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BASIC EQUATIONS OF A SUSPENDED WIRE

Hence no force, nowever gareat,
Can stretch a cord, however fine,
Into an horizontal line

That 1s accurately straight...

William Whewell (1794-18641

1.1 Basic assumptions.

When a perfectly flexible wire, of uniform mass per unit of length, m, is
suspended between two fixed points at a tension T, 1t assumes s curve knawn
as a CATENARY (from Latin catena = chain). The theoretical equatiaon ftar
the rise nof this curve at a distance ¥ from 1%ts lowest po:int is,

y = C.lcosh(x/C) - 11
where C = T/(m.q)

In overhead electrification work, however, this formula is not generally
used. With spans and tensions aof the order usually encountered 1n this
kind of work (the spans being generally much shorter than those wused in
overhead transmission lines), the difference between this formula and the
simpler one that we shall derive below is negligible. In fact, the above
formula, if nat used with care, can give seriqus errors.

The reader may try the exercise of calculating y at various values of
X, taking m=@.1 kg/m, g=9.8@7 and T=1000@8 N, If this 1s done, first by
using four-figure tables of hyperbolic cosines, and then by wusing a
calculator giving the "cosh" function to eight ar nine signrificant
figures, the danger will become clear.

We therefore make the assumption that the mass per unit of span, and nat
per unit of length of the wire itself, 1is unifaorm. In Figs. i.!a and l.1b
the sag has been exaggerated to show this difference clearly. (The reader
should nate that the term "mass per unit length", or "specific mass", as
used in aoverhead electrification work, may be taken without significant
error to mean "mass per unit of span". To avoid confusion, the latter term
is used throughout this work.) We also make the assumptian already men-
tioned: that the wire is perfectly flexible. This may surprise anyone who
takes a short piece of solid contact wire in his hand, but it can be shown
that over a span of 18 m or more, the stiffness of the wire has negligible
effect on 1ts sag.
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(a) Uniform mass per unit of (b) Uniform mass per unit of
LENGTH ' SPAN

Fig. 1.1
1.2 Derivation of sag equations.

Let us now consider a wire suspended between two fixed points, A and B, not
necessarily at the same height (Fig. 1.2). The horizontal distance, L,
between & and B is called the SPAN LENGTH, ar simply SPAN.
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Since the wire is perfectly flexible, it is free to take up a position such
that there is no bending moment at any point in it. The tension at any
point can therefore be represented by a vector Tw, tangential to the wire
at that point. This vectaor can be resclved into horizaontal and vertical
components, Th and Tv respectively, related by the equation,

Tw = sqr{Th*2 + Tv~*2)

When the wire, being free to take up any position as described, has come to
a state of rest, the sum of all the forces acting at any point must be
zera. From this we deduce:

1. The horizontal component of tension, Th, 1is constant at all pointe
throughout the span.

2. The vertical component, Tv, at any point in the span is equal to the
weight of the wire lying between that point and the lowest point in
the span. (This follows from the fact that at the lowest point, the
tangential tension is horizontal, and hence there is no vertical campo-

nent of farce at that poaint).

3. The sum of the moments acting about any point is zero, and, further,
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From | and 2 it follows that Tv, and hence Tw, i3 at a maximum &t the =nds
2% the span, while at the lowest point Tv=@ and Tw=Th. Using the third
deduction, we can now find the vertical positiaon of any point 1n th

The vertical ~reaction at A iIs equal to the weight of the isngth af wire
hetween A and the low point:

Ra = m.g.x@

I[f we take any point F,  at a horizantal distance of x and a vertical
distance aof y from A, then there are three moments acting in the wire to
the left of that point. Taking clockwise moments as positive, thess are:

{. The vertical reaction, Ra, acting through the distance x, giving rise
to a maoment of Ra.x = m.g.xB.x

2. The weight of the wire between A and P, which 1s equal to m.g.x, and
can be treated as a point load acting midway between 4 and F, so that
the moment is -m.g.x"2/2

3. The horizontal companent of the tension, Th, acting though the distance
y, giving a moment of Th.y (Note that vy is negative 1f below the

arigin, as in Fig. 1.2).

The sum of these maments can then be equated to :zero:

m.g.%x@.x - m.g.x"2/2 + Th.y = @

from which
m.g. (xB.x - x*2/2)
Y = = mmmmmmmmmm——eeeeo- cea {101)

Ne can now note two important special cases:
1. By making x equal to x@ in equation 1.1, we find that the vertical

distance between A and the low point is

yg = - —-—--=-- cee (102)

The curve represented by this equation is a PARABOLA.
Since the resultant force is tangential to the wire at all points i1ncluding

the support point, this equation gives the rise fram the laow point to ANY
point in the wire, where x@ is the distance between the law point and the

point in gquestian.
2. If A and B are at the same height, it is obviagus that,

x@= L/2



0.C.5.De=s1gn Manual 1-4 Halfour Geattyv F

We can now define the SAG in this symmetrical span as the vertical distancr
from the supports to the law point, 5§ = -v@

Since it is the horizantal component of the tension, Th, that is always the
critical parameter in all =quations defining the position of the wire, we
will, from hnere onwards, define TENSION (unless otherwise stated) as the
hoerizaontal component of the tension in the wire, and designate 1t by the
symbol T, without suffix.

Equation 1.4 thus hecomes, for the sag in a symmetrical span,
§ = -=-==—-- : e (1,50

In the derivation of y and y@ we have observed the usual sign canven
tion, by which farces in the downward sense, and dimensians below the
origin, are negative. We regard Sag, however, as a simple dimension
and eliminate the negative sign.

Going back to the general case where A and B are not at equal heights, we
can now find the horizontal position of the law point,

From Equation 1.2, the vertical distances from A and B respectively to the
low point are:

m.g.x8"2 m.g. (L-x@)"2

Let the difference in height between A and B be H = ya - yb

Then,
m.g
H = --- [(L-x0)"2 - x@"21
2T
from which
L T.H
X@ = - = —=—=- caa (1.8)
2 m.g.L

The reader may verify that, if moments acting on the right-hand side o
the point P had been considered, the identical results would have been
obtained.

From Equation 1.4, we can now write,
m.g.L m.g.T.H

Ra = m.g.x8 = -==== - ——=-—un
2 L
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and sgpstitueting this 1o the gerivation af sgquation L.l 31ves an alfterna-
tive egquation +or vi
MeQais il=s H.
Y = - memmm—mem-—-—— + -—-- P S -
2T L
Camparing :his with eguation 1.3 shows that the two gquations differ aniv
by the term H.x/L. Now this term ciearly repressnts fhe rise aft distancs
from opoint A of a line joining & and B (Fig. 1.3). In other words, =hne
vertical distance fo the wire from a line joining the twao support points is

independent af the gradient of that line.

Fig. 1.3

This means that we can represent the asymmetrical span by superimposing
onto a correspanding symmetrical span a straight line having the slope H/L.
The practical advantage of this is that we can relate all support heights
to ground level {(or track level) and ignore any gradient af the ground or
track. The "sag" of the wire can be measured fram the line Jjoining the
suppart points, whether that line is horizontal or not.

1.3 Point loads.

So far we have caonsidered a wire of uniform mass per unit of span. We now
examine a wire having a load of mass M, concentrated at a point P, at a
distance of Xp from support A (Fig. 1.4). First of all, we will imagine
that the wire itself has na mass.
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Fig, 1.4

By =2quating the sum of moments about B to zero, we obtain the vertical
reaction at A:

Then, from the sum of moments at P, the vertical distance from A to P 1s,

Ra.Xp M.g.Xp. (L-Xp)}
y@ = - —==-= T - —--—e—eo————- e (107)

Now, 1f we take a wire of uniform mass m, with a point load M at P, by the

same process we get,
m.g.L M.g. (L-Xp)

from which the vertical distance from A to P is
Ra.Xp - m.g.Xp"2/2 m.g.Xp. (L-Xp) M.g.Xp. (L-Xp)

yl = = ====-cm-ocromommms 2 o mmmmssemcmeos - eem——eeee—— e (1.8)

Caomparing this with equations 1.7 and 1.3 we see that
yl =y + y@
In other words, the FALL of the wire from the support to any to any point.
due to the combined effects of the uniform mass and the point load, 1s
equal to that which would occur with the unifarm mass alone, plus that
which would occur with the point load alane.
The ADDITIONAL sag of the wire at P, due to the point load, is thus
Yp = vl -y = v@

Using this oprinciple, we can find the fall due to the effect aof 3 point

load at P, combined with the uniform mass, at saome other point 2, where @&
is less than P (Fig. 1.3).



- a A o
Sswa e WESICN TANUG

Fig. 1.3

Since the imagined massless wire would lie in a straight line between A and
P, the ADDITIONAL fall at P! due to the point load 1s clearly,

M.g.4ip.(L-Xp) Xq M.g.%q.(L-Xp)
¥g = - ——-=--------- B ek s (1.9a)
T.L ip T.L

In the same way we find that, where @ is greater than P, the additional
fall at @ due to the point load is,

M.g.Xp. (L-Xq)
Yq = - mmmmmmmmm——e o (1.9D)

This principle can be extended to any number of point loads in the <came
span.,

1.4 Wind loading and blaw-off.

Wind blowing at right-angles to the wire will apply a uniform force, w, per
unit of span. Haw this force is evaluated will be dealt with later (Chap-
ter 8, section 8.2.2). The combination of this farce and the vertical load
m.g will produce a resultant load fr, where,

fr = sqri(m.g)"2 + w*2]

The wire, being flexible, will swing into a plane parallel with the direc-
tion of this resultant farce. The distance, measured in this plane, from
the supparts to the wire at mid-span, we will call the RESULTANT SAG, and

is,

Nate: It is assumed for the present that the value of T is known. The
effect of the wind farce on the tension will be considered
later.
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The resultant =
and a BLOW-0OFF 1

D w
'
i

Since the plane in which the wire lies is parallel with the resulfant +arce
fr, it follows that,

m.g.L"2
I Lea il 13a
8T
and,
w.L"2
B = --—--- ces (1. 10B)
87

Equation 1.1@a is identical with equation 1.5, and equation [.18b 15 of the
same form. We can thus say that the SAG (defined as the deflection of th

wire in the vertical plane) and the BLOW-OFF f{(defined as the deflection o

the wire in the horizontal plane) are due to the vertical and horizontal
forces respectively, and can be considered independently of one another,

This point should be especially noted, because the terms "SAG" and what
we have called here "RESULTANT SAG" are sometimes confused. Throughout
this wark, "SAG" is to be understood as being in the vertical plane.

1.5 Ice loading.

Ice is usually assumed to form a coating on the wire, of wuniform radia'
thickness. It thus farms a cylinder co-axial with the wire itself. Con

sequently its mass is uniformly distributed over the span. In all the
equations derived above, therefore, we can simply add the mass of the ice.
mi, to the mass of the wire, m. GSo, for example, equation 1.3 becomes,

(a+mi).g.L"*2
§ = ~mmmmm———m——a ceefla11)

We will now study the behaviour of a suspended wire wunder changes o
temperature and loading.

First, we have to find the length of the wire, C, in a span of length L.

Fig. 1.4 shows a span of wire, of length L, and with its supports at
a differential height of H.
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A small element of the wire, of length dC, forms the hypoten
angled triangle with the corresponding elements dv and dy, ¢

dC sqri{dus) ™2 + (dy) 21

or.,
dC = sqrll + {(dy/dx)~Z271.dx

Since dy is small in relation to dx, we can make the approximatian,
dC = [1 + (dy/dx)~2/21.4dx een (10120
The derivatiaon of this approximation is as follows:
fa + b"2/(2a)172 = a2 + b2 + b™4/(4a)"2
I b<a, the last term can be neglected, giving
a + b*2/(23) = (approx.) sqr(a™2 + h"2)

If b<a/4, the error will be less than 9.85%

Now we know that the equation of the curve of the wire is

y T = smeem—e-eo- + --- (see equation 1.3a)

and so, by differentiation,

dy m.g. (L-2x) H
—— 2 - memmmem————— + -
dx 27 L

Substituting *this in equation 1.12 and integrating with respect ta % he-
tween the limits @ and L gives

{(m.g)"2.L"3 H*2
C=10L4+ -—-------- + === e (1013
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C can also be expressed in fterms of the sag, bov substituting eguation .
in equation [.1:

0

Y
-

.
SO

B 52 42
C o= L + ==mm- + —e- SIS
3L 2L

Now let a length of wire, C@, be suspended :n a symmetrical span of lengt
L, at a known tensiaon of TO.

Fram equation [.13,
f0°2.L°3  H2
24 1872 2L
where f@ is the initial resultant load, being
f@ = sgri((m+mi@).g)"2 + w@"2]

m, mi@ and w@ being the mass, initial ice mass and initial wind loa“
respectively. (i@, and w@ may, of course, be zerao.)

Now let the ice and wind loads change to mil and wi. Since the wire 1is
elastic, its length will change to:

f1722,L73 H"2

€l = L + —==-=--- T
24 T1*2 2L

where 1 = sgrl((m+mil).g)"2 + wi"2] and Tl is the new tension, which we
have ta find.

Likewise, if the temperature changes, the length of the wire will be al-
tered by expansion or contraction, and this will also affect the tensiaon
which in turn will bring about a further elastic change in the length o
the wire.

The change in length due to elastic elongation is,
ce
dC(e) = --- (T1-T@)
E.A

where E is the Modulus of Elasticity (or Young's Modulus) of the wire
and A is the cross-sectional area of the wire.

The change in length due to temperature change is,
dC(t) = a.C.(t1-t@)

where a is the coefficient of thermal expangion,
and t® and t! are the initial and new temperatures respectively.

The total change in wire length is thus,

ct - Co dC(e} + dC(t)

cae
= --= (T1 - T8) + a.CB(t1-t@)

E.A



2.2.8.02s1an Manual i-11 z3ifaur Hsarty oL
Since the difference betwean C8 and L 1s veryvy zmall, we cCan zgprowigats
L
L1 - £@ = ~-- (T - T3} + a.L.itl - t@
E.A
traom which,
E.A
T{ - T3 = - E.a.it1-£8) + --=- (01 - C@i
Substituting for C1 and CO@ gives the CHANGE-OF-STATE EQUATION:
E.A.f@"2 L2 E.ALFLH2 L2
TI = 7@ - E.fA.a.(t1-t@) - -=--==-==——- + ommmm—m—— e ces (10157

411 the terms in this equation, except T1, are known, and so 1t can be

reduced to,
R

T1 =0 + —=—= co.(1.15a)
T1~2 :

where @ and R are constants that can be evaluated.

This equatiaon can be solved in either of two ways.

1. Using a calculatar.

Estimate an initial wvalue of T! (you will at least know whether it 1is
greater or less than T@) and substitute this on both sides of equation

1.15a.

If the two sides are not then equal, the true value of Ti must lie between
the estimated value on the left, and the calculated value on the rignt.
Taking a new value between the two, repeat the process, and so on until the
twa sides of the equation balance. With experience, it is usually possible
to arrive at the solution in three or four attempts.

EXAMPLE: An aluminium wire of 137.6 sg.mm cross-sectional area is sus-
pended in a span of 4@ m, at a tension of J@0@@8 N at 10 C without wind
or ice. What is its tension at -15 C with a wind load of 7.47 N/a and
an ice load of 8.735 kg/m? The Modulus of Elasticity may be taken as
54000 N/sg.mm, the Coefficient of Expansion as 0.000023 per deg.C, and
the mass of the wire as @.434 kg/m.

E=34002 N/sq.mm a=137.6 sq.mm a=@ggea2s /C L=68 nm

mn=0.434 kg/m ta=10 C ti==-13 C T@=50080 N
f0 = 0.434x9.807 = 4,236 N/m
fl = s5qr(((8.434+0.755)x9.887)"2 + 7.47"2]1 = 13.848 N/m

T1 = 500@ - S56000x137.6x0.000023x(-15-12)
56000x157.6x4.2356"2x60"2

24x5002"2
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2.539 ElL1
5800 + 5@73 - 959 + ---------

1}
-0
—
—
o~

+

Let the initial estimate of T{ be 12008 N
2.539 Elt
12000~2

This is lower than the estimated value, so we make the second estimat
the approximate mean of the two values, say 114@@ N

2.539 E1t
114802

The third estimate must lie between 110870 and 114@8@, and we deduce frc
the results above that it will be nearer to the lower figure; say
111535.

2,339 E11
1113572
Since this is within 1 N, it can be accepted as the solutioan.

Sa the tension T! is 11133 N

2. By the Newton-Raphson Method (more suitable for computer programs).

The full description of this method can be found in mathematical textbooks.
We give here a subroutine, suitable for incorporation in a coaputer prog
ram. It is written in BASIC, but could easily be translated into any othe
programming language.

18@ REM SUBROUTINE: SOLUTION OF CUBIC ERUATION

110 REM

120 REM This subroutine solves cubic equations of the form
1380 REM T1=Q+R/T1"2 by the Newton Raphson Method.

148 REM
158 T1=R*##(1/3)+ABS(RQ) REM initial guess
160 ICOUNT=0 REM iteration counter zeroed

170 TO=(R-TI1"3+G#T1"2)/(3#T1"2-2*Q*T1)

188 T1=T1+T@ : ICOUNT=ICOUNT+!

19@ IF ABS(T@)<1 THEN 230 REM within 1 unit of solution

20@ IF ICOUNT<28 THEN 1780 REM traps if no convergence in 28
1terations

218 PRINT "NO CONVERGENCE™ : STOP

22@ REM

238 RETURN REM end of subroutine



0.C.5.0esign ianuai 1-13 Balfour Beatty ppp

1.7 Equivalent span.

e
[

It will have been noticed that the sbgn length is a parameter in the
variation of tension with temperature and loading. Now, in a length of
overhead equipment, the spans will not usually all be equal, and sa, even
though the tension 15 made constant throughout the length under some de-
fined condition, there wiil be differential tensions between the adjacent
spans under &all other conditions. Spans can rarely be considered in isola-
tion from one another, since the supports usually incorporate saome form of
link that allows movement of wire between one span and another. In the
case of overhead contact systems mounted an cantilevers, or carried over
pulleys, complete =qualisation of tension between adjacent spans takes
place. It 1is therefore necessary to find what the final tension will be,

under any given conditian,

Consider twe spans, of lengths L1 and L2 (Fig. 1.7). At the support
between them, the wire is free to move. (For practical purposes it does
not matter whether wire moves from one span into the other, as over a
pulley, or the span lengths themselves change slightly, as with swinging
cantilevers, Since the mavement is very small in relation to the span
lengths, the latter can be treated as constant.} The supparts at the outer

ends of the two spans are fived,

—

~—

L1 L2

Fig. 1.7
Initially, at ‘temperature t® and loading f@, both spans are at the same
tension, T@. If we first suppose the wire to be fixed at the intermediate
support, then at some other condition (t1,f1) the wires in the spans L1 and
L2 will reach different tensions T1 and T2 respectively. These tensians are

given by the equations:

E.A.£8°2.L172  E.A.f1°2.L1°2
-------------- .. (1. 16a)

TL = T8 - E.A.a.(t1-t@) - -—--===-uommm +
24 TR"2 24 T1~2
E.A.f8°2.L272 E.A.f1%2,12"2
T2 = 7@ - E.A.a. (t1-£8) - --—-—-mmmmome oo . (1.16b)
24 102 24 T172

If we now suppose the intermediate support to be released, a length of
wire, dbL, will move from one span to the other. This introduces a new term
into the Change-of State Equation. Taking the movement as positive if it
is from the span L1 into the span L2, the wire in both spans will now reach

a2 new tension T3, given , in the span LI, by:

R
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Substituting for 7! from equation I.léa:

E.A.dL E.A.f@"2.L172  E.Af1°2.L12
T3 =78 - E.Aa. (£1-10) # =—m-=m = cmmmee +t s

e (1.17a)

Likewise, in the =pan o2:

E.A.dL E.A.fB"2.L2"°2 E.R.F172,1272

T3 = T@ - E.Aca. (£]1-£B) = =m==-= = memmmmee $ mmmmmmmmm o
L2 24 TP2 24 T3*2
e {1.178)

To eliminate the uniknown dL, we multiply equations 1.1Ba and 1.18b by L1
and L2 respectively: add the resulting equations together and divide by
L1 + L2). The r=suit is a single equation:

E.A.f8%2.Le"2 E.A.f1°2.Le"2
Cmmmmmm e et e (1.18)

-
2]
"
-~
=
1
m
I
iy
»
1
"~
=
|

where te = sqrl(L1~3 + L2°3)¥/(L1 + L2)]

This parameter L2 135 called the ERUIVALENT SPAN. It is defined as the
length of a single span which, subjected to the same change of conditions,
would undergo the same change in tension as the two spans L1 and L2,

It can be shown that this process can be extended to any number of spans,
so that the general faormula for the equivalent span of 2 series of spans

L1, L2, L3... etc, 13,

Le = sqri{i1"3 + L2°3 + L3733 ... etc.)/(L1 + L2 + L3 ... etec.)]

sea (1.19)



