i i}\right)_{2} & B_{1}:=d r_{w_{1}} \quad B_{2}:=d r_{w_{2}} \\
\text { sum of moments (Z) } & M_{3, i i}:=\left(C r d_{i i} \times d r_{i i}\right)_{3} & B_{3}:=\left(C r d_{4} \times d r_{w}\right)_{3} \quad B:=-B
\end{array} \\
=\left[\begin{array}{rrr}
-0.857 & -0.555 & 0.555 \\
0.514 & 0.832 & 0.832 \\
0 & 2.496 & 5.824
\end{array}\right] & B=\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right] & \begin{array}{l}
\text { As Werner said, "Three linear } \\
\text { equations in three variables only } \\
\text { have one single unique solution if } \\
\text { the determinant A of the matrix of } \\
\text { coefficients is different from zero." }
\end{array}
\end{array}
$$

Okay, with three cables the problem is statically indeterminate.

Let's eliminate one cable:
Remove cable 1:

$$
\begin{aligned}
& M_{1}:=\text { submatrix }(M, 1,3,2,3)=\left[\begin{array}{rr}
-0.555 & 0.555 \\
0.832 & 0.832 \\
2.496 & 5.824
\end{array}\right] \\
& A B_{1}:=M_{1}{ }^{\mathrm{T}} \cdot B
\end{aligned}
$$

$$
A P_{1}:=M_{1}{ }^{\mathrm{T}} \cdot M_{1}
$$

$$
t_{-} w_{1}:=A P_{1}^{-1} \cdot A B_{1} \quad t_{-} w_{1}=\left[\begin{array}{l}
0.601 \\
0.601
\end{array}\right]
$$

$$
T m_{1}:=0 \quad T m_{2}:=t_{-} w_{1_{1}} \quad T m_{3}:=t_{-} w_{1_{2}}
$$

$T m:=T m \cdot W m$

$$
\sum_{f=1}^{3} T m_{f} \cdot d r_{f}+W m \cdot d r_{w}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \sum_{f=1}^{3} C r d_{f} \times\left(T m_{f} \cdot d r_{f}\right)+C r d_{4} \times\left(W m \cdot d r_{w}\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Remove cable 2:

$$
M_{2}:=\operatorname{augment}\left(M^{(1)}, M^{(3)}\right)=\left[\begin{array}{cc}
-0.857 & 0.555 \\
0.514 & 0.832 \\
0 & 5.824
\end{array}\right]
$$

$$
A P_{2}:=M_{2}{ }^{\mathrm{T}} \cdot M_{2}
$$

$$
A B_{2}:=M_{2}{ }^{\mathrm{T}} \cdot B
$$

$$
t _w_{2}:=A P_{2}^{-1} \cdot A B_{2} \quad t_{-} w_{2}=\left[\begin{array}{c}
0.555 \\
0.858
\end{array}\right]
$$

$T m_{1}:=t_{-} w_{2_{1}} \quad T m_{2}:=0$
$T m_{3}:=t_{-} w_{2_{2}}$
$T m:=T m \cdot W m$

$$
\sum_{f=1}^{3} T m_{f} \cdot d r_{f}+W m \cdot d r_{w}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \sum_{f=1}^{3} C r d_{f} \times\left(T m_{f} \cdot d r_{f}\right)+C r d_{4} \times\left(W m \cdot d r_{w}\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Remove cable 3:

$$
M_{3}:=\operatorname{augment}\left(M^{(1)}, M^{(2)}\right)=\left[\begin{array}{rr}
-0.857 & -0.555 \\
0.514 & 0.832 \\
0 & 2.496
\end{array}\right]
$$

$$
A P_{3}:=M_{3}{ }^{\mathrm{T}} \cdot M_{3}
$$

$$
A B_{3}:=M_{3}{ }^{\mathrm{T}} \cdot B
$$

$$
t_{-} w_{3}:=A P_{3}^{-1} \cdot A B_{3} \quad t_{-} w_{3}=\left[\begin{array}{r}
-1.296 \\
2.003
\end{array}\right]
$$

$T m_{1}:=t _w_{3_{1}} \quad$ Tm $m_{2}:=t _w_{3_{2}} \quad T m_{3}:=0$
$T m:=T m \cdot W m$

$$
\sum_{f=1}^{3} T m_{f} \cdot d r_{f}+W m \cdot d r_{w}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \sum_{f=1}^{3} C r d_{f} \times\left(T m_{f} \cdot d r_{f}\right)+C r d_{4} \times\left(W m \cdot d r_{w}\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Summary:

The case of three supporting cables is statically indeterminate. We can get a closed solution for any combination of two supports.
$\begin{array}{ll}\text { Supports } 2 \text { and } 3 \text { eliminate 1: } & W m \cdot t_{-} w_{1}=\left[\begin{array}{l}600.925 \\ 600.925\end{array}\right] \\ \text { Supports } 1 \text { and } 3 \text { eliminate 2: } & W m \cdot t_{-} w_{2}=\left[\begin{array}{l}555.329 \\ 858.465\end{array}\right]\end{array}$

Supports 1 and 2 eliminate 3:
$W m \cdot t _w_{3}=\left[\begin{array}{r}-1295.767 \\ 2003.084\end{array}\right]$
Note that support 1 is in compression. If these were cables, this would not be feasible.

